# Properties

 Label 91.2.e.c.53.2 Level $91$ Weight $2$ Character 91.53 Analytic conductor $0.727$ Analytic rank $0$ Dimension $10$ CM no Inner twists $2$

# Learn more

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [91,2,Mod(53,91)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(91, base_ring=CyclotomicField(6))

chi = DirichletCharacter(H, H._module([4, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("91.53");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$91 = 7 \cdot 13$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 91.e (of order $$3$$, degree $$2$$, minimal)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: no Analytic conductor: $$0.726638658394$$ Analytic rank: $$0$$ Dimension: $$10$$ Relative dimension: $$5$$ over $$\Q(\zeta_{3})$$ Coefficient field: $$\mathbb{Q}[x]/(x^{10} - \cdots)$$ comment: defining polynomial  gp: f.mod \\ as an extension of the character field Defining polynomial: $$x^{10} - x^{9} + 8x^{8} + 7x^{7} + 41x^{6} + 18x^{5} + 58x^{4} + 28x^{3} + 64x^{2} + 16x + 4$$ x^10 - x^9 + 8*x^8 + 7*x^7 + 41*x^6 + 18*x^5 + 58*x^4 + 28*x^3 + 64*x^2 + 16*x + 4 Coefficient ring: $$\Z[a_1, a_2, a_3]$$ Coefficient ring index: $$3$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

## Embedding invariants

 Embedding label 53.2 Root $$-0.606661 - 1.05077i$$ of defining polynomial Character $$\chi$$ $$=$$ 91.53 Dual form 91.2.e.c.79.2

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q+(-1.10666 - 1.91679i) q^{2} +(-1.23721 + 2.14292i) q^{3} +(-1.44940 + 2.51043i) q^{4} +(1.06140 + 1.83839i) q^{5} +5.47671 q^{6} +(2.63169 + 0.272389i) q^{7} +1.98932 q^{8} +(-1.56140 - 2.70442i) q^{9} +O(q^{10})$$ $$q+(-1.10666 - 1.91679i) q^{2} +(-1.23721 + 2.14292i) q^{3} +(-1.44940 + 2.51043i) q^{4} +(1.06140 + 1.83839i) q^{5} +5.47671 q^{6} +(2.63169 + 0.272389i) q^{7} +1.98932 q^{8} +(-1.56140 - 2.70442i) q^{9} +(2.34921 - 4.06896i) q^{10} +(-2.39448 + 4.14736i) q^{11} +(-3.58643 - 6.21188i) q^{12} +1.00000 q^{13} +(-2.39028 - 5.34585i) q^{14} -5.25271 q^{15} +(0.697291 + 1.20774i) q^{16} +(1.88914 - 3.27208i) q^{17} +(-3.45588 + 5.98575i) q^{18} +(1.78362 + 3.08931i) q^{19} -6.15355 q^{20} +(-3.83967 + 5.30250i) q^{21} +10.5995 q^{22} +(-2.23721 - 3.87497i) q^{23} +(-2.46122 + 4.26295i) q^{24} +(0.246870 - 0.427591i) q^{25} +(-1.10666 - 1.91679i) q^{26} +0.303848 q^{27} +(-4.49818 + 6.21188i) q^{28} -5.90107 q^{29} +(5.81296 + 10.0683i) q^{30} +(1.88558 - 3.26592i) q^{31} +(3.53265 - 6.11873i) q^{32} +(-5.92496 - 10.2623i) q^{33} -8.36254 q^{34} +(2.29251 + 5.12720i) q^{35} +9.05234 q^{36} +(-2.81285 - 4.87200i) q^{37} +(3.94772 - 6.83765i) q^{38} +(-1.23721 + 2.14292i) q^{39} +(2.11146 + 3.65716i) q^{40} +10.3948 q^{41} +(14.4130 + 1.49180i) q^{42} +3.40733 q^{43} +(-6.94110 - 12.0223i) q^{44} +(3.31453 - 5.74093i) q^{45} +(-4.95168 + 8.57655i) q^{46} +(3.55438 + 6.15636i) q^{47} -3.45079 q^{48} +(6.85161 + 1.43369i) q^{49} -1.09280 q^{50} +(4.67454 + 8.09654i) q^{51} +(-1.44940 + 2.51043i) q^{52} +(6.19003 - 10.7214i) q^{53} +(-0.336257 - 0.582415i) q^{54} -10.1660 q^{55} +(5.23528 + 0.541869i) q^{56} -8.82686 q^{57} +(6.53049 + 11.3111i) q^{58} +(-2.39448 + 4.14736i) q^{59} +(7.61326 - 13.1865i) q^{60} +(-1.60348 - 2.77732i) q^{61} -8.34680 q^{62} +(-3.37246 - 7.54251i) q^{63} -12.8486 q^{64} +(1.06140 + 1.83839i) q^{65} +(-13.1139 + 22.7139i) q^{66} +(1.44978 - 2.51109i) q^{67} +(5.47622 + 9.48510i) q^{68} +11.0717 q^{69} +(7.29075 - 10.0683i) q^{70} -2.53876 q^{71} +(-3.10612 - 5.37996i) q^{72} +(-3.85035 + 6.66901i) q^{73} +(-6.22574 + 10.7833i) q^{74} +(0.610862 + 1.05804i) q^{75} -10.3407 q^{76} +(-7.43122 + 10.2623i) q^{77} +5.47671 q^{78} +(2.58925 + 4.48471i) q^{79} +(-1.48021 + 2.56379i) q^{80} +(4.30827 - 7.46214i) q^{81} +(-11.5035 - 19.9247i) q^{82} +3.46731 q^{83} +(-7.74633 - 17.3247i) q^{84} +8.02051 q^{85} +(-3.77076 - 6.53115i) q^{86} +(7.30089 - 12.6455i) q^{87} +(-4.76338 + 8.25042i) q^{88} +(-1.83216 - 3.17339i) q^{89} -14.6722 q^{90} +(2.63169 + 0.272389i) q^{91} +12.9704 q^{92} +(4.66574 + 8.08129i) q^{93} +(7.86698 - 13.6260i) q^{94} +(-3.78625 + 6.55798i) q^{95} +(8.74129 + 15.1404i) q^{96} -5.40733 q^{97} +(-4.83432 - 14.7197i) q^{98} +14.9549 q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$10 q - 4 q^{2} - 8 q^{4} - 2 q^{5} - 10 q^{6} + q^{7} + 18 q^{8} - 3 q^{9}+O(q^{10})$$ 10 * q - 4 * q^2 - 8 * q^4 - 2 * q^5 - 10 * q^6 + q^7 + 18 * q^8 - 3 * q^9 $$10 q - 4 q^{2} - 8 q^{4} - 2 q^{5} - 10 q^{6} + q^{7} + 18 q^{8} - 3 q^{9} + 5 q^{10} - 11 q^{11} - 5 q^{12} + 10 q^{13} + 10 q^{14} - 10 q^{16} + 5 q^{17} - 9 q^{18} - 9 q^{19} + 2 q^{20} + 2 q^{21} + 16 q^{22} - 10 q^{23} - 9 q^{25} - 4 q^{26} + 37 q^{28} - 6 q^{29} + 13 q^{30} + 6 q^{31} - 22 q^{32} - 8 q^{33} - 44 q^{34} - 4 q^{35} + 14 q^{36} - 4 q^{37} + 10 q^{38} - 28 q^{40} + 28 q^{41} + 52 q^{42} + 4 q^{43} + 32 q^{45} - 3 q^{46} - q^{47} - 46 q^{48} - 11 q^{49} + 18 q^{50} + 8 q^{51} - 8 q^{52} - 17 q^{53} - 23 q^{54} - 21 q^{56} - 32 q^{57} + 27 q^{58} - 11 q^{59} + 29 q^{60} + 11 q^{61} - 46 q^{62} + 5 q^{63} + 18 q^{64} - 2 q^{65} - 21 q^{66} - 13 q^{67} + 32 q^{68} + 36 q^{69} + 49 q^{70} + 30 q^{71} + 19 q^{72} + 33 q^{74} + 20 q^{75} + 16 q^{76} - 46 q^{77} - 10 q^{78} - 2 q^{79} - 55 q^{80} + 19 q^{81} - 34 q^{82} + 12 q^{83} - 23 q^{84} - 44 q^{85} - 28 q^{86} + 8 q^{87} + 3 q^{88} + 4 q^{89} - 68 q^{90} + q^{91} + 42 q^{92} - 18 q^{93} - 20 q^{94} + 12 q^{95} + 37 q^{96} - 24 q^{97} - 7 q^{98} + 22 q^{99}+O(q^{100})$$ 10 * q - 4 * q^2 - 8 * q^4 - 2 * q^5 - 10 * q^6 + q^7 + 18 * q^8 - 3 * q^9 + 5 * q^10 - 11 * q^11 - 5 * q^12 + 10 * q^13 + 10 * q^14 - 10 * q^16 + 5 * q^17 - 9 * q^18 - 9 * q^19 + 2 * q^20 + 2 * q^21 + 16 * q^22 - 10 * q^23 - 9 * q^25 - 4 * q^26 + 37 * q^28 - 6 * q^29 + 13 * q^30 + 6 * q^31 - 22 * q^32 - 8 * q^33 - 44 * q^34 - 4 * q^35 + 14 * q^36 - 4 * q^37 + 10 * q^38 - 28 * q^40 + 28 * q^41 + 52 * q^42 + 4 * q^43 + 32 * q^45 - 3 * q^46 - q^47 - 46 * q^48 - 11 * q^49 + 18 * q^50 + 8 * q^51 - 8 * q^52 - 17 * q^53 - 23 * q^54 - 21 * q^56 - 32 * q^57 + 27 * q^58 - 11 * q^59 + 29 * q^60 + 11 * q^61 - 46 * q^62 + 5 * q^63 + 18 * q^64 - 2 * q^65 - 21 * q^66 - 13 * q^67 + 32 * q^68 + 36 * q^69 + 49 * q^70 + 30 * q^71 + 19 * q^72 + 33 * q^74 + 20 * q^75 + 16 * q^76 - 46 * q^77 - 10 * q^78 - 2 * q^79 - 55 * q^80 + 19 * q^81 - 34 * q^82 + 12 * q^83 - 23 * q^84 - 44 * q^85 - 28 * q^86 + 8 * q^87 + 3 * q^88 + 4 * q^89 - 68 * q^90 + q^91 + 42 * q^92 - 18 * q^93 - 20 * q^94 + 12 * q^95 + 37 * q^96 - 24 * q^97 - 7 * q^98 + 22 * q^99

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/91\mathbb{Z}\right)^\times$$.

