Properties

Label 91.2.bb.a.5.5
Level $91$
Weight $2$
Character 91.5
Analytic conductor $0.727$
Analytic rank $0$
Dimension $32$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 91 = 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 91.bb (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.726638658394\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(8\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 5.5
Character \(\chi\) \(=\) 91.5
Dual form 91.2.bb.a.73.5

$q$-expansion

\(f(q)\) \(=\) \(q+(0.200025 + 0.746505i) q^{2} +(-0.421869 + 0.243566i) q^{3} +(1.21479 - 0.701360i) q^{4} +(1.76272 - 0.472319i) q^{5} +(-0.266208 - 0.266208i) q^{6} +(-2.63734 - 0.210751i) q^{7} +(1.85952 + 1.85952i) q^{8} +(-1.38135 + 2.39257i) q^{9} +O(q^{10})\) \(q+(0.200025 + 0.746505i) q^{2} +(-0.421869 + 0.243566i) q^{3} +(1.21479 - 0.701360i) q^{4} +(1.76272 - 0.472319i) q^{5} +(-0.266208 - 0.266208i) q^{6} +(-2.63734 - 0.210751i) q^{7} +(1.85952 + 1.85952i) q^{8} +(-1.38135 + 2.39257i) q^{9} +(0.705177 + 1.22140i) q^{10} +(-0.265469 + 0.990745i) q^{11} +(-0.341655 + 0.591765i) q^{12} +(0.266208 - 3.59571i) q^{13} +(-0.370209 - 2.01095i) q^{14} +(-0.628596 + 0.628596i) q^{15} +(0.386531 - 0.669491i) q^{16} +(-2.60029 - 4.50383i) q^{17} +(-2.06237 - 0.552611i) q^{18} +(-5.07751 + 1.36051i) q^{19} +(1.81007 - 1.81007i) q^{20} +(1.16395 - 0.553459i) q^{21} -0.792697 q^{22} +(-0.730699 - 0.421869i) q^{23} +(-1.23739 - 0.331558i) q^{24} +(-1.44604 + 0.834871i) q^{25} +(2.73747 - 0.520508i) q^{26} -2.80720i q^{27} +(-3.35163 + 1.59371i) q^{28} +10.3454 q^{29} +(-0.594985 - 0.343515i) q^{30} +(-1.52630 + 5.69625i) q^{31} +(5.65739 + 1.51589i) q^{32} +(-0.129319 - 0.482625i) q^{33} +(2.84201 - 2.84201i) q^{34} +(-4.74843 + 0.874173i) q^{35} +3.87530i q^{36} +(-6.03388 + 1.61677i) q^{37} +(-2.03126 - 3.51825i) q^{38} +(0.763489 + 1.58176i) q^{39} +(4.15609 + 2.39952i) q^{40} +(0.0927742 + 0.0927742i) q^{41} +(0.645979 + 0.758186i) q^{42} -7.36681i q^{43} +(0.372379 + 1.38974i) q^{44} +(-1.30488 + 4.86986i) q^{45} +(0.168769 - 0.629856i) q^{46} +(0.583897 + 2.17913i) q^{47} +0.376584i q^{48} +(6.91117 + 1.11164i) q^{49} +(-0.912480 - 0.912480i) q^{50} +(2.19397 + 1.26669i) q^{51} +(-2.19850 - 4.55474i) q^{52} +(3.38590 + 5.86455i) q^{53} +(2.09559 - 0.561512i) q^{54} +1.87179i q^{55} +(-4.51229 - 5.29608i) q^{56} +(1.81067 - 1.81067i) q^{57} +(2.06934 + 7.72287i) q^{58} +(9.73833 + 2.60938i) q^{59} +(-0.322741 + 1.20448i) q^{60} +(1.13174 + 0.653409i) q^{61} -4.55758 q^{62} +(4.14733 - 6.01891i) q^{63} +2.98037i q^{64} +(-1.22907 - 6.46396i) q^{65} +(0.334415 - 0.193074i) q^{66} +(-4.16014 - 1.11471i) q^{67} +(-6.31762 - 3.64748i) q^{68} +0.411013 q^{69} +(-1.60238 - 3.36987i) q^{70} +(-6.02388 + 6.02388i) q^{71} +(-7.01767 + 1.88038i) q^{72} +(10.9588 + 2.93641i) q^{73} +(-2.41386 - 4.18093i) q^{74} +(0.406693 - 0.704413i) q^{75} +(-5.21390 + 5.21390i) q^{76} +(0.908934 - 2.55699i) q^{77} +(-1.02807 + 0.886341i) q^{78} +(5.16240 - 8.94154i) q^{79} +(0.365132 - 1.36269i) q^{80} +(-3.46031 - 5.99344i) q^{81} +(-0.0506992 + 0.0878136i) q^{82} +(4.16974 + 4.16974i) q^{83} +(1.02578 - 1.48868i) q^{84} +(-6.71082 - 