Properties

Label 91.2.e.b
Level $91$
Weight $2$
Character orbit 91.e
Analytic conductor $0.727$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 91 = 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 91.e (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.726638658394\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{5})\)
Defining polynomial: \(x^{4} - x^{3} + 2 x^{2} + x + 1\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( 1 + \beta_{1} + \beta_{3} ) q^{2} + ( -2 \beta_{1} - 2 \beta_{2} + \beta_{3} ) q^{3} + ( 3 \beta_{1} + 3 \beta_{2} ) q^{4} + ( 1 - 2 \beta_{1} + \beta_{3} ) q^{5} + ( 1 - 3 \beta_{2} ) q^{6} + ( -1 + 2 \beta_{3} ) q^{7} + ( -1 + 4 \beta_{2} ) q^{8} + ( -2 - 2 \beta_{3} ) q^{9} +O(q^{10})\) \( q + ( 1 + \beta_{1} + \beta_{3} ) q^{2} + ( -2 \beta_{1} - 2 \beta_{2} + \beta_{3} ) q^{3} + ( 3 \beta_{1} + 3 \beta_{2} ) q^{4} + ( 1 - 2 \beta_{1} + \beta_{3} ) q^{5} + ( 1 - 3 \beta_{2} ) q^{6} + ( -1 + 2 \beta_{3} ) q^{7} + ( -1 + 4 \beta_{2} ) q^{8} + ( -2 - 2 \beta_{3} ) q^{9} + ( -3 \beta_{1} - 3 \beta_{2} - \beta_{3} ) q^{10} -3 \beta_{3} q^{11} + ( 6 + 3 \beta_{1} + 6 \beta_{3} ) q^{12} - q^{13} + ( -3 - \beta_{1} + 2 \beta_{2} - \beta_{3} ) q^{14} -5 q^{15} + ( -5 - 3 \beta_{1} - 5 \beta_{3} ) q^{16} + ( 4 \beta_{1} + 4 \beta_{2} - 5 \beta_{3} ) q^{17} + ( -2 \beta_{1} - 2 \beta_{2} - 2 \beta_{3} ) q^{18} + ( -3 - 3 \beta_{3} ) q^{19} + ( 6 - 3 \beta_{2} ) q^{20} + ( -2 + 6 \beta_{1} + 2 \beta_{2} - 3 \beta_{3} ) q^{21} + ( 3 - 3 \beta_{2} ) q^{22} + ( 5 + 2 \beta_{1} + 5 \beta_{3} ) q^{23} + ( 6 \beta_{1} + 6 \beta_{2} + 7 \beta_{3} ) q^{24} + ( -1 - \beta_{1} - \beta_{3} ) q^{26} + ( -1 - 2 \beta_{2} ) q^{27} + ( -9 \beta_{1} - 3 \beta_{2} ) q^{28} + ( -2 - 4 \beta_{2} ) q^{29} + ( -5 - 5 \beta_{1} - 5 \beta_{3} ) q^{30} + 5 \beta_{3} q^{31} + ( -3 \beta_{1} - 3 \beta_{2} - 6 \beta_{3} ) q^{32} + ( 3 - 6 \beta_{1} + 3 \beta_{3} ) q^{33} + ( 1 + 3 \beta_{2} ) q^{34} + ( -3 + 2 \beta_{1} - 4 \beta_{2} - \beta_{3} ) q^{35} -6 \beta_{2} q^{36} + ( 5 - 6 \beta_{1} + 5 \beta_{3} ) q^{37} + ( -3 \beta_{1} - 3 \beta_{2} - 3 \beta_{3} ) q^{38} + ( 2 \beta_{1} + 2 \beta_{2} - \beta_{3} ) q^{39} + ( 7 + 6 \beta_{1} + 7 \beta_{3} ) q^{40} + ( 2 + 4 \beta_{2} ) q^{41} + ( -1 + 6 \beta_{1} + 9 \beta_{2} + 2 \beta_{3} ) q^{42} -8 q^{43} + 9 \beta_{1} q^{44} + ( 4 \beta_{1} + 4 \beta_{2} - 2 \beta_{3} ) q^{45} + ( 9 \beta_{1} + 9 \beta_{2} + 7 \beta_{3} ) q^{46} + ( 1 + 4 \beta_{1} + \beta_{3} ) q^{47} + ( -1 + 13 \beta_{2} ) q^{48} + ( -3 - 8 \beta_{3} ) q^{49} + ( 13 - 6 \beta_{1} + 13 \beta_{3} ) q^{51} + ( -3 \beta_{1} - 3 \beta_{2} ) q^{52} + ( -4 \beta_{1} - 4 \beta_{2} - \beta_{3} ) q^{53} + ( 1 + 3 \beta_{1} + \beta_{3} ) q^{54} + ( 3 + 6 \beta_{2} ) q^{55} + ( 1 - 8 \beta_{1} - 12 \beta_{2} - 2 \beta_{3} ) q^{56} + ( 3 + 6 \beta_{2} ) q^{57} + ( 2 + 6 \beta_{1} + 2 \beta_{3} ) q^{58} + ( -4 \beta_{1} - 4 \beta_{2} + 