 $$n$$ $$15$$ $$66$$ $$\chi(n)$$ $$1$$ $$e\left(\frac{2}{3}\right)$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
</
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ −1.10666 1.91679i −0.782527 1.35538i −0.930465 0.366381i $$-0.880597\pi$$
0.147938 0.988997i $$-0.452737\pi$$
$$3$$ −1.23721 + 2.14292i −0.714306 + 1.23721i 0.248921 + 0.968524i $$0.419924\pi$$
−0.963227 + 0.268690i $$0.913409\pi$$
$$4$$ −1.44940 + 2.51043i −0.724699 + 1.25521i
$$5$$ 1.06140 + 1.83839i 0.474671 + 0.822155i 0.999579 0.0290040i $$-0.00923354\pi$$
−0.524908 + 0.851159i $$0.675900\pi$$
$$6$$ 5.47671 2.23586
$$7$$ 2.63169 + 0.272389i 0.994686 + 0.102953i
$$8$$ 1.98932 0.703331
$$9$$ −1.56140 2.70442i −0.520466 0.901473i
$$10$$ 2.34921 4.06896i 0.742887 1.28672i
$$11$$ −2.39448 + 4.14736i −0.721962 + 1.25048i 0.238250 + 0.971204i $$0.423426\pi$$
−0.960212 + 0.279272i $$0.909907\pi$$
$$12$$ −3.58643 6.21188i −1.03531 1.79321i
$$13$$ 1.00000 0.277350
$$14$$ −2.39028 5.34585i −0.638829 1.42874i
$$15$$ −5.25271 −1.35624
$$16$$ 0.697291 + 1.20774i 0.174323 + 0.301936i
$$17$$ 1.88914 3.27208i 0.458183 0.793597i −0.540682 0.841227i $$-0.681834\pi$$
0.998865 + 0.0476304i $$0.0151670\pi$$
$$18$$ −3.45588 + 5.98575i −0.814558 + 1.41086i
$$19$$ 1.78362 + 3.08931i 0.409190 + 0.708737i 0.994799 0.101856i $$-0.0324781\pi$$
−0.585609 + 0.810593i $$0.699145\pi$$
$$20$$ −6.15355 −1.37597
$$21$$ −3.83967 + 5.30250i −0.837886 + 1.15710i
$$22$$ 10.5995 2.25982
$$23$$ −2.23721 3.87497i −0.466491 0.807987i 0.532776 0.846256i $$-0.321149\pi$$
−0.999267 + 0.0382695i $$0.987815\pi$$
$$24$$ −2.46122 + 4.26295i −0.502394 + 0.870171i
$$25$$ 0.246870 0.427591i 0.0493740 0.0855182i
$$26$$ −1.10666 1.91679i −0.217034 0.375914i
$$27$$ 0.303848 0.0584757
$$28$$ −4.49818 + 6.21188i −0.850076 + 1.17393i
$$29$$ −5.90107 −1.09580 −0.547901 0.836543i $$-0.684573\pi$$
−0.547901 + 0.836543i $$0.684573\pi$$
$$30$$ 5.81296 + 10.0683i 1.06130 + 1.83822i
$$31$$ 1.88558 3.26592i 0.338660 0.586577i −0.645521 0.763743i $$-0.723360\pi$$
0.984181 + 0.177166i $$0.0566929\pi$$
$$32$$ 3.53265 6.11873i 0.624490 1.08165i
$$33$$ −5.92496 10.2623i −1.03140 1.78644i
$$34$$ −8.36254 −1.43416
$$35$$ 2.29251 + 5.12720i 0.387505 + 0.866655i
$$36$$ 9.05234 1.50872
$$37$$ −2.81285 4.87200i −0.462429 0.800951i 0.536652 0.843804i $$-0.319689\pi$$
−0.999081 + 0.0428524i $$0.986355\pi$$
$$38$$ 3.94772 6.83765i 0.640404 1.10921i
$$39$$ −1.23721 + 2.14292i −0.198113 + 0.343141i
$$40$$ 2.11146 + 3.65716i 0.333851 + 0.578247i
$$41$$ 10.3948 1.62340 0.811698 0.584077i $$-0.198543\pi$$
0.811698 + 0.584077i $$0.198543\pi$$
$$42$$ 14.4130 + 1.49180i 2.22398 + 0.230189i
$$43$$ 3.40733 0.519613 0.259807 0.965661i $$-0.416341\pi$$
0.259807 + 0.965661i $$0.416341\pi$$
$$44$$ −6.94110 12.0223i −1.04641 1.81244i
$$45$$ 3.31453 5.74093i 0.494101 0.855807i
$$46$$ −4.95168 + 8.57655i −0.730085 + 1.26454i
$$47$$ 3.55438 + 6.15636i 0.518459 + 0.897998i 0.999770 + 0.0214479i $$0.00682759\pi$$
−0.481311 + 0.876550i $$0.659839\pi$$
$$48$$ −3.45079 −0.498079
$$49$$ 6.85161 + 1.43369i 0.978801 + 0.204813i
$$50$$ −1.09280 −0.154546
$$51$$ 4.67454 + 8.09654i 0.654566 + 1.13374i
$$52$$ −1.44940 + 2.51043i −0.200995 + 0.348134i
$$53$$ 6.19003 10.7214i 0.850266 1.47270i −0.0307027 0.999529i $$-0.509774\pi$$
0.880968 0.473175i $$-0.156892\pi$$
$$54$$ −0.336257 0.582415i −0.0457588 0.0792566i
$$55$$ −10.1660 −1.37078
$$56$$ 5.23528 + 0.541869i 0.699594 + 0.0724103i
$$57$$ −8.82686 −1.16915
$$58$$ 6.53049 + 11.3111i 0.857495 + 1.48522i
$$59$$ −2.39448 + 4.14736i −0.311734 + 0.539940i −0.978738 0.205115i $$-0.934243\pi$$
0.667003 + 0.745055i $$0.267577\pi$$
$$60$$ 7.61326 13.1865i 0.982867 1.70238i
$$61$$ −1.60348 2.77732i −0.205305 0.355599i 0.744925 0.667148i $$-0.232485\pi$$
−0.950230 + 0.311550i $$0.899152\pi$$
$$62$$ −8.34680 −1.06004
$$63$$ −3.37246 7.54251i −0.424890 0.950267i
$$64$$ −12.8486 −1.60608
$$65$$ 1.06140 + 1.83839i 0.131650 + 0.228025i
$$66$$ −13.1139 + 22.7139i −1.61420 + 2.79588i
$$67$$ 1.44978 2.51109i 0.177118 0.306778i −0.763774 0.645484i $$-0.776656\pi$$
0.940892 + 0.338706i $$0.109989\pi$$
$$68$$ 5.47622 + 9.48510i 0.664090 + 1.15024i
$$69$$ 11.0717 1.33287
$$70$$ 7.29075 10.0683i 0.871411 1.20340i
$$71$$ −2.53876 −0.301295 −0.150648 0.988588i $$-0.548136\pi$$
−0.150648 + 0.988588i $$0.548136\pi$$
$$72$$ −3.10612 5.37996i −0.366060 0.634034i
$$73$$ −3.85035 + 6.66901i −0.450650 + 0.780548i −0.998426 0.0560762i $$-0.982141\pi$$
0.547777 + 0.836625i $$0.315474\pi$$
$$74$$ −6.22574 + 10.7833i −0.723727 + 1.25353i
$$75$$ 0.610862 + 1.05804i 0.0705362 + 0.122172i
$$76$$ −10.3407 −1.18616
$$77$$ −7.43122 + 10.2623i −0.846867 + 1.16950i
$$78$$ 5.47671 0.620115
$$79$$ 2.58925 + 4.48471i 0.291313 + 0.504569i 0.974120 0.226029i $$-0.0725745\pi$$
−0.682807 + 0.730598i $$0.739241\pi$$
$$80$$ −1.48021 + 2.56379i −0.165492 + 0.286641i
$$81$$ 4.30827 7.46214i 0.478696 0.829126i
$$82$$ −11.5035 19.9247i −1.27035 2.20032i
$$83$$ 3.46731 0.380587 0.190294 0.981727i $$-0.439056\pi$$
0.190294 + 0.981727i $$0.439056\pi$$
$$84$$ −7.74633 17.3247i −0.845194 1.89027i
$$85$$ 8.02051 0.869946
$$86$$ −3.77076 6.53115i −0.406612 0.704272i
$$87$$ 7.30089 12.6455i 0.782738 1.35574i
$$88$$ −4.76338 + 8.25042i −0.507778 + 0.879498i
$$89$$ −1.83216 3.17339i −0.194209 0.336379i 0.752432 0.658670i $$-0.228881\pi$$
−0.946641 + 0.322291i $$0.895547\pi$$
$$90$$ −14.6722 −1.54659
$$91$$ 2.63169 + 0.272389i 0.275876 + 0.0285541i
$$92$$ 12.9704 1.35226
$$93$$ 4.66574 + 8.08129i 0.483814 + 0.837991i
$$94$$ 7.86698 13.6260i 0.811417 1.40542i
$$95$$ −3.78625 + 6.55798i −0.388461 + 0.672835i
$$96$$ 8.74129 + 15.1404i 0.892154 + 1.54526i
$$97$$ −5.40733 −0.549031 −0.274516 0.961583i $$-0.588518\pi$$
−0.274516 + 0.961583i $$0.588518\pi$$
$$98$$ −4.83432 14.7197i −0.488340 1.48692i
$$99$$ 14.9549 1.50303
$$100$$ 0.715625 + 1.23950i 0.0715625 + 0.123950i
$$101$$ −4.65862 + 8.06897i −0.463550 + 0.802892i −0.999135 0.0415891i $$-0.986758\pi$$