6.71082i) q^{85} +(5.49936 - 1.47355i) q^{86} +(-4.36440 + 2.51978i) q^{87} +(-2.33595 + 1.34866i) q^{88} +(-2.00924 - 7.49857i) q^{89} -3.89639 q^{90} +(-1.45988 + 9.42702i) q^{91} -1.18353 q^{92} +(-0.743513 - 2.77483i) q^{93} +(-1.50994 + 0.871764i) q^{94} +(-8.30761 + 4.79640i) q^{95} +(-2.75590 + 0.738442i) q^{96} +(-2.49152 - 2.49152i) q^{97} +(0.552561 + 5.38158i) q^{98} +(-2.00372 - 2.00372i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32q - 2q^{2} - 12q^{3} - 6q^{5} - 6q^{7} - 16q^{8} + 8q^{9} + O(q^{10}) \) \( 32q - 2q^{2} - 12q^{3} - 6q^{5} - 6q^{7} - 16q^{8} + 8q^{9} - 10q^{11} + 28q^{14} - 44q^{15} + 12q^{16} - 4q^{18} + 12q^{19} - 26q^{21} - 8q^{22} - 12q^{24} + 24q^{26} - 6q^{28} + 16q^{29} + 24q^{31} + 4q^{32} + 48q^{33} + 28q^{35} - 8q^{37} - 6q^{39} - 132q^{40} - 16q^{42} - 42q^{44} - 24q^{45} + 12q^{46} + 30q^{47} + 88q^{50} + 36q^{52} - 12q^{53} + 78q^{54} + 40q^{57} + 26q^{58} - 54q^{59} + 16q^{60} - 48q^{61} + 24q^{63} - 8q^{65} + 12q^{66} + 16q^{67} - 48q^{68} + 50q^{70} - 36q^{71} + 22q^{72} + 66q^{73} + 12q^{74} - 176q^{78} - 32q^{79} + 138q^{80} + 16q^{81} - 58q^{84} - 84q^{85} + 42q^{86} - 24q^{87} - 60q^{89} + 48q^{92} + 6q^{93} - 72q^{94} - 42q^{96} - 86q^{98} - 24q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/91\mathbb{Z}\right)^\times\).

\(n\) \(15\) \(66\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.200025 + 0.746505i 0.141439 + 0.527859i 0.999888 + 0.0149595i \(0.00476194\pi\)
−0.858449 + 0.512899i \(0.828571\pi\)
\(3\) −0.421869 + 0.243566i −0.243566 + 0.140623i −0.616815 0.787108i \(-0.711577\pi\)
0.373248 + 0.927731i \(0.378244\pi\)
\(4\) 1.21479 0.701360i 0.607395 0.350680i
\(5\) 1.76272 0.472319i 0.788311 0.211227i 0.157865 0.987461i \(-0.449539\pi\)
0.630446 + 0.776233i \(0.282872\pi\)
\(6\) −0.266208 0.266208i −0.108679 0.108679i
\(7\) −2.63734 0.210751i −0.996822 0.0796563i
\(8\) 1.85952 + 1.85952i 0.657439 + 0.657439i
\(9\) −1.38135 + 2.39257i −0.460450 + 0.797523i
\(10\) 0.705177 + 1.22140i 0.222996 + 0.386241i
\(11\) −0.265469 + 0.990745i −0.0800420 + 0.298721i −0.994329 0.106346i \(-0.966085\pi\)
0.914287 + 0.405067i \(0.132752\pi\)
\(12\) −0.341655 + 0.591765i −0.0986274 + 0.170828i
\(13\) 0.266208 3.59571i 0.0738329 0.997271i
\(14\) −0.370209 2.01095i −0.0989426 0.537448i
\(15\) −0.628596 + 0.628596i −0.162303 + 0.162303i
\(16\) 0.386531 0.669491i 0.0966328 0.167373i
\(17\) −2.60029 4.50383i −0.630663 1.09234i −0.987416 0.158142i \(-0.949450\pi\)
0.356753 0.934199i \(-0.383884\pi\)
\(18\) −2.06237 0.552611i −0.486106 0.130252i
\(19\) −5.07751 + 1.36051i −1.16486 + 0.312123i −0.788905 0.614515i \(-0.789352\pi\)
−0.375954 + 0.926638i \(0.622685\pi\)
\(20\) 1.81007 1.81007i 0.404743 0.404743i
\(21\) 1.16395 0.553459i 0.253994 0.120775i
\(22\) −0.792697 −0.169004
\(23\) −0.730699 0.421869i −0.152361 0.0879659i 0.421881 0.906651i \(-0.361370\pi\)
−0.574242 + 0.818685i \(0.694703\pi\)
\(24\) −1.23739 0.331558i −0.252581 0.0676789i
\(25\) −1.44604 + 0.834871i −0.289208 + 0.166974i
\(26\) 2.73747 0.520508i 0.536861 0.102080i
\(27\) 2.80720i 0.540246i
\(28\) −3.35163 + 1.59371i −0.633399 + 0.301183i
\(29\) 10.3454 1.92109 0.960543 0.278130i \(-0.0897147\pi\)