5 \beta_{3} ) q^{59} + ( -15 \beta_{1} - 15 \beta_{2} ) q^{60} + ( -3 - 3 \beta_{3} ) q^{61} + ( -5 + 5 \beta_{2} ) q^{62} + ( 6 + 2 \beta_{3} ) q^{63} + ( -1 - 6 \beta_{2} ) q^{64} + ( -1 + 2 \beta_{1} - \beta_{3} ) q^{65} + ( -9 \beta_{1} - 9 \beta_{2} - 3 \beta_{3} ) q^{66} -3 \beta_{3} q^{67} + ( -12 + 3 \beta_{1} - 12 \beta_{3} ) q^{68} + ( -1 - 12 \beta_{2} ) q^{69} + ( 2 + 9 \beta_{1} + 3 \beta_{2} + 3 \beta_{3} ) q^{70} + ( 4 + 8 \beta_{2} ) q^{71} + ( 2 + 8 \beta_{1} + 2 \beta_{3} ) q^{72} + ( -6 \beta_{1} - 6 \beta_{2} + 7 \beta_{3} ) q^{73} + ( -7 \beta_{1} - 7 \beta_{2} - \beta_{3} ) q^{74} -9 \beta_{2} q^{76} + ( 6 + 9 \beta_{3} ) q^{77} + ( -1 + 3 \beta_{2} ) q^{78} + ( -7 + 6 \beta_{1} - 7 \beta_{3} ) q^{79} + ( 13 \beta_{1} + 13 \beta_{2} + \beta_{3} ) q^{80} -11 \beta_{3} q^{81} + ( -2 - 6 \beta_{1} - 2 \beta_{3} ) q^{82} + ( -18 - 3 \beta_{1} + 6 \beta_{2} - 6 \beta_{3} ) q^{84} + ( 13 + 6 \beta_{2} ) q^{85} + ( -8 - 8 \beta_{1} - 8 \beta_{3} ) q^{86} -10 \beta_{3} q^{87} + ( 12 \beta_{1} + 12 \beta_{2} + 3 \beta_{3} ) q^{88} + ( 1 - 2 \beta_{1} + \beta_{3} ) q^{89} + ( -2 + 6 \beta_{2} ) q^{90} + ( 1 - 2 \beta_{3} ) q^{91} + ( -6 + 21 \beta_{2} ) q^{92} + ( -5 + 10 \beta_{1} - 5 \beta_{3} ) q^{93} + ( 9 \beta_{1} + 9 \beta_{2} + 5 \beta_{3} ) q^{94} + ( 6 \beta_{1} + 6 \beta_{2} - 3 \beta_{3} ) q^{95} -15 \beta_{1} q^{96} + ( -10 - 12 \beta_{2} ) q^{97} + ( 5 - 3 \beta_{1} - 8 \beta_{2} - 3 \beta_{3} ) q^{98} -6 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q + 3q^{2} - 3q^{4} + 10q^{6} - 8q^{7} - 12q^{8} - 4q^{9} + O(q^{10}) \) \( 4q + 3q^{2} - 3q^{4} + 10q^{6} - 8q^{7} - 12q^{8} - 4q^{9} + 5q^{10} + 6q^{11} + 15q^{12} - 4q^{13} - 15q^{14} - 20q^{15} - 13q^{16} + 6q^{17} + 6q^{18} - 6q^{19} + 30q^{20} + 18q^{22} + 12q^{23} - 20q^{24} - 3q^{26} - 3q^{28} - 15q^{30} - 10q^{31} + 15q^{32} - 2q^{34} + 12q^{36} + 4q^{37} + 9q^{38} + 20q^{40} - 20q^{42} - 32q^{43} + 9q^{44} - 23q^{46} + 6q^{47} - 30q^{48} + 4q^{49} + 20q^{51} + 3q^{52} + 6q^{53} + 5q^{54} + 24q^{56} + 10q^{58} - 6q^{59} + 15q^{60} - 6q^{61} - 30q^{62} + 20q^{63} + 8q^{64} + 15q^{66} + 6q^{67} - 21q^{68} + 20q^{69} + 5q^{70} + 12q^{72} - 8q^{73} + 9q^{74} + 18q^{76} + 6q^{77} - 10q^{78} - 8q^{79} - 15q^{80} + 22q^{81} - 10q^{82} - 75q^{84} + 40q^{85} - 24q^{86} + 20q^{87} - 18q^{88} - 20q^{90} + 8q^{91} - 66q^{92} - 19q^{94} - 15q^{96} - 16q^{97} + 39q^{98} - 24q^{99} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{4} - x^{3} + 2 x^{2} + x + 1\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\( \nu \)
\(\beta_{2}\)\(=\)\((\)\( \nu^{3} + 1 \)\()/2\)
\(\beta_{3}\)\(=\)\((\)\( -\nu^{3} + 2 \nu^{2} - 2 \nu - 1 \)\()/2\)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\(\beta_{1}\)
\(\nu^{2}\)\(=\)\(\beta_{3} + \beta_{2} + \beta_{1}\)
\(\nu^{3}\)\(=\)\(2 \beta_{2} - 1\)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/91\mathbb{Z}\right)^\times\).