0.535585 + 0.844482i $$0.320091\pi$$
$$102$$ 10.3463 17.9202i 1.02443 1.77437i
$$103$$ −3.65318 6.32749i −0.359958 0.623466i 0.627995 0.778217i $$-0.283876\pi$$
−0.987953 + 0.154751i $$0.950542\pi$$
$$104$$ 1.98932 0.195069
$$105$$ −13.8235 1.43078i −1.34904 0.139630i
$$106$$ −27.4011 −2.66143
$$107$$ −3.37365 5.84333i −0.326143 0.564896i 0.655600 0.755108i $$-0.272416\pi$$
−0.981743 + 0.190212i $$0.939082\pi$$
$$108$$ −0.440397 + 0.762790i −0.0423772 + 0.0733995i
$$109$$ −2.08822 + 3.61691i −0.200016 + 0.346437i −0.948533 0.316678i $$-0.897433\pi$$
0.748518 + 0.663115i $$0.230766\pi$$
$$110$$ 11.2503 + 19.4861i 1.07267 + 1.85792i
$$111$$ 13.9204 1.32126
$$112$$ 1.50608 + 3.36834i 0.142311 + 0.318278i
$$113$$ 5.90107 0.555126 0.277563 0.960707i $$-0.410473\pi$$
0.277563 + 0.960707i $$0.410473\pi$$
$$114$$ 9.76834 + 16.9193i 0.914889 + 1.58463i
$$115$$ 4.74915 8.22577i 0.442860 0.767057i
$$116$$ 8.55300 14.8142i 0.794126 1.37547i
$$117$$ −1.56140 2.70442i −0.144351 0.250024i
$$118$$ 10.5995 0.975763
$$119$$ 5.86291 8.09654i 0.537452 0.742208i
$$120$$ −10.4493 −0.953888
$$121$$ −5.96705 10.3352i −0.542459 0.939567i
$$122$$ −3.54903 + 6.14709i −0.321314 + 0.556532i
$$123$$ −12.8606 + 22.2752i −1.15960 + 2.00849i
$$124$$ 5.46591 + 9.46724i 0.490853 + 0.850183i
$$125$$ 11.6621 1.04309
$$126$$ −10.7253 + 14.8113i −0.955482 + 1.31950i
$$127$$ −10.5268 −0.934100 −0.467050 0.884231i $$-0.654683\pi$$
−0.467050 + 0.884231i $$0.654683\pi$$
$$128$$ 7.15377 + 12.3907i 0.632309 + 1.09519i
$$129$$ −4.21560 + 7.30163i −0.371163 + 0.642873i
$$130$$ 2.34921 4.06896i 0.206040 0.356871i
$$131$$ −2.71204 4.69740i −0.236952 0.410413i 0.722886 0.690967i $$-0.242815\pi$$
−0.959838 + 0.280554i $$0.909482\pi$$
$$132$$ 34.3505 2.98983
$$133$$ 3.85243 + 8.61596i 0.334048 + 0.747099i
$$134$$ −6.41765 −0.554400
$$135$$ 0.322504 + 0.558593i 0.0277567 + 0.0480761i
$$136$$ 3.75810 6.50922i 0.322255 0.558161i
$$137$$ −11.1224 + 19.2645i −0.950248 + 1.64588i −0.205363 + 0.978686i $$0.565837\pi$$
−0.744886 + 0.667192i $$0.767496\pi$$
$$138$$ −12.2526 21.2221i −1.04301 1.80654i
$$139$$ −4.00000 −0.339276 −0.169638 0.985506i $$-0.554260\pi$$
−0.169638 + 0.985506i $$0.554260\pi$$
$$140$$ −16.1942 1.67616i −1.36866 0.141661i
$$141$$ −17.5901 −1.48135
$$142$$ 2.80955 + 4.86628i 0.235772 + 0.408369i
$$143$$ −2.39448 + 4.14736i −0.200236 + 0.346819i
$$144$$ 2.17750 3.77153i 0.181458 0.314294i
$$145$$ −6.26338 10.8485i −0.520146 0.900919i
$$146$$ 17.0441 1.41058
$$147$$ −11.5492 + 12.9087i −0.952561 + 1.06469i
$$148$$ 16.3077 1.34049
$$149$$ −1.47736 2.55887i −0.121030 0.209630i 0.799144 0.601140i $$-0.205286\pi$$
−0.920174 + 0.391509i $$0.871953\pi$$
$$150$$ 1.35203 2.34179i 0.110393 0.191206i
$$151$$ 9.27736 16.0689i 0.754981 1.30766i −0.190403 0.981706i $$-0.560980\pi$$
0.945384 0.325959i $$-0.105687\pi$$
$$152$$ 3.54818 + 6.14564i 0.287796 + 0.498477i
$$153$$ −11.7988 −0.953875
$$154$$ 27.8946 + 2.88719i 2.24781 + 0.232656i
$$155$$ 8.00541 0.643010
$$156$$ −3.58643 6.21188i −0.287144 0.497348i
$$157$$ 4.89982 8.48673i 0.391048 0.677315i −0.601540 0.798843i $$-0.705446\pi$$
0.992588 + 0.121528i $$0.0387793\pi$$
$$158$$ 5.73084 9.92610i 0.455921 0.789678i
$$159$$ 15.3168 + 26.5294i 1.21470 + 2.10392i
$$160$$ 14.9982 1.18571
$$161$$ −4.83216 10.8071i −0.380828 0.851720i
$$162$$ −19.0712 −1.49837
$$163$$ −6.91709 11.9808i −0.541788 0.938405i −0.998801 0.0489451i $$-0.984414\pi$$
0.457013 0.889460i $$-0.348919\pi$$
$$164$$ −15.0662 + 26.0954i −1.17647 + 2.03771i
$$165$$ 12.5775 21.7848i 0.979156 1.69595i
$$166$$ −3.83714 6.64612i −0.297820 0.515839i
$$167$$ 17.3534 1.34285 0.671424 0.741073i $$-0.265683\pi$$
0.671424 + 0.741073i $$0.265683\pi$$
$$168$$ −7.63834 + 10.5484i −0.589311 + 0.813824i
$$169$$ 1.00000 0.0769231
$$170$$ −8.87598 15.3737i −0.680757 1.17911i
$$171$$ 5.56987 9.64730i 0.425939 0.737747i
$$172$$ −4.93858 + 8.55387i −0.376563 + 0.652226i
$$173$$ 1.48069 + 2.56463i 0.112575 + 0.194985i 0.916808 0.399329i $$-0.130757\pi$$
−0.804233 + 0.594314i $$0.797424\pi$$
$$174$$ −32.3184 −2.45005
$$175$$ 0.766156 1.05804i 0.0579160 0.0799806i
$$176$$ −6.67859 −0.503418
$$177$$ −5.92496 10.2623i −0.445348 0.771365i
$$178$$ −4.05516 + 7.02374i −0.303947 + 0.526452i
$$179$$ 2.83444 4.90939i 0.211856 0.366945i −0.740440 0.672123i $$-0.765383\pi$$
0.952295 + 0.305178i $$0.0987159\pi$$
$$180$$ 9.60813 + 16.6418i 0.716148 + 1.24040i
$$181$$ 7.17645 0.533421 0.266711 0.963777i $$-0.414063\pi$$
0.266711 + 0.963777i $$0.414063\pi$$
$$182$$ −2.39028 5.34585i −0.177179 0.396261i
$$183$$ 7.93541 0.586603
$$184$$ −4.45054 7.70855i −0.328098 0.568282i
$$185$$ 5.97110 10.3423i 0.439004 0.760377i
$$186$$ 10.3268 17.8865i 0.757196 1.31150i
$$187$$ 9.04700 + 15.6699i 0.661582 + 1.14589i
$$188$$ −20.6068 −1.50291
$$189$$ 0.799636 + 0.0827650i 0.0581649 + 0.00602027i
$$190$$ 16.7604 1.21593
$$191$$ −5.94088 10.2899i −0.429867 0.744552i 0.566994 0.823722i $$-0.308106\pi$$
−0.996861 + 0.0791703i $$0.974773\pi$$
$$192$$ 15.8965 27.5335i 1.14723 1.98706i
$$193$$ −11.4851 + 19.8927i −0.826714 + 1.43191i 0.0738876 + 0.997267i $$0.476459\pi$$
−0.900602 + 0.434645i $$0.856874\pi$$
$$194$$ 5.98408 + 10.3647i 0.429632 + 0.744145i
$$195$$ −5.25271 −0.376154
$$196$$ −13.5299 + 15.1225i −0.966420 + 1.08018i
$$197$$ 16.9216 1.20561 0.602806 0.797888i $$-0.294049\pi$$
0.602806 + 0.797888i $$0.294049\pi$$
$$198$$ −16.5500 28.6655i −1.17616 2.03717i
$$199$$ −5.02953 + 8.71140i −0.356534 + 0.617535i −0.987379 0.158374i $$-0.949375\pi$$
0.630845 + 0.775909i $$0.282708\pi$$
$$200$$ 0.491103 0.850616i 0.0347262 0.0601476i
$$201$$ 3.58737 + 6.21351i 0.253034 + 0.438267i
$$202$$ 20.6221 1.45096
$$203$$ −15.5298 1.60739i −1.08998 0.112817i
$$204$$ −27.1010 −1.89745
$$205$$ 11.0330 + 19.1098i 0.770580 + 1.33468i
$$206$$ −8.08566 + 14.0048i −0.563355 + 0.975759i
$$207$$ −6.98636 + 12.1007i −0.485586 + 0.841059i
$$208$$ 0.697291 + 1.20774i 0.0483484 + 0.0837419i