0.960543 + 0.278130i \(0.0897147\pi\)
\(30\) −0.594985 0.343515i −0.108629 0.0627169i
\(31\) −1.52630 + 5.69625i −0.274132 + 1.02308i 0.682288 + 0.731083i \(0.260985\pi\)
−0.956421 + 0.291993i \(0.905682\pi\)
\(32\) 5.65739 + 1.51589i 1.00009 + 0.267975i
\(33\) −0.129319 0.482625i −0.0225115 0.0840142i
\(34\) 2.84201 2.84201i 0.487401 0.487401i
\(35\) −4.74843 + 0.874173i −0.802632 + 0.147762i
\(36\) 3.87530i 0.645883i
\(37\) −6.03388 + 1.61677i −0.991964 + 0.265796i −0.718075 0.695965i \(-0.754977\pi\)
−0.273889 + 0.961761i \(0.588310\pi\)
\(38\) −2.03126 3.51825i −0.329514 0.570735i
\(39\) 0.763489 + 1.58176i 0.122256 + 0.253284i
\(40\) 4.15609 + 2.39952i 0.657135 + 0.379397i
\(41\) 0.0927742 + 0.0927742i 0.0144889 + 0.0144889i 0.714314 0.699825i \(-0.246739\pi\)
−0.699825 + 0.714314i \(0.746739\pi\)
\(42\) 0.645979 + 0.758186i 0.0996768 + 0.116991i
\(43\) 7.36681i 1.12343i −0.827331 0.561714i \(-0.810142\pi\)
0.827331 0.561714i \(-0.189858\pi\)
\(44\) 0.372379 + 1.38974i 0.0561383 + 0.209511i
\(45\) −1.30488 + 4.86986i −0.194519 + 0.725956i
\(46\) 0.168769 0.629856i 0.0248837 0.0928671i
\(47\) 0.583897 + 2.17913i 0.0851701 + 0.317859i 0.995346 0.0963621i \(-0.0307207\pi\)
−0.910176 + 0.414221i \(0.864054\pi\)
\(48\) 0.376584i 0.0543552i
\(49\) 6.91117 + 1.11164i 0.987310 + 0.158806i
\(50\) −0.912480 0.912480i −0.129044 0.129044i
\(51\) 2.19397 + 1.26669i 0.307217 + 0.177372i
\(52\) −2.19850 4.55474i −0.304877 0.631629i
\(53\) 3.38590 + 5.86455i 0.465089 + 0.805558i 0.999206 0.0398532i \(-0.0126890\pi\)
−0.534117 + 0.845411i \(0.679356\pi\)
\(54\) 2.09559 0.561512i 0.285174 0.0764121i
\(55\) 1.87179i 0.252392i
\(56\) −4.51229 5.29608i −0.602980 0.707719i
\(57\) 1.81067 1.81067i 0.239829 0.239829i
\(58\) 2.06934 + 7.72287i 0.271717 + 1.01406i
\(59\) 9.73833 + 2.60938i 1.26782 + 0.339712i 0.829196 0.558958i \(-0.188799\pi\)
0.438626 + 0.898670i \(0.355465\pi\)
\(60\) −0.322741 + 1.20448i −0.0416656 + 0.155498i
\(61\) 1.13174 + 0.653409i 0.144904 + 0.0836604i 0.570699 0.821159i \(-0.306672\pi\)
−0.425795 + 0.904820i \(0.640006\pi\)
\(62\) −4.55758 −0.578813
\(63\) 4.14733 6.01891i 0.522515 0.758311i
\(64\) 2.98037i 0.372546i
\(65\) −1.22907 6.46396i −0.152448 0.801755i
\(66\) 0.334415 0.193074i 0.0411636 0.0237658i
\(67\) −4.16014 1.11471i −0.508242 0.136183i −0.00441973 0.999990i \(-0.501407\pi\)
−0.503823 + 0.863807i \(0.668074\pi\)
\(68\) −6.31762 3.64748i −0.766124 0.442322i
\(69\) 0.411013 0.0494802
\(70\) −1.60238 3.36987i −0.191521 0.402777i
\(71\) −6.02388 + 6.02388i −0.714903 + 0.714903i −0.967557 0.252654i \(-0.918697\pi\)
0.252654 + 0.967557i \(0.418697\pi\)
\(72\) −7.01767 + 1.88038i −0.827040 + 0.221605i
\(73\) 10.9588 + 2.93641i 1.28264 + 0.343681i 0.834859 0.550464i \(-0.185549\pi\)
0.447776 + 0.894146i \(0.352216\pi\)
\(74\) −2.41386 4.18093i −0.280606 0.486023i
\(75\) 0.406693 0.704413i 0.0469609 0.0813386i
\(76\) −5.21390 + 5.21390i −0.598075 + 0.598075i
\(77\) 0.908934 2.55699i 0.103583 0.291396i
\(78\) −1.02807 + 0.886341i −0.116407 + 0.100358i
\(79\) 5.16240 8.94154i 0.580816 1.00600i −0.414567 0.910019i \(-0.636067\pi\)
0.995383 0.0959836i \(-0.0305996\pi\)
