Properties

Label 91.2.bc
Level $91$
Weight $2$
Character orbit 91.bc
Rep. character $\chi_{91}(6,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $32$
Newform subspaces $1$
Sturm bound $18$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 91 = 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 91.bc (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 91 \)
Character field: \(\Q(\zeta_{12})\)
Newform subspaces: \( 1 \)
Sturm bound: \(18\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(91, [\chi])\).

Total New Old
Modular forms 48 48 0
Cusp forms 32 32 0
Eisenstein series 16 16 0

Trace form

\( 32q - 8q^{2} - 12q^{4} - 16q^{8} + 8q^{9} + O(q^{10}) \) \( 32q - 8q^{2} - 12q^{4} - 16q^{8} + 8q^{9} - 4q^{11} - 32q^{14} - 8q^{15} + 12q^{16} - 4q^{18} + 16q^{21} + 4q^{22} - 12q^{23} + 24q^{28} + 4q^{29} + 12q^{30} + 4q^{32} - 20q^{35} + 4q^{37} - 36q^{39} - 28q^{42} - 48q^{43} + 24q^{44} + 84q^{46} + 24q^{49} - 44q^{50} + 72q^{53} + 60q^{56} - 92q^{57} - 16q^{58} + 76q^{60} + 48q^{63} + 4q^{65} - 56q^{67} + 56q^{70} + 84q^{71} - 128q^{72} - 24q^{74} + 148q^{78} - 80q^{79} + 28q^{81} - 64q^{84} + 36q^{85} - 48q^{86} - 228q^{88} - 48q^{91} + 24q^{92} + 108q^{93} - 84q^{95} - 32q^{98} - 60q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(91, [\chi])\) into newform subspaces

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
91.2.bc.a \(32\) \(0.727\) None \(-8\) \(0\) \(0\) \(0\)