$$209$$ −17.0833 −1.18168
$$210$$ 12.5554 + 28.0802i 0.866406 + 1.93772i
$$211$$ −24.4609 −1.68396 −0.841978 0.539512i $$-0.818609\pi$$
−0.841978 + 0.539512i $$0.818609\pi$$
$$212$$ 17.9436 + 31.0793i 1.23237 + 2.13453i
$$213$$ 3.14099 5.44035i 0.215217 0.372767i
$$214$$ −7.46697 + 12.9332i −0.510431 + 0.884093i
$$215$$ 3.61654 + 6.26402i 0.246646 + 0.427203i
$$216$$ 0.604452 0.0411277
$$217$$ 5.85187 8.08129i 0.397251 0.548594i
$$218$$ 9.24382 0.626071
$$219$$ −9.52742 16.5020i −0.643804 1.11510i
$$220$$ 14.7345 25.5210i 0.993402 1.72062i
$$221$$ 1.88914 3.27208i 0.127077 0.220104i
$$222$$ −15.4051 26.6825i −1.03393 1.79081i
$$223$$ −29.2625 −1.95956 −0.979780 0.200076i $$-0.935881\pi$$
−0.979780 + 0.200076i $$0.935881\pi$$
$$224$$ 10.9635 15.1404i 0.732531 1.01161i
$$225$$ −1.54185 −0.102790
$$226$$ −6.53049 11.3111i −0.434401 0.752405i
$$227$$ 5.03685 8.72408i 0.334307 0.579038i −0.649044 0.760751i $$-0.724831\pi$$
0.983352 + 0.181713i $$0.0581643\pi$$
$$228$$ 12.7936 22.1592i 0.847279 1.46753i
$$229$$ 5.56997 + 9.64748i 0.368074 + 0.637523i 0.989264 0.146137i $$-0.0466839\pi$$
−0.621190 + 0.783660i $$0.713351\pi$$
$$230$$ −21.0228 −1.38620
$$231$$ −12.7973 28.6212i −0.842003 1.88314i
$$232$$ −11.7391 −0.770711
$$233$$ 8.54166 + 14.7946i 0.559583 + 0.969226i 0.997531 + 0.0702257i $$0.0223720\pi$$
−0.437948 + 0.899000i $$0.644295\pi$$
$$234$$ −3.45588 + 5.98575i −0.225918 + 0.391301i
$$235$$ −7.54522 + 13.0687i −0.492196 + 0.852508i
$$236$$ −6.94110 12.0223i −0.451827 0.782587i
$$237$$ −12.8138 −0.832347
$$238$$ −22.0076 2.27787i −1.42654 0.147652i
$$239$$ 6.92142 0.447710 0.223855 0.974622i $$-0.428136\pi$$
0.223855 + 0.974622i $$0.428136\pi$$
$$240$$ −3.66266 6.34392i −0.236424 0.409498i
$$241$$ −3.24812 + 5.62592i −0.209230 + 0.362397i −0.951472 0.307735i $$-0.900429\pi$$
0.742242 + 0.670132i $$0.233762\pi$$
$$242$$ −13.2070 + 22.8752i −0.848978 + 1.47047i
$$243$$ 11.1163 + 19.2539i 0.713109 + 1.23514i
$$244$$ 9.29634 0.595137
$$245$$ 4.63660 + 14.1177i 0.296221 + 0.901945i
$$246$$ 56.9293 3.62968
$$247$$ 1.78362 + 3.08931i 0.113489 + 0.196568i
$$248$$ 3.75103 6.49697i 0.238190 0.412558i
$$249$$ −4.28981 + 7.43017i −0.271856 + 0.470868i
$$250$$ −12.9060 22.3538i −0.816246 1.41378i
$$251$$ −9.86804 −0.622865 −0.311433 0.950268i $$-0.600809\pi$$
−0.311433 + 0.950268i $$0.600809\pi$$
$$252$$ 23.8230 + 2.46576i 1.50071 + 0.155328i
$$253$$ 21.4278 1.34716
$$254$$ 11.6496 + 20.1776i 0.730959 + 1.26606i
$$255$$ −9.92309 + 17.1873i −0.621408 + 1.07631i
$$256$$ 2.98497 5.17012i 0.186560 0.323132i
$$257$$ −3.43234 5.94499i −0.214104 0.370838i 0.738891 0.673825i $$-0.235350\pi$$
−0.952995 + 0.302986i $$0.902016\pi$$
$$258$$ 18.6610 1.16178
$$259$$ −6.07547 13.5878i −0.377511 0.844304i
$$260$$ −6.15355 −0.381627
$$261$$ 9.21392 + 15.9590i 0.570327 + 0.987836i
$$262$$ −6.00262 + 10.3969i −0.370843 + 0.642320i
$$263$$ 0.0632753 0.109596i 0.00390172 0.00675798i −0.864068 0.503375i $$-0.832091\pi$$
0.867970 + 0.496617i $$0.165425\pi$$
$$264$$ −11.7867 20.4151i −0.725418 1.25646i
$$265$$ 26.2803 1.61439
$$266$$ 12.2517 16.9193i 0.751199 1.03739i
$$267$$ 9.06710 0.554897
$$268$$ 4.20261 + 7.27913i 0.256715 + 0.444643i
$$269$$ 2.12154 3.67462i 0.129353 0.224045i −0.794073 0.607822i $$-0.792043\pi$$
0.923426 + 0.383777i $$0.125377\pi$$
$$270$$ 0.713805 1.23635i 0.0434408 0.0752417i
$$271$$ −0.783616 1.35726i −0.0476013 0.0824479i 0.841243 0.540657i $$-0.181824\pi$$
−0.888844 + 0.458209i $$0.848491\pi$$
$$272$$ 5.26911 0.319487
$$273$$ −3.83967 + 5.30250i −0.232388 + 0.320922i
$$274$$ 49.2348 2.97438
$$275$$ 1.18225 + 2.04771i 0.0712923 + 0.123482i
$$276$$ −16.0472 + 27.7946i −0.965929 + 1.67304i
$$277$$ 6.37260 11.0377i 0.382892 0.663189i −0.608582 0.793491i $$-0.708261\pi$$
0.991474 + 0.130302i $$0.0415947\pi$$
$$278$$ 4.42664 + 7.66717i 0.265492 + 0.459846i
$$279$$ −11.7766 −0.705045
$$280$$ 4.56054 + 10.1996i 0.272545 + 0.609546i
$$281$$ 4.62986 0.276194 0.138097 0.990419i $$-0.455901\pi$$
0.138097 + 0.990419i $$0.455901\pi$$
$$282$$ 19.4663 + 33.7166i 1.15920 + 2.00779i
$$283$$ −1.82416 + 3.15954i −0.108435 + 0.187815i −0.915136 0.403144i $$-0.867917\pi$$
0.806701 + 0.590959i $$0.201251\pi$$
$$284$$ 3.67967 6.37338i 0.218348 0.378190i
$$285$$ −9.36881 16.2273i −0.554960 0.961220i
$$286$$ 10.5995 0.626762
$$287$$ 27.3559 + 2.83143i 1.61477 + 0.167134i
$$288$$ −22.0635 −1.30010
$$289$$ 1.36231 + 2.35959i 0.0801360 + 0.138800i
$$290$$ −13.8629 + 24.0112i −0.814057 + 1.40999i
$$291$$ 6.69003 11.5875i 0.392176 0.679269i
$$292$$ −11.1614 19.3321i −0.653171 1.13132i
$$293$$ −21.0415 −1.22926 −0.614630 0.788816i $$-0.710695\pi$$
−0.614630 + 0.788816i $$0.710695\pi$$
$$294$$ 37.5242 + 7.85189i 2.18846 + 0.457932i
$$295$$ −10.1660 −0.591886
$$296$$ −5.59566 9.69196i −0.325241 0.563334i
$$297$$ −0.727559 + 1.26017i −0.0422172 + 0.0731224i
$$298$$ −3.26988 + 5.66359i −0.189419 + 0.328083i
$$299$$ −2.23721 3.87497i −0.129381 0.224095i
$$300$$ −3.54152 −0.204470
$$301$$ 8.96705 + 0.928120i 0.516852 + 0.0534960i
$$302$$ −41.0676 −2.36317
$$303$$ −11.5274 19.9661i −0.662233 1.14702i
$$304$$ −2.48740 + 4.30830i −0.142662 + 0.247098i
$$305$$ 3.40387 5.89567i 0.194905 0.337585i
$$306$$ 13.0573 + 22.6158i 0.746434 + 1.29286i
$$307$$ −4.95861 −0.283003 −0.141502 0.989938i $$-0.545193\pi$$
−0.141502 + 0.989938i $$0.545193\pi$$
$$308$$ −14.9921 33.5298i −0.854253 1.91054i
$$309$$ 18.0791 1.02848
$$310$$ −8.85927 15.3447i −0.503173 0.871521i
$$311$$ 1.21079 2.09715i 0.0686575 0.118918i −0.829653 0.558279i $$-0.811462\pi$$
0.898311 + 0.439361i $$0.144795\pi$$
$$312$$ −2.46122 + 4.26295i −0.139339 + 0.241342i
$$313$$ −6.98026 12.0902i −0.394548 0.683377i 0.598496 0.801126i $$-0.295765\pi$$
−0.993043 + 0.117749i $$0.962432\pi$$
$$314$$ −21.6897 −1.22402
$$315$$ 10.2866 14.2055i 0.579583 0.800390i
$$316$$ −15.0114 −0.844457
$$317$$ −1.53431 2.65750i −0.0861753 0.149260i 0.819716 0.572770i $$-0.194131\pi$$
−0.905891 + 0.423510i $$0.860798\pi$$