\(80\) 0.365132 1.36269i 0.0408230 0.152353i
\(81\) −3.46031 5.99344i −0.384479 0.665937i
\(82\) −0.0506992 + 0.0878136i −0.00559879 + 0.00969739i
\(83\) 4.16974 + 4.16974i 0.457689 + 0.457689i 0.897896 0.440207i \(-0.145095\pi\)
−0.440207 + 0.897896i \(0.645095\pi\)
\(84\) 1.02578 1.48868i 0.111922 0.162429i
\(85\) −6.71082 6.71082i −0.727891 0.727891i
\(86\) 5.49936 1.47355i 0.593011 0.158897i
\(87\) −4.36440 + 2.51978i −0.467912 + 0.270149i
\(88\) −2.33595 + 1.34866i −0.249013 + 0.143768i
\(89\) −2.00924 7.49857i −0.212979 0.794847i −0.986868 0.161526i \(-0.948358\pi\)
0.773890 0.633320i \(-0.218308\pi\)
\(90\) −3.89639 −0.410715
\(91\) −1.45988 + 9.42702i −0.153037 + 0.988220i
\(92\) −1.18353 −0.123391
\(93\) −0.743513 2.77483i −0.0770987 0.287736i
\(94\) −1.50994 + 0.871764i −0.155738 + 0.0899156i
\(95\) −8.30761 + 4.79640i −0.852343 + 0.492100i
\(96\) −2.75590 + 0.738442i −0.281273 + 0.0753669i
\(97\) −2.49152 2.49152i −0.252976 0.252976i 0.569214 0.822189i \(-0.307248\pi\)
−0.822189 + 0.569214i \(0.807248\pi\)
\(98\) 0.552561 + 5.38158i 0.0558171 + 0.543622i
\(99\) −2.00372 2.00372i −0.201381 0.201381i
\(100\) −1.17109 + 2.02839i −0.117109 + 0.202839i
\(101\) −1.21686 2.10766i −0.121082 0.209720i 0.799113 0.601181i \(-0.205303\pi\)
−0.920195 + 0.391461i \(0.871970\pi\)
\(102\) −0.506739 + 1.89118i −0.0501747 + 0.187254i
\(103\) 1.36817 2.36974i 0.134810 0.233498i −0.790715 0.612185i \(-0.790291\pi\)
0.925525 + 0.378687i \(0.123624\pi\)
\(104\) 7.18131 6.19127i 0.704185 0.607104i
\(105\) 1.79030 1.52535i 0.174715 0.148859i
\(106\) −3.70065 + 3.70065i −0.359439 + 0.359439i
\(107\) −1.12814 + 1.95399i −0.109061 + 0.188899i −0.915390 0.402568i \(-0.868118\pi\)
0.806329 + 0.591467i \(0.201451\pi\)
\(108\) −1.96886 3.41016i −0.189454 0.328143i
\(109\) −1.57309 0.421507i −0.150674 0.0403730i 0.182693 0.983170i \(-0.441518\pi\)
−0.333368 + 0.942797i \(0.608185\pi\)
\(110\) −1.39730 + 0.374406i −0.133227 + 0.0356982i
\(111\) 2.15172 2.15172i 0.204232 0.204232i
\(112\) −1.16051 + 1.68422i −0.109658 + 0.159144i
\(113\) 2.63227 0.247623 0.123812 0.992306i \(-0.460488\pi\)
0.123812 + 0.992306i \(0.460488\pi\)
\(114\) 1.71385 + 0.989494i 0.160517 + 0.0926746i
\(115\) −1.48727 0.398514i −0.138689 0.0371616i
\(116\) 12.5675 7.25583i 1.16686 0.673687i
\(117\) 8.23526 + 5.60386i 0.761350 + 0.518077i
\(118\) 7.79165i 0.717280i
\(119\) 5.90867 + 12.4262i 0.541647 + 1.13911i
\(120\) −2.33777 −0.213408
\(121\) 8.61518 + 4.97398i 0.783198 + 0.452180i
\(122\) −0.261397 + 0.975546i −0.0236658 + 0.0883218i
\(123\) −0.0617353 0.0165419i −0.00556648 0.00149153i
\(124\) 2.14098 + 7.99024i 0.192265 + 0.717544i
\(125\) −8.60663 + 8.60663i −0.769800 + 0.769800i
\(126\) 5.32272 + 1.89207i 0.474186 + 0.168559i
\(127\) 11.8104i 1.04801i −0.851716 0.524004i \(-0.824438\pi\)
0.851716 0.524004i \(-0.175562\pi\)
\(128\) 9.08992 2.43564i 0.803443 0.215282i
\(129\) 1.79431 + 3.10783i 0.157980 + 0.273629i
\(130\) 4.57953 2.21046i 0.401652 0.193871i
\(131\) −13.3773 7.72337i −1.16878 0.674794i −0.215386 0.976529i \(-0.569101\pi\)
−0.953392 + 0.301735i \(0.902434\pi\)
\(132\) −0.495589 0.495589i −0.0431355 0.0431355i
\(133\) 13.6779 2.51805i 1.18602 0.218343i