\(n\) \(15\) \(66\)
\(\chi(n)\) \(1\) \(-1 - \beta_{3}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
53.1
−0.309017 0.535233i
0.809017 + 1.40126i
−0.309017 + 0.535233i
0.809017 1.40126i
0.190983 + 0.330792i −1.11803 + 1.93649i 0.927051 1.60570i 1.11803 + 1.93649i −0.854102 −2.00000 + 1.73205i 1.47214 −1.00000 1.73205i −0.427051 + 0.739674i
53.2 1.30902 + 2.26728i 1.11803 1.93649i −2.42705 + 4.20378i −1.11803 1.93649i 5.85410 −2.00000 + 1.73205i −7.47214 −1.00000 1.73205i 2.92705 5.06980i
79.1 0.190983 0.330792i −1.11803 1.93649i 0.927051 + 1.60570i 1.11803 1.93649i −0.854102 −2.00000 1.73205i 1.47214 −1.00000 + 1.73205i −0.427051 0.739674i
79.2 1.30902 2.26728i 1.11803 + 1.93649i −2.42705 4.20378i −1.11803 + 1.93649i 5.85410 −2.00000 1.73205i −7.47214 −1.00000 + 1.73205i 2.92705 + 5.06980i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 91.2.e.b 4
3.b odd 2 1 819.2.j.c 4
4.b odd 2 1 1456.2.r.j 4
7.b odd 2 1 637.2.e.h 4
7.c even 3 1 inner 91.2.e.b 4
7.c even 3 1 637.2.a.f 2
7.d odd 6 1 637.2.a.e 2
7.d odd 6 1 637.2.e.h 4
13.b even 2 1 1183.2.e.d 4
21.g even 6 1 5733.2.a.w 2
21.h odd 6 1 819.2.j.c 4
21.h odd 6 1 5733.2.a.v 2
28.g odd 6 1 1456.2.r.j 4
91.r even 6 1 1183.2.e.d 4
91.r even 6 1 8281.2.a.z 2
91.s odd 6 1 8281.2.a.ba 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
91.2.e.b 4 1.a even 1 1 trivial
91.2.e.b 4 7.c even 3 1 inner
637.2.a.e 2 7.d odd 6 1
637.2.a.f 2 7.c even 3 1
637.2.e.h 4 7.b odd 2 1
637.2.e.h 4 7.d odd 6 1
819.2.j.c 4 3.b odd 2 1
819.2.j.c 4 21.h odd 6 1
1183.2.e.d 4 13.b even 2 1
1183.2.e.d 4 91.r even 6 1
1456.2.r.j 4 4.b odd 2 1
1456.2.r.j 4 28.g odd 6 1
5733.2.a.v 2 21.h odd 6 1
5733.2.a.w 2 21.g even 6 1
8281.2.a.z 2 91.r even 6 1
8281.2.a.ba 2 91.s odd 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{4} - 3 T_{2}^{3} + 8 T_{2}^{2} - 3 T_{2} + 1 \) acting on \(S_{2}^{\mathrm{new}}(91, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 1 - 3 T + 8 T^{2} - 3 T^{3} + T^{4} \)
$3$ \( 25 + 5 T^{2} + T^{4} \)
$5$ \( 25 + 5 T^{2} + T^{4} \)
$7$ \( ( 7 + 4 T + T^{2} )^{2} \)
$11$ \( ( 9 - 3 T + T^{2} )^{2} \)
$13$ \( ( 1 + T )^{4} \)
$17$ \( 121 + 66 T + 47 T^{2} - 6 T^{3} + T^{4} \)
$19$ \( ( 9 + 3 T + T^{2} )^{2} \)
$23$ \( 961 - 372 T + 113 T^{2} - 12 T^{3} + T^{4} \)
$29$ \( ( -20 + T^{2} )^{2} \)
$31$ \( ( 25 + 5 T + T^{2} )^{2} \)
$37$ \( 1681 + 164 T + 57 T^{2} - 4 T^{3} + T^{4} \)
$41$ \( ( -20 + T^{2} )^{2} \)
$43$ \( ( 8 + T )^{4} \)
$47$ \( 121 + 66 T + 47 T^{2} - 6 T^{3} + T^{4} \)
$53$ \( 121 + 66 T + 47 T^{2} - 6 T^{3} + T^{4} \)
$59$ \( 121 - 66 T + 47 T^{2} + 6 T^{3} + T^{4} \)
$61$ \( ( 9 + 3 T + T^{2} )^{2} \)
$67$ \( ( 9 - 3 T + T^{2} )^{2} \)
$71$ \( ( -80 + T^{2} )^{2} \)
$73$ \( 841 - 232 T + 93 T^{2} + 8 T^{3} + T^{4} \)
$79$ \( 841 - 232 T + 93 T^{2} + 8 T^{3} + T^{4} \)
$83$ \( T^{4} \)
$89$ \( 25 + 5 T^{2} + T^{4} \)
$97$ \( ( -164 + 8 T + T^{2} )^{2} \)
show more
show less