$$318$$ 33.9010 58.7182i 1.90107 3.29275i
$$319$$ 14.1300 24.4739i 0.791127 1.37027i
$$320$$ −13.6375 23.6208i −0.762359 1.32044i
$$321$$ 16.6957 0.931863
$$322$$ −15.3674 + 21.2221i −0.856394 + 1.18266i
$$323$$ 13.4780 0.749936
$$324$$ 12.4888 + 21.6312i 0.693821 + 1.20173i
$$325$$ 0.246870 0.427591i 0.0136939 0.0237185i
$$326$$ −15.3098 + 26.5173i −0.847929 + 1.46866i
$$327$$ −5.16716 8.94978i −0.285745 0.494924i
$$328$$ 20.6786 1.14179
$$329$$ 7.67710 + 17.1698i 0.423252 + 0.946603i
$$330$$ −55.6761 −3.06487
$$331$$ −6.80261 11.7825i −0.373905 0.647623i 0.616257 0.787545i $$-0.288648\pi$$
−0.990162 + 0.139922i $$0.955315\pi$$
$$332$$ −5.02551 + 8.70445i −0.275811 + 0.477719i
$$333$$ −8.78395 + 15.2142i −0.481358 + 0.833736i
$$334$$ −19.2044 33.2629i −1.05082 1.82007i
$$335$$ 6.15516 0.336292
$$336$$ −9.08142 0.939958i −0.495432 0.0512789i
$$337$$ −35.1646 −1.91554 −0.957769 0.287538i $$-0.907163\pi$$
−0.957769 + 0.287538i $$0.907163\pi$$
$$338$$ −1.10666 1.91679i −0.0601944 0.104260i
$$339$$ −7.30089 + 12.6455i −0.396530 + 0.686810i
$$340$$ −11.6249 + 20.1349i −0.630449 + 1.09197i
$$341$$ 9.02997 + 15.6404i 0.489000 + 0.846973i
$$342$$ −24.6558 −1.33323
$$343$$ 17.6408 + 5.63933i 0.952514 + 0.304495i
$$344$$ 6.77828 0.365460
$$345$$ 11.7514 + 20.3541i 0.632676 + 1.09583i
$$346$$ 3.27724 5.67635i 0.176186 0.305162i
$$347$$ 2.73551 4.73804i 0.146850 0.254351i −0.783212 0.621755i $$-0.786420\pi$$
0.930062 + 0.367404i $$0.119753\pi$$
$$348$$ 21.1638 + 36.6567i 1.13450 + 1.96501i
$$349$$ 4.34196 0.232420 0.116210 0.993225i $$-0.462925\pi$$
0.116210 + 0.993225i $$0.462925\pi$$
$$350$$ −2.87593 0.297668i −0.153725 0.0159110i
$$351$$ 0.303848 0.0162182
$$352$$ 16.9177 + 29.3023i 0.901717 + 1.56182i
$$353$$ −13.7996 + 23.9016i −0.734479 + 1.27216i 0.220472 + 0.975393i $$0.429240\pi$$
−0.954951 + 0.296762i $$0.904093\pi$$
$$354$$ −13.1139 + 22.7139i −0.696993 + 1.20723i
$$355$$ −2.69463 4.66724i −0.143016 0.247712i
$$356$$ 10.6221 0.562971
$$357$$ 10.0965 + 22.5809i 0.534365 + 1.19511i
$$358$$ −12.5470 −0.663132
$$359$$ −3.31427 5.74049i −0.174921 0.302971i 0.765213 0.643777i $$-0.222634\pi$$
−0.940134 + 0.340806i $$0.889300\pi$$
$$360$$ 6.59366 11.4206i 0.347516 0.601916i
$$361$$ 3.13742 5.43418i 0.165128 0.286009i
$$362$$ −7.94189 13.7558i −0.417417 0.722987i
$$363$$ 29.5301 1.54993
$$364$$ −4.49818 + 6.21188i −0.235769 + 0.325591i
$$365$$ −16.3470 −0.855643
$$366$$ −8.78181 15.2105i −0.459033 0.795068i
$$367$$ −15.6037 + 27.0264i −0.814506 + 1.41077i 0.0951768 + 0.995460i $$0.469658\pi$$
−0.909682 + 0.415305i $$0.863675\pi$$
$$368$$ 3.11998 5.40396i 0.162640 0.281701i
$$369$$ −16.2304 28.1119i −0.844923 1.46345i
$$370$$ −26.4319 −1.37413
$$371$$ 19.2107 26.5294i 0.997368 1.37734i
$$372$$ −27.0500 −1.40248
$$373$$ 7.88730 + 13.6612i 0.408389 + 0.707350i 0.994709 0.102729i $$-0.0327574\pi$$
−0.586321 + 0.810079i $$0.699424\pi$$
$$374$$ 20.0239 34.6825i 1.03541 1.79339i
$$375$$ −14.4285 + 24.9909i −0.745084 + 1.29052i
$$376$$ 7.07080 + 12.2470i 0.364649 + 0.631590i
$$377$$ −5.90107 −0.303921
$$378$$ −0.726282 1.62433i −0.0373559 0.0835465i
$$379$$ 31.6512 1.62581 0.812907 0.582393i $$-0.197884\pi$$
0.812907 + 0.582393i $$0.197884\pi$$
$$380$$ −10.9756 19.0102i −0.563035 0.975205i
$$381$$ 13.0239 22.5580i 0.667233 1.15568i
$$382$$ −13.1491 + 22.7749i −0.672766 + 1.16526i
$$383$$ −6.19675 10.7331i −0.316639 0.548435i 0.663145 0.748491i $$-0.269221\pi$$
−0.979785 + 0.200055i $$0.935888\pi$$
$$384$$ −35.4030 −1.80665
$$385$$ −26.7537 2.76910i −1.36350 0.141126i
$$386$$ 50.8404 2.58771
$$387$$ −5.32020 9.21486i −0.270441 0.468418i
$$388$$ 7.83737 13.5747i 0.397882 0.689152i
$$389$$ 7.03705 12.1885i 0.356792 0.617983i −0.630631 0.776083i $$-0.717204\pi$$
0.987423 + 0.158100i $$0.0505370\pi$$
$$390$$ 5.81296 + 10.0683i 0.294351 + 0.509831i
$$391$$ −16.9056 −0.854954
$$392$$ 13.6300 + 2.85207i 0.688421 + 0.144051i
$$393$$ 13.4215 0.677026
$$394$$ −18.7265 32.4352i −0.943425 1.63406i
$$395$$ −5.49644 + 9.52012i −0.276556 + 0.479009i
$$396$$ −21.6756 + 37.5433i −1.08924 + 1.88662i
$$397$$ 3.48652 + 6.03884i 0.174984 + 0.303081i 0.940156 0.340745i $$-0.110679\pi$$
−0.765172 + 0.643826i $$0.777346\pi$$
$$398$$ 22.2639 1.11599
$$399$$ −23.2296 2.40434i −1.16293 0.120368i
$$400$$ 0.688560 0.0344280
$$401$$ −1.36841 2.37016i −0.0683352 0.118360i 0.829833 0.558011i $$-0.188435\pi$$
−0.898169 + 0.439651i $$0.855102\pi$$
$$402$$ 7.94000 13.7525i 0.396011 0.685912i
$$403$$ 1.88558 3.26592i 0.0939275 0.162687i
$$404$$ −13.5044 23.3903i −0.671868 1.16371i
$$405$$ 18.2911 0.908894
$$406$$ 14.1052 + 31.5463i 0.700029 + 1.56561i
$$407$$ 26.9412 1.33543
$$408$$ 9.29915 + 16.1066i 0.460377 + 0.797396i
$$409$$ 12.2577 21.2309i 0.606104 1.04980i −0.385772 0.922594i $$-0.626065\pi$$
0.991876 0.127208i $$-0.0406017\pi$$
$$410$$ 24.4196 42.2961i 1.20600 2.08885i
$$411$$ −27.5215 47.6686i −1.35754 2.35132i
$$412$$ 21.1796 1.04345
$$413$$ −7.43122 + 10.2623i −0.365667 + 0.504977i
$$414$$ 30.9261 1.51994
$$415$$ 3.68020 + 6.37429i 0.180654 + 0.312902i
$$416$$ 3.53265 6.11873i 0.173202 0.299995i
$$417$$ 4.94886 8.57167i 0.242347 0.419757i
$$418$$ 18.9054 + 32.7452i 0.924696 + 1.60162i
$$419$$ −3.01252 −0.147171 −0.0735856 0.997289i $$-0.523444\pi$$
−0.0735856 + 0.997289i $$0.523444\pi$$
$$420$$ 23.6276 32.6292i 1.15291 1.59214i
$$421$$ −10.0000 −0.487370 −0.243685 0.969854i $$-0.578356\pi$$
−0.243685 + 0.969854i $$0.578356\pi$$
$$422$$ 27.0699 + 46.8864i 1.31774 + 2.28240i
$$423$$ 11.0996 19.2251i 0.539681 0.934755i
$$424$$ 12.3140 21.3284i 0.598018 1.03580i
$$425$$ −0.932742 1.61556i −0.0452447 0.0783660i
$$426$$ −13.9040 −0.673653
$$427$$ −3.46337 7.74581i −0.167604 0.374846i
$$428$$ 19.5590 0.945421
$$429$$ −5.92496 10.2623i −0.286060 0.495470i
$$430$$ 8.00456 13.8643i 0.386014 0.668596i
$$431$$ 9.39711 16.2763i 0.452643 0.784001i −0.545906 0.837846i $$-0.683815\pi$$
0.998549 + 0.0538455i $$0.0171478\pi$$