\(134\) 3.32854i 0.287542i
\(135\) −1.32589 4.94830i −0.114115 0.425882i
\(136\) 3.53967 13.2102i 0.303525 1.13277i
\(137\) −0.265307 + 0.990138i −0.0226667 + 0.0845932i −0.976333 0.216274i \(-0.930609\pi\)
0.953666 + 0.300867i \(0.0972761\pi\)
\(138\) 0.0822131 + 0.306823i 0.00699844 + 0.0261185i
\(139\) 11.4028i 0.967171i 0.875297 + 0.483585i \(0.160666\pi\)
−0.875297 + 0.483585i \(0.839334\pi\)
\(140\) −5.15525 + 4.39230i −0.435698 + 0.371217i
\(141\) −0.777092 0.777092i −0.0654429 0.0654429i
\(142\) −5.70178 3.29193i −0.478483 0.276252i
\(143\) 3.49176 + 1.21830i 0.291996 + 0.101879i
\(144\) 1.06787 + 1.84961i 0.0889892 + 0.154134i
\(145\) 18.2360 4.88631i 1.51441 0.405786i
\(146\) 8.76819i 0.725660i
\(147\) −3.18637 + 1.21436i −0.262807 + 0.100159i
\(148\) −6.19597 + 6.19597i −0.509305 + 0.509305i
\(149\) −1.97693 7.37799i −0.161956 0.604428i −0.998409 0.0563893i \(-0.982041\pi\)
0.836453 0.548039i \(-0.184625\pi\)
\(150\) 0.607197 + 0.162698i 0.0495774 + 0.0132842i
\(151\) 1.77307 6.61717i 0.144290 0.538498i −0.855496 0.517810i \(-0.826748\pi\)
0.999786 0.0206882i \(-0.00658574\pi\)
\(152\) −11.9716 6.91181i −0.971026 0.560622i
\(153\) 14.3677 1.16156
\(154\) 2.09062 + 0.167062i 0.168467 + 0.0134622i
\(155\) 10.7618i 0.864406i
\(156\) 2.03686 + 1.38603i 0.163080 + 0.110971i
\(157\) −11.1262 + 6.42373i −0.887970 + 0.512670i −0.873278 0.487222i \(-0.838010\pi\)
−0.0146919 + 0.999892i \(0.504677\pi\)
\(158\) 7.70752 + 2.06522i 0.613177 + 0.164300i
\(159\) −2.85681 1.64938i −0.226560 0.130805i
\(160\) 10.6884 0.844990
\(161\) 1.83820 + 1.26661i 0.144870 + 0.0998229i
\(162\) 3.78198 3.78198i 0.297140 0.297140i
\(163\) 0.948153 0.254057i 0.0742651 0.0198993i −0.221495 0.975161i \(-0.571094\pi\)
0.295760 + 0.955262i \(0.404427\pi\)
\(164\) 0.177769 + 0.0476332i 0.0138815 + 0.00371952i
\(165\) −0.455905 0.789651i −0.0354922 0.0614743i
\(166\) −2.27868 + 3.94679i −0.176860 + 0.306330i
\(167\) −9.25126 + 9.25126i −0.715884 + 0.715884i −0.967760 0.251876i \(-0.918953\pi\)
0.251876 + 0.967760i \(0.418953\pi\)
\(168\) 3.19355 + 1.13521i 0.246387 + 0.0875835i
\(169\) −12.8583 1.91442i −0.989097 0.147263i
\(170\) 3.66733 6.35200i 0.281271 0.487176i
\(171\) 3.75869 14.0276i 0.287434 1.07272i
\(172\) −5.16678 8.94913i −0.393964 0.682365i
\(173\) −11.0561 + 19.1496i −0.840576 + 1.45592i 0.0488321 + 0.998807i \(0.484450\pi\)
−0.889408 + 0.457114i \(0.848883\pi\)
\(174\) −2.75402 2.75402i −0.208782 0.208782i
\(175\) 3.98965 1.89709i 0.301589 0.143406i
\(176\) 0.560683 + 0.560683i 0.0422631 + 0.0422631i
\(177\) −4.74386 + 1.27111i −0.356570 + 0.0955427i
\(178\) 5.19582 2.99981i 0.389443 0.224845i
\(179\) −6.98924 + 4.03524i −0.522400 + 0.301608i −0.737916 0.674893i \(-0.764190\pi\)
0.215516 + 0.976500i \(0.430857\pi\)
\(180\) 1.83037 + 6.83105i 0.136428 + 0.509157i
\(181\) −20.5622 −1.52838 −0.764189 0.644993i \(-0.776860\pi\)
−0.764189 + 0.644993i \(0.776860\pi\)
\(182\) −7.32933 + 0.795835i −0.543286 + 0.0589912i
\(183\) −0.636594 −0.0470584
\(184\) −0.574275 2.14322i −0.0423361 0.158000i
\(185\) −9.87240 + 5.69983i −0.725833 + 0.419060i
\(186\) 1.92270 1.11007i 0.140979 0.0813945i
\(187\) 5.15245 1.38059i 0.376784 0.100959i
\(188\) 2.23767 + 2.23767i 0.163199 + 0.163199i
\(189\) −0.591620 + 7.40356i −0.0430340 + 0.538530i
\(190\) −5.24227 5.24227i −0.380314 0.380314i
\(191\) 6.91909 11.9842i 0.500647 0.867147i −0.499352 0.866399i \(-0.666429\pi\)
1.00000 0.000747762i \(-0.000238020\pi\)
\(192\) −0.725917 1.25733i −0.0523885 0.0907396i
\(193\) 6.31692 23.5751i 0.454702 1.69697i −0.234260 0.972174i \(-0.575267\pi\)
0.688962 0.724797i \(-0.258067\pi\)
\(194\) 1.36157 2.35830i 0.0977547 0.169316i
\(195\) 2.09291 + 2.42759i 0.149876 + 0.173843i
\(196\) 9.17529 3.49680i 0.655378 0.249771i
\(197\) −14.3424 + 14.3424i −1.02185 + 1.02185i −0.0220979 + 0.999756i \(0.507035\pi\)
−0.999756 + 0.0220979i \(0.992965\pi\)
\(198\) 1.09499 1.89658i 0.0778177 0.134784i
\(199\) 7.40801 + 12.8310i 0.525140 + 0.909569i 0.999571 + 0.0292766i \(0.00932035\pi\)
−0.474431 + 0.880292i \(0.657346\pi\)
\(200\) −4.24139 1.13648i −0.299912 0.0803611i
\(201\) 2.02654 0.543011i 0.142941 0.0383010i
\(202\) 1.32998 1.32998i 0.0935770 0.0935770i
\(203\) −27.2843 2.18030i −1.91498 0.153027i
\(204\) 3.55361 0.248803
\(205\) 0.207354 + 0.119716i 0.0144822 + 0.00836131i
\(206\) 2.04270 + 0.547339i 0.142321 + 0.0381349i
\(207\) 2.01870 1.16550i 0.140310 0.0810078i
\(208\) −2.30440 1.56808i −0.159781 0.108727i
\(209\) 5.39169i 0.372951i
\(210\) 1.49678 + 1.03136i 0.103288 + 0.0711706i
\(211\) 6.98585 0.480925 0.240463 0.970658i \(-0.422701\pi\)
0.240463 + 0.970658i \(0.422701\pi\)
\(212\) 8.22632 + 4.74947i 0.564986 + 0.326195i
\(213\) 1.07408 4.00850i 0.0735944 0.274658i
\(214\) −1.68432 0.451312i −0.115138 0.0308510i
\(215\) −3.47948 12.9856i −0.237299 0.885611i
\(216\) 5.22004 5.22004i 0.355179 0.355179i
\(217\) 5.22588 14.7013i 0.354756 0.997988i
\(218\) 1.25863i 0.0852451i
\(219\) −5.33841 + 1.43042i −0.360736 + 0.0966590i
\(220\) 1.31280 + 2.27383i 0.0885088 + 0.153302i
\(221\) −16.8867 + 8.15093i −1.13592 + 0.548291i
\(222\) 2.03667 + 1.17587i 0.136692 + 0.0789193i
\(223\) −19.4291 19.4291i −1.30107 1.30107i −0.927669 0.373403i \(-0.878191\pi\)
−0.373403 0.927669i \(-0.621809\pi\)
\(224\) −14.6010 5.19023i −0.975571 0.346787i
\(225\) 4.61300i 0.307533i
\(226\) 0.526521 + 1.96500i 0.0350237 + 0.130710i
\(227\) −0.0182238 + 0.0680123i −0.00120956 + 0.00451413i −0.966528 0.256561i \(-0.917410\pi\)
0.965318 + 0.261075i \(0.0840771\pi\)
\(228\) 0.929654 3.46952i 0.0615678 0.229774i
\(229\) 1.41486 + 5.28034i 0.0934968 + 0.348935i 0.996787 0.0800948i \(-0.0255223\pi\)
−0.903290 + 0.429030i \(0.858856\pi\)
\(230\) 1.18997i 0.0784643i
\(231\) 0.239345 + 1.30010i 0.0157477 + 0.0855404i
\(232\) 19.2374 + 19.2374i 1.26300 + 1.26300i
\(233\) −0.913139 0.527201i −0.0598217 0.0345381i 0.469791 0.882778i \(-0.344329\pi\)
−0.529613 + 0.848240i \(0.677663\pi\)
\(234\) −2.53605 + 7.26858i −0.165787 + 0.475162i
\(235\) 2.05849 + 3.56541i 0.134281 + 0.232582i
\(236\) 13.6601 3.66022i 0.889200 0.238260i
\(237\) 5.02955i 0.326705i
\(238\) −8.09432 + 6.89641i −0.524677 + 0.447028i
\(239\) 18.6963 18.6963i 1.20936 1.20936i 0.238127 0.971234i \(-0.423467\pi\)
0.971234 0.238127i \(-0.0765333\pi\)
\(240\) 0.177868 + 0.663811i 0.0114813 + 0.0428488i