$$432$$ 0.211871 + 0.366971i 0.0101936 + 0.0176559i
$$433$$ −7.76911 −0.373360 −0.186680 0.982421i $$-0.559773\pi$$
−0.186680 + 0.982421i $$0.559773\pi$$
$$434$$ −21.9662 2.27358i −1.05441 0.109135i
$$435$$ 30.9966 1.48617
$$436$$ −6.05333 10.4847i −0.289902 0.502125i
$$437$$ 7.98066 13.8229i 0.381767 0.661240i
$$438$$ −21.0873 + 36.5242i −1.00759 + 1.74519i
$$439$$ 18.9841 + 32.8814i 0.906060 + 1.56934i 0.819488 + 0.573096i $$0.194258\pi$$
0.0865713 + 0.996246i $$0.472409\pi$$
$$440$$ −20.2234 −0.964112
$$441$$ −6.82079 20.7682i −0.324799 0.988961i
$$442$$ −8.36254 −0.397766
$$443$$ −17.8135 30.8539i −0.846344 1.46591i −0.884449 0.466637i $$-0.845465\pi$$
0.0381050 0.999274i $$-0.487868\pi$$
$$444$$ −20.1762 + 34.9461i −0.957518 + 1.65847i
$$445$$ 3.88930 6.73647i 0.184371 0.319339i
$$446$$ 32.3837 + 56.0901i 1.53341 + 2.65594i
$$447$$ 7.31125 0.345810
$$448$$ −33.8136 3.49982i −1.59754 0.165351i
$$449$$ −8.05285 −0.380038 −0.190019 0.981780i $$-0.560855\pi$$
−0.190019 + 0.981780i $$0.560855\pi$$
$$450$$ 1.70630 + 2.95540i 0.0804359 + 0.139319i
$$451$$ −24.8901 + 43.1110i −1.17203 + 2.03002i
$$452$$ −8.55300 + 14.8142i −0.402299 + 0.696803i
$$453$$ 22.9562 + 39.7612i 1.07857 + 1.86815i
$$454$$ −22.2963 −1.04642
$$455$$ 2.29251 + 5.12720i 0.107475 + 0.240367i
$$456$$ −17.5595 −0.822297
$$457$$ −7.79881 13.5079i −0.364813 0.631875i 0.623933 0.781478i $$-0.285534\pi$$
−0.988746 + 0.149603i $$0.952200\pi$$
$$458$$ 12.3281 21.3530i 0.576056 0.997759i
$$459$$ 0.574012 0.994218i 0.0267926 0.0464061i
$$460$$ 13.7668 + 23.8448i 0.641880 + 1.11177i
$$461$$ −25.6991 −1.19692 −0.598462 0.801151i $$-0.704221\pi$$
−0.598462 + 0.801151i $$0.704221\pi$$
$$462$$ −40.6986 + 56.2038i −1.89347 + 2.61484i
$$463$$ −20.5209 −0.953685 −0.476842 0.878989i $$-0.658219\pi$$
−0.476842 + 0.878989i $$0.658219\pi$$
$$464$$ −4.11476 7.12698i −0.191023 0.330862i
$$465$$ −9.90440 + 17.1549i −0.459306 + 0.795541i
$$466$$ 18.9054 32.7452i 0.875778 1.51689i
$$467$$ −5.91241 10.2406i −0.273594 0.473878i 0.696186 0.717862i $$-0.254879\pi$$
−0.969779 + 0.243984i $$0.921546\pi$$
$$468$$ 9.05234 0.418445
$$469$$ 4.49936 6.21351i 0.207761 0.286913i
$$470$$ 33.4000 1.54063
$$471$$ 12.1242 + 20.9998i 0.558656 + 0.967620i
$$472$$ −4.76338 + 8.25042i −0.219253 + 0.379757i
$$473$$ −8.15878 + 14.1314i −0.375141 + 0.649764i
$$474$$ 14.1805 + 24.5614i 0.651334 + 1.12814i
$$475$$ 1.76128 0.0808133
$$476$$ 11.8281 + 26.4535i 0.542140 + 1.21250i
$$477$$ −38.6604 −1.77014
$$478$$ −7.65967 13.2669i −0.350345 0.606816i
$$479$$ −11.3276 + 19.6200i −0.517571 + 0.896459i 0.482221 + 0.876050i $$0.339830\pi$$
−0.999792 + 0.0204092i $$0.993503\pi$$
$$480$$ −18.5560 + 32.1399i −0.846960 + 1.46698i
$$481$$ −2.81285 4.87200i −0.128255 0.222144i
$$482$$ 14.3783 0.654913
$$483$$ 29.1372 + 3.01580i 1.32579 + 0.137224i
$$484$$ 34.5945 1.57248
$$485$$ −5.73933 9.94081i −0.260610 0.451389i
$$486$$ 24.6039 42.6152i 1.11606 1.93306i
$$487$$ 16.3584 28.3335i 0.741268 1.28391i −0.210650 0.977562i $$-0.567558\pi$$
0.951918 0.306353i $$-0.0991087\pi$$
$$488$$ −3.18984 5.52497i −0.144397 0.250104i
$$489$$ 34.2317 1.54801
$$490$$ 21.9295 24.5109i 0.990675 1.10729i
$$491$$ 6.17281 0.278575 0.139288 0.990252i $$-0.455519\pi$$
0.139288 + 0.990252i $$0.455519\pi$$
$$492$$ −37.2803 64.5713i −1.68072 2.91110i
$$493$$ −11.1479 + 19.3088i −0.502078 + 0.869625i
$$494$$ 3.94772 6.83765i 0.177616 0.307640i
$$495$$ 15.8731 + 27.4931i 0.713444 + 1.23572i
$$496$$ 5.25919 0.236145
$$497$$ −6.68123 0.691531i −0.299694 0.0310194i
$$498$$ 18.9895 0.850938
$$499$$ 7.31934 + 12.6775i 0.327659 + 0.567521i 0.982047 0.188637i $$-0.0604071\pi$$
−0.654388 + 0.756159i $$0.727074\pi$$
$$500$$ −16.9030 + 29.2768i −0.755925 + 1.30930i
$$501$$ −21.4699 + 37.1870i −0.959205 + 1.66139i
$$502$$ 10.9206 + 18.9150i 0.487409 + 0.844218i
$$503$$ 12.7787 0.569774 0.284887 0.958561i $$-0.408044\pi$$
0.284887 + 0.958561i $$0.408044\pi$$
$$504$$ −6.70891 15.0045i −0.298839 0.668352i
$$505$$ −19.7786 −0.880136
$$506$$ −23.7134 41.0727i −1.05419 1.82591i
$$507$$ −1.23721 + 2.14292i −0.0549466 + 0.0951703i
$$508$$ 15.2575 26.4267i 0.676941 1.17250i
$$509$$ −5.84263 10.1197i −0.258970 0.448549i 0.706996 0.707217i $$-0.250050\pi$$
−0.965966 + 0.258668i $$0.916716\pi$$
$$510$$ 43.9260 1.94507
$$511$$ −11.9495 + 16.5020i −0.528615 + 0.730005i
$$512$$ 15.4017 0.680664
$$513$$ 0.541949 + 0.938683i 0.0239276 + 0.0414439i
$$514$$ −7.59688 + 13.1582i −0.335084 + 0.580382i
$$515$$ 7.75495 13.4320i 0.341724 0.591883i
$$516$$ −12.2202 21.1659i −0.537962 0.931778i
$$517$$ −34.0435 −1.49723
$$518$$ −19.3215 + 26.6825i −0.848937 + 1.17236i
$$519$$ −7.32772 −0.321651
$$520$$ 2.11146 + 3.65716i 0.0925937 + 0.160377i
$$521$$ −4.23838 + 7.34108i −0.185687 + 0.321619i −0.943808 0.330495i $$-0.892784\pi$$
0.758121 + 0.652114i $$0.226118\pi$$
$$522$$ 20.3934 35.3224i 0.892594 1.54602i
$$523$$ −16.3554 28.3284i −0.715172 1.23871i −0.962893 0.269883i $$-0.913015\pi$$
0.247721 0.968831i $$-0.420318\pi$$
$$524$$ 15.7233 0.686876
$$525$$ 1.31940 + 2.95084i 0.0575833 + 0.128785i
$$526$$ −0.280097 −0.0122128
$$527$$ −7.12425 12.3396i −0.310337 0.537520i
$$528$$ 8.26284 14.3117i 0.359594 0.622835i
$$529$$ 1.48975 2.58032i 0.0647716 0.112188i
$$530$$ −29.0834 50.3739i −1.26330 2.18810i
$$531$$ 14.9549 0.648989
$$532$$ −27.2135 2.81669i −1.17985 0.122119i
$$533$$ 10.3948 0.450249
$$534$$ −10.0342 17.3797i −0.434222 0.752095i
$$535$$ 7.16156 12.4042i 0.309621 0.536280i
$$536$$ 2.88407 4.99536i 0.124573 0.215767i
$$537$$ 7.01361 + 12.1479i 0.302660 + 0.524222i
$$538$$ −9.39131 −0.404888
$$539$$ −22.3520 + 24.9831i −0.962771 + 1.07610i
$$540$$ −1.86975 −0.0804610
$$541$$ 14.0853 + 24.3964i 0.605573 + 1.04888i 0.991961 + 0.126547i $$0.0403893\pi$$
−0.386388 + 0.922336i $$0.626277\pi$$
$$542$$ −1.73440 + 3.00406i −0.0744987 + 0.129035i
$$543$$ −8.87880 + 15.3785i −0.381026 + 0.659956i
$$544$$ −13.3473 23.1182i −0.572262 0.991187i
$$545$$ −8.86574 −0.379767