\(241\) −9.46683 2.53663i −0.609812 0.163399i −0.0593200 0.998239i \(-0.518893\pi\)
−0.550492 + 0.834840i \(0.685560\pi\)
\(242\) −1.98984 + 7.42620i −0.127912 + 0.477374i
\(243\) 10.2129 + 5.89643i 0.655159 + 0.378256i
\(244\) 1.83310 0.117352
\(245\) 12.7075 1.30476i 0.811852 0.0833579i
\(246\) 0.0493945i 0.00314928i
\(247\) 3.54034 + 18.6194i 0.225266 + 1.18473i
\(248\) −13.4305 + 7.75408i −0.852835 + 0.492384i
\(249\) −2.77470 0.743478i −0.175839 0.0471160i
\(250\) −8.14644 4.70335i −0.515226 0.297466i
\(251\) 24.9249 1.57325 0.786623 0.617434i \(-0.211828\pi\)
0.786623 + 0.617434i \(0.211828\pi\)
\(252\) 0.816722 10.2205i 0.0514486 0.643830i
\(253\) 0.611943 0.611943i 0.0384726 0.0384726i
\(254\) 8.81656 2.36239i 0.553200 0.148230i
\(255\) 4.46562 + 1.19656i 0.279648 + 0.0749315i
\(256\) 6.61680 + 11.4606i 0.413550 + 0.716289i
\(257\) 1.98118 3.43150i 0.123583 0.214051i −0.797595 0.603193i \(-0.793895\pi\)
0.921178 + 0.389142i \(0.127228\pi\)
\(258\) −1.96111 + 1.96111i −0.122093 + 0.122093i
\(259\) 16.2542 2.99234i 1.00998 0.185935i
\(260\) −6.02662 6.99033i −0.373755 0.433522i
\(261\) −14.2906 + 24.7520i −0.884565 + 1.53211i
\(262\) 3.08974 11.5311i 0.190885 0.712392i
\(263\) 15.4634 + 26.7834i 0.953516 + 1.65154i 0.737729 + 0.675097i \(0.235898\pi\)
0.215787 + 0.976440i \(0.430768\pi\)
\(264\) 0.656978 1.13792i 0.0404342 0.0700341i
\(265\) 8.73832 + 8.73832i 0.536791 + 0.536791i
\(266\) 4.61566 + 9.70692i 0.283004 + 0.595169i
\(267\) 2.67403 + 2.67403i 0.163648 + 0.163648i
\(268\) −5.83552 + 1.56362i −0.356461 + 0.0955134i
\(269\) 9.53617 5.50571i 0.581430 0.335689i −0.180271 0.983617i \(-0.557698\pi\)
0.761702 + 0.647928i \(0.224364\pi\)
\(270\) 3.42872 1.97957i 0.208665 0.120473i
\(271\) −1.29641 4.83826i −0.0787511 0.293903i 0.915307 0.402758i \(-0.131948\pi\)
−0.994058 + 0.108855i \(0.965282\pi\)
\(272\) −4.02037 −0.243771
\(273\) −1.68023 4.33255i −0.101692 0.262218i
\(274\) −0.792211 −0.0478592
\(275\) −0.443265 1.65429i −0.0267299 0.0997574i
\(276\) 0.499295 0.288268i 0.0300540 0.0173517i
\(277\) −10.5720 + 6.10374i −0.635209 + 0.366738i −0.782767 0.622315i \(-0.786192\pi\)
0.147558 + 0.989053i \(0.452859\pi\)
\(278\) −8.51223 + 2.28085i −0.510530 + 0.136796i
\(279\) −11.5203 11.5203i −0.689702 0.689702i
\(280\) −10.4553 7.20426i −0.624826 0.430537i
\(281\) −12.8351 12.8351i −0.765677 0.765677i 0.211665 0.977342i \(-0.432111\pi\)
−0.977342 + 0.211665i \(0.932111\pi\)
\(282\) 0.424665 0.735541i 0.0252884 0.0438008i
\(283\) −8.44961 14.6351i −0.502277 0.869969i −0.999997 0.00263116i \(-0.999162\pi\)
0.497720 0.867338i \(-0.334171\pi\)
\(284\) −3.09285 + 11.5427i −0.183527 + 0.684931i
\(285\) 2.33649 4.04691i 0.138401 0.239718i
\(286\) −0.211023 + 2.85031i −0.0124780 + 0.168542i
\(287\) −0.225125 0.264230i −0.0132887 0.0155970i
\(288\) −11.4417 + 11.4417i −0.674210 + 0.674210i
\(289\) −5.02302 + 8.70012i −0.295472 + 0.511772i
\(290\) 7.29531 + 12.6359i 0.428396 + 0.742003i
\(291\) 1.65795 + 0.444246i 0.0971906 + 0.0260421i
\(292\) 15.3722 4.11896i 0.899589 0.241044i
\(293\) 11.1183 11.1183i 0.649536 0.649536i −0.303345 0.952881i \(-0.598103\pi\)
0.952881 + 0.303345i \(0.0981033\pi\)
\(294\) −1.54388 2.13574i −0.0900410 0.124559i