$$546$$ 14.4130 + 1.49180i 0.616820 + 0.0638430i
$$547$$ −18.5377 −0.792615 −0.396307 0.918118i $$-0.629709\pi$$
−0.396307 + 0.918118i $$0.629709\pi$$
$$548$$ −32.2415 55.8438i −1.37729 2.38553i
$$549$$ −5.00735 + 8.67299i −0.213709 + 0.370154i
$$550$$ 2.61670 4.53225i 0.111576 0.193256i
$$551$$ −10.5252 18.2303i −0.448391 0.776635i
$$552$$ 22.0251 0.937449
$$553$$ 5.59252 + 12.5077i 0.237818 + 0.531880i
$$554$$ −28.2092 −1.19850
$$555$$ 14.7751 + 25.5912i 0.627167 + 1.08628i
$$556$$ 5.79759 10.0417i 0.245873 0.425864i
$$557$$ −2.00142 + 3.46655i −0.0848027 + 0.146883i −0.905307 0.424758i $$-0.860359\pi$$
0.820504 + 0.571640i $$0.193693\pi$$
$$558$$ 13.0327 + 22.5732i 0.551717 + 0.955602i
$$559$$ 3.40733 0.144115
$$560$$ −4.59379 + 6.34392i −0.194123 + 0.268079i
$$561$$ −44.7723 −1.89029
$$562$$ −5.12368 8.87448i −0.216129 0.374347i
$$563$$ 8.93100 15.4689i 0.376397 0.651938i −0.614138 0.789199i $$-0.710496\pi$$
0.990535 + 0.137260i $$0.0438296\pi$$
$$564$$ 25.4951 44.1587i 1.07354 1.85942i
$$565$$ 6.26338 + 10.8485i 0.263503 + 0.456400i
$$566$$ 8.07490 0.339413
$$567$$ 13.3706 18.4645i 0.561514 0.775437i
$$568$$ −5.05041 −0.211910
$$569$$ 18.7336 + 32.4475i 0.785353 + 1.36027i 0.928788 + 0.370612i $$0.120852\pi$$
−0.143434 + 0.989660i $$0.545815\pi$$
$$570$$ −20.7362 + 35.9161i −0.868544 + 1.50436i
$$571$$ −8.78514 + 15.2163i −0.367646 + 0.636782i −0.989197 0.146592i $$-0.953170\pi$$
0.621551 + 0.783374i $$0.286503\pi$$
$$572$$ −6.94110 12.0223i −0.290222 0.502679i
$$573$$ 29.4006 1.22823
$$574$$ −24.8465 55.5691i −1.03707 2.31941i
$$575$$ −2.20920 −0.0921301
$$576$$ 20.0618 + 34.7481i 0.835908 + 1.44784i
$$577$$ 17.1247 29.6608i 0.712910 1.23480i −0.250850 0.968026i $$-0.580710\pi$$
0.963760 0.266770i $$-0.0859565\pi$$
$$578$$ 3.01524 5.22254i 0.125417 0.217229i
$$579$$ −28.4190 49.2232i −1.18105 2.04565i
$$580$$ 36.3125 1.50780
$$581$$ 9.12490 + 0.944459i 0.378565 + 0.0391828i
$$582$$ −29.6144 −1.22756
$$583$$ 29.6438 + 51.3445i 1.22772 + 2.12647i
$$584$$ −7.65959 + 13.2668i −0.316956 + 0.548984i
$$585$$ 3.31453 5.74093i 0.137039 0.237358i
$$586$$ 23.2859 + 40.3323i 0.961930 + 1.66611i
$$587$$ −29.4494 −1.21551 −0.607754 0.794126i $$-0.707929\pi$$
−0.607754 + 0.794126i $$0.707929\pi$$
$$588$$ −15.6669 47.7032i −0.646092 1.96725i
$$589$$ 13.4526 0.554305
$$590$$ 11.2503 + 19.4861i 0.463167 + 0.802229i
$$591$$ −20.9356 + 36.2616i −0.861176 + 1.49160i
$$592$$ 3.92275 6.79439i 0.161224 0.279248i
$$593$$ 17.0001 + 29.4450i 0.698109 + 1.20916i 0.969121 + 0.246584i $$0.0793081\pi$$
−0.271013 + 0.962576i $$0.587359\pi$$
$$594$$ 3.22064 0.132145
$$595$$ 21.1075 + 2.18470i 0.865324 + 0.0895640i
$$596$$ 8.56514 0.350842
$$597$$ −12.4452 21.5557i −0.509349 0.882218i
$$598$$ −4.95168 + 8.57655i −0.202489 + 0.350721i
$$599$$ −10.7209 + 18.5691i −0.438043 + 0.758713i −0.997539 0.0701203i $$-0.977662\pi$$
0.559495 + 0.828834i $$0.310995\pi$$
$$600$$ 1.21520 + 2.10479i 0.0496103 + 0.0859276i
$$601$$ 40.4039 1.64811 0.824054 0.566511i $$-0.191707\pi$$
0.824054 + 0.566511i $$0.191707\pi$$
$$602$$ −8.14447 18.2151i −0.331944 0.742392i
$$603$$ −9.05472 −0.368737
$$604$$ 26.8931 + 46.5803i 1.09427 + 1.89533i
$$605$$ 12.6668 21.9396i 0.514980 0.891971i
$$606$$ −25.5139 + 44.1914i −1.03643 + 1.79515i
$$607$$ 21.9456 + 38.0110i 0.890746 + 1.54282i 0.838983 + 0.544158i $$0.183151\pi$$
0.0517636 + 0.998659i $$0.483516\pi$$
$$608$$ 25.2036 1.02214
$$609$$ 22.6582 31.2904i 0.918156 1.26795i
$$610$$ −15.0677 −0.610074
$$611$$ 3.55438 + 6.15636i 0.143795 + 0.249060i
$$612$$ 17.1011 29.6200i 0.691272 1.19732i
$$613$$ 7.15777 12.3976i 0.289100 0.500735i −0.684496 0.729017i $$-0.739977\pi$$
0.973595 + 0.228282i $$0.0733108\pi$$
$$614$$ 5.48750 + 9.50464i 0.221458 + 0.383576i
$$615$$ −54.6009 −2.20172
$$616$$ −14.7831 + 20.4151i −0.595628 + 0.822547i
$$617$$ −36.9097 −1.48593 −0.742965 0.669330i $$-0.766581\pi$$
−0.742965 + 0.669330i $$0.766581\pi$$
$$618$$ −20.0074 34.6538i −0.804815 1.39398i
$$619$$ −7.14646 + 12.3780i −0.287240 + 0.497515i −0.973150 0.230172i $$-0.926071\pi$$
0.685910 + 0.727687i $$0.259405\pi$$
$$620$$ −11.6030 + 20.0970i −0.465988 + 0.807115i
$$621$$ −0.679774 1.17740i −0.0272784 0.0472476i
$$622$$ −5.35973 −0.214906
$$623$$ −3.95728 8.85046i −0.158545 0.354586i
$$624$$ −3.45079 −0.138142
$$625$$ 11.1438 + 19.3016i 0.445750 + 0.772062i
$$626$$ −15.4496 + 26.7594i −0.617489 + 1.06952i
$$627$$ 21.1357 36.6082i 0.844080 1.46199i
$$628$$ 14.2036 + 24.6013i 0.566784 + 0.981698i
$$629$$ −21.2554 −0.847510
$$630$$ −38.6128 3.99656i −1.53837 0.159227i
$$631$$ −0.0431064 −0.00171604 −0.000858019 1.00000i $$-0.500273\pi$$
−0.000858019 1.00000i $$0.500273\pi$$
$$632$$ 5.15084 + 8.92152i 0.204890 + 0.354879i
$$633$$ 30.2633 52.4176i 1.20286 2.08341i
$$634$$ −3.39592 + 5.88190i −0.134869 + 0.233600i
$$635$$ −11.1731 19.3524i −0.443390 0.767975i
$$636$$ −88.8004 −3.52116
$$637$$ 6.85161 + 1.43369i 0.271471 + 0.0568048i
$$638$$ −62.5484 −2.47632
$$639$$ 3.96401 + 6.86587i 0.156814 + 0.271610i
$$640$$ −15.1860 + 26.3029i −0.600279 + 1.03971i
$$641$$ −21.3328 + 36.9494i −0.842594 + 1.45942i 0.0451008 + 0.998982i $$0.485639\pi$$
−0.887695 + 0.460433i $$0.847694\pi$$
$$642$$ −18.4765 32.0022i −0.729208 1.26303i
$$643$$ −5.49737 −0.216795 −0.108398 0.994108i $$-0.534572\pi$$
−0.108398 + 0.994108i $$0.534572\pi$$
$$644$$ 34.1342 + 3.53301i 1.34508 + 0.139220i
$$645$$ −17.8977 −0.704722
$$646$$ −14.9156 25.8345i −0.586845 1.01645i
$$647$$ 19.0933 33.0706i 0.750637 1.30014i −0.196877 0.980428i $$-0.563080\pi$$
0.947514 0.319713i $$-0.103587\pi$$
$$648$$ 8.57053 14.8446i 0.336682 0.583150i
$$649$$ −11.4671 19.8615i −0.450121 0.779633i
$$650$$ −1.09280 −0.0428633
$$651$$ 10.0775 + 22.5384i 0.394969 + 0.883348i
$$652$$ 40.1024 1.57053
$$653$$ −19.2510 33.3437i −0.753349 1.30484i −0.946191 0.323608i $$-0.895104\pi$$
0.192843 0.981230i $$-0.438229\pi$$
$$654$$ −11.4366 + 19.8088i −0.447206 + 0.774584i
$$655$$ 5.75711 9.97161i 0.224949 0.389623i
$$656$$ 7.24820 + 12.5543i 0.282995 + 0.490161i
$$657$$ 24.0477 0.938192
$$658$$ 24.4151 33.7166i 0.951798 1.31441i
$$659$$ 19.4843 0.759002 0.379501 0.925191i $$-0.376096\pi$$
0.379501 + 0.925191i $$0.376096\pi$$
$$660$$ 36.4595 + 63.1498i 1.41919 + 2.45810i
$$661$$ 20.8334 36.0844i 0.810324 1.40352i −0.102314 0.994752i $$-0.532625\pi$$
0.912638 0.408770i $$-0.134042\pi$$
$$662$$ −15.0564 + 26.0784i −0.585182 + 1.01356i
$$663$$ 4.67454 + 8.09654i 0.181544 + 0.314443i
$$664$$ 6.89760 0.267679
$$665$$ −11.7506 + 16.2273i −0.455668 + 0.629266i
$$666$$ 38.8834 1.50670
$$667$$ 13.2020 + 22.8665i 0.511182 + 0.885393i
$$668$$ −25.1520 + 43.5645i −0.973160 + 1.68556i
$$669$$ 36.2040 62.7071i 1.39973 2.42440i
$$670$$ −6.81168 11.7982i −0.263158 0.455803i
$$671$$ 15.3580 0.592890
$$672$$ 18.8803 + 42.2258i 0.728324 + 1.62889i
$$673$$ −14.3157 −0.551830 −0.275915 0.961182i $$-0.588981\pi$$
−0.275915 + 0.961182i $$0.588981\pi$$
$$674$$ 38.9153 + 67.4033i 1.49896 + 2.59628i
$$675$$ 0.0750110 0.129923i 0.00288718 0.00500073i
$$676$$ −1.44940 + 2.51043i −0.0557460 + 0.0965550i
$$677$$ 14.7641 + 25.5721i 0.567429 + 0.982815i 0.996819 + 0.0796963i $$0.0253950\pi$$
−0.429391 + 0.903119i $$0.641272\pi$$
$$678$$ 32.3184 1.24118
$$679$$ −14.2304 1.47290i −0.546114 0.0565247i
$$680$$ 15.9554 0.611860
$$681$$ 12.4633 + 21.5871i 0.477596 + 0.827220i
$$682$$ 19.9862 34.6172i 0.765312 1.32556i
$$683$$ −23.5349 + 40.7637i −0.900539 + 1.55978i −0.0737441 + 0.997277i $$0.523495\pi$$
−0.826795 + 0.562503i $$0.809839\pi$$
$$684$$ 16.1459 + 27.9655i 0.617354 + 1.06929i
$$685$$ −47.2210 −1.80422
$$686$$ −8.71296 40.0546i −0.332662 1.52929i
$$687$$ −27.5650 −1.05167
$$688$$ 2.37590 + 4.11518i 0.0905804 + 0.156890i
$$689$$ 6.19003 10.7214i 0.235821 0.408454i
$$690$$ 26.0097 45.0501i 0.990172 1.71503i
$$691$$ 15.4334 + 26.7314i 0.587113 + 1.01691i 0.994608 + 0.103703i $$0.0330690\pi$$
−0.407495 + 0.913207i $$0.633598\pi$$
$$692$$ −8.58442 −0.326331
$$693$$ 39.3568 + 4.07356i 1.49504 + 0.154742i
$$694$$ −12.1091 −0.459656
$$695$$ −4.24559 7.35358i −0.161044 0.278937i
$$696$$ 14.5238 25.1560i 0.550524 0.953535i
$$697$$ 19.6372 34.0127i 0.743813 1.28832i
$$698$$ −4.80508 8.32264i −0.181875 0.315017i
$$699$$ −42.2715 −1.59885
$$700$$ 1.54568 + 3.45691i 0.0584211 + 0.130659i
$$701$$ 6.48958 0.245108 0.122554 0.992462i $$-0.460892\pi$$
0.122554 + 0.992462i $$0.460892\pi$$
$$702$$ −0.336257 0.582415i −0.0126912 0.0219818i
$$703$$ 10.0341 17.3795i 0.378443 0.655482i
$$704$$ 30.7657 53.2878i 1.15953 2.00836i
$$705$$ −18.6701 32.3376i −0.703157 1.21790i
$$706$$ 61.0860 2.29900
$$707$$ −14.4580 + 19.9661i −0.543747 + 0.750902i
$$708$$ 34.3505 1.29097
$$709$$ 6.68689 + 11.5820i 0.251131 + 0.434972i 0.963838 0.266490i $$-0.0858641\pi$$
−0.712706 + 0.701463i $$0.752531\pi$$
$$710$$ −5.96409 + 10.3301i −0.223828 + 0.387682i
$$711$$ 8.08569 14.0048i 0.303237 0.525222i
$$712$$ −3.64475 6.31290i −0.136593 0.236586i
$$713$$ −16.8738 −0.631929
$$714$$ 32.1094 44.3424i 1.20167 1.65947i
$$715$$ −10.1660 −0.380186
$$716$$ 8.21645 + 14.2313i 0.307063 + 0.531849i
$$717$$ −8.56328 + 14.8320i −0.319802 + 0.553913i
$$718$$ −7.33555 + 12.7055i −0.273760 + 0.474167i
$$719$$ 8.37048 + 14.4981i 0.312166 + 0.540688i 0.978831 0.204670i $$-0.0656120\pi$$
−0.666665 + 0.745358i $$0.732279\pi$$
$$720$$ 9.24476 0.344532
$$721$$ −7.89050 17.6471i −0.293858 0.657212i
$$722$$ −13.8883 −0.516868
$$723$$ −8.03725 13.9209i −0.298909 0.517725i
$$724$$ −10.4015 + 18.0160i −0.386570 + 0.669558i
$$725$$ −1.45680 + 2.52325i −0.0541041 + 0.0937110i
$$726$$ −32.6798 56.6030i −1.21286 2.10074i
$$727$$ 38.8138 1.43952 0.719761 0.694221i $$-0.244251\pi$$
0.719761 + 0.694221i $$0.244251\pi$$
$$728$$ 5.23528 + 0.541869i 0.194032 + 0.0200830i
$$729$$ −29.1632 −1.08012
$$730$$ 18.0906 + 31.3339i 0.669564 + 1.15972i
$$731$$ 6.43692 11.1491i 0.238078 0.412364i
$$732$$ −11.5016 + 19.9213i −0.425110 + 0.736312i
$$733$$ −18.8639 32.6733i −0.696756 1.20682i −0.969585 0.244754i $$-0.921293\pi$$
0.272830 0.962062i $$-0.412040\pi$$
$$734$$ 69.0719 2.54949
$$735$$ −35.9895 7.53074i −1.32749 0.277776i
$$736$$ −31.6132 −1.16528
$$737$$ 6.94292 + 12.0255i 0.255746 + 0.442965i
$$738$$ −35.9232 + 62.2208i −1.32235 + 2.29038i
$$739$$ 4.61476 7.99300i 0.169757 0.294027i −0.768578 0.639757i $$-0.779035\pi$$
0.938334 + 0.345729i $$0.112368\pi$$
$$740$$ 17.3090 + 29.9801i 0.636291 + 1.10209i
$$741$$ −8.82686 −0.324263
$$742$$ −72.1111 7.46375i −2.64728 0.274003i
$$743$$ −3.56327 −0.130724 −0.0653619 0.997862i $$-0.520820\pi$$
−0.0653619 + 0.997862i $$0.520820\pi$$
$$744$$ 9.28164 + 16.0763i 0.340282 + 0.589385i
$$745$$ 3.13614 5.43195i 0.114899 0.199011i
$$746$$ 17.4571 30.2366i 0.639151 1.10704i
$$747$$ −5.41386 9.37707i −0.198083 0.343089i
$$748$$ −52.4508 −1.91779
$$749$$ −7.28674 16.2968i −0.266252 0.595472i
$$750$$ 63.8698 2.33220
$$751$$ −25.6053 44.3496i −0.934350 1.61834i −0.775789 0.630992i $$-0.782648\pi$$
−0.158561 0.987349i $$-0.550685\pi$$
$$752$$ −4.95687 + 8.58555i −0.180758 + 0.313083i
$$753$$ 12.2089 21.1464i 0.444916 0.770618i
$$754$$ 6.53049 + 11.3111i 0.237826 + 0.411927i
$$755$$ 39.3879 1.43347
$$756$$ −1.36677 + 1.88747i −0.0497088 + 0.0686466i
$$757$$ 25.2305 0.917019 0.458509 0.888690i $$-0.348384\pi$$
0.458509 + 0.888690i $$0.348384\pi$$
$$758$$ −35.0272 60.6688i −1.27224 2.20359i
$$759$$ −26.5108 + 45.9181i −0.962282 + 1.66672i
$$760$$ −7.53207 + 13.0459i −0.273217 + 0.473226i
$$761$$ −1.82372 3.15878i −0.0661099 0.114506i 0.831076 0.556159i $$-0.187725\pi$$
−0.897186 + 0.441653i $$0.854392\pi$$
$$762$$ −57.6520 −2.08851
$$763$$ −6.48077 + 8.94978i −0.234620 + 0.324004i
$$764$$ 34.4428 1.24610
$$765$$ −12.5232 21.6908i −0.452777 0.784233i
$$766$$ −13.7154 + 23.7558i −0.495558 + 0.858331i
$$767$$ −2.39448 + 4.14736i −0.0864596 + 0.149752i
$$768$$ 7.38609 + 12.7931i 0.266523 + 0.461631i
$$769$$ 21.9882 0.792914 0.396457 0.918053i $$-0.370240\pi$$
0.396457 + 0.918053i $$0.370240\pi$$