\(295\) 18.3984 1.07120
\(296\) −14.2265 8.21369i −0.826900 0.477411i
\(297\) 2.78122 + 0.745226i 0.161383 + 0.0432424i
\(298\) 5.11227 2.95157i 0.296146 0.170980i
\(299\) −1.71144 + 2.51508i −0.0989751 + 0.145451i
\(300\) 1.14095i 0.0658730i
\(301\) −1.55256 + 19.4288i −0.0894882 + 1.11986i
\(302\) 5.29441 0.304659
\(303\) 1.02671 + 0.592773i 0.0589831 + 0.0340539i
\(304\) −1.05176 + 3.92523i −0.0603227 + 0.225127i
\(305\) 2.30355 + 0.617234i 0.131901 + 0.0353427i
\(306\) 2.87390 + 10.7255i 0.164290 + 0.613138i
\(307\) 14.6604 14.6604i 0.836715 0.836715i −0.151710 0.988425i \(-0.548478\pi\)
0.988425 + 0.151710i \(0.0484781\pi\)
\(308\) −0.689203 3.74370i −0.0392710 0.213317i
\(309\) 1.33296i 0.0758296i
\(310\) −8.03372 + 2.15263i −0.456285 + 0.122261i
\(311\) 5.35317 + 9.27196i 0.303550 + 0.525765i 0.976938 0.213525i \(-0.0684946\pi\)
−0.673387 + 0.739290i \(0.735161\pi\)
\(312\) −1.52159 + 4.36103i −0.0861430 + 0.246895i
\(313\) −9.30922 5.37468i −0.526188 0.303795i 0.213275 0.976992i \(-0.431587\pi\)
−0.739463 + 0.673197i \(0.764920\pi\)
\(314\) −7.02088 7.02088i −0.396211 0.396211i
\(315\) 4.46773 12.5685i 0.251728 0.708155i
\(316\) 14.4828i 0.814722i
\(317\) 3.03435 + 11.3244i 0.170426 + 0.636040i 0.997286 + 0.0736308i \(0.0234586\pi\)
−0.826859 + 0.562409i \(0.809875\pi\)
\(318\) 0.659837 2.46255i 0.0370018 0.138093i
\(319\) −2.74638 + 10.2496i −0.153768 + 0.573869i
\(320\) 1.40768 + 5.25354i 0.0786918 + 0.293682i
\(321\) 1.09910i 0.0613460i
\(322\) −0.577845 + 1.62558i −0.0322021 + 0.0905899i
\(323\) 19.3305 + 19.3305i 1.07558 + 1.07558i
\(324\) −8.40711 4.85385i −0.467062 0.269658i
\(325\) 2.61701 + 5.42179i 0.145165 + 0.300747i
\(326\) 0.379310 + 0.656983i 0.0210080 + 0.0363869i
\(327\) 0.766302 0.205330i 0.0423766 0.0113548i
\(328\) 0.345031i 0.0190511i
\(329\) −1.08068 5.87018i −0.0595799 0.323633i
\(330\) 0.498286 0.498286i 0.0274297 0.0274297i
\(331\) −7.01741 26.1893i −0.385712 1.43950i −0.837042 0.547138i \(-0.815717\pi\)
0.451331 0.892357i \(-0.350950\pi\)
\(332\) 7.98986 + 2.14088i 0.438500 + 0.117496i
\(333\) 4.46667 16.6698i 0.244772 0.913501i
\(334\) −8.75660 5.05563i −0.479140 0.276632i
\(335\) −7.85966 −0.429419
\(336\) 0.0793654 0.993182i 0.00432974 0.0541825i
\(337\) 20.5911i 1.12167i 0.827927 + 0.560835i \(0.189520\pi\)
−0.827927 + 0.560835i \(0.810480\pi\)
\(338\) −1.14286 9.98170i −0.0621634 0.542933i
\(339\) −1.11047 + 0.641133i −0.0603127 + 0.0348216i
\(340\) −12.8589 3.44554i −0.697374 0.186861i
\(341\) −5.23834 3.02436i −0.283672 0.163778i
\(342\) 11.2235 0.606899
\(343\) −17.9928 4.38832i −0.971523 0.236947i
\(344\) 13.6987 13.6987i 0.738585 0.738585i
\(345\) 0.724500 0.194129i 0.0390058 0.0104516i
\(346\) −16.5068 4.42298i −0.887411 0.237781i
\(347\) −7.48956 12.9723i −0.402061 0.696390i 0.591914 0.806001i \(-0.298373\pi\)
−0.993974 + 0.109612i \(0.965039\pi\)
\(348\) −3.53455 + 6.12202i −0.189472 + 0.328175i
\(349\) 3.25693 3.25693i 0.174340 0.174340i −0.614543 0.788883i \(-0.710660\pi\)
0.788883 + 0.614543i \(0.210660\pi\)
\(350\) 2.21422 + 2.59883i 0.118355 + 0.138913i
\(351\) −10.0939 0.747300i −0.538772 0.0398879i
\(352\) −3.00373 + 5.20261i −0.160099 + 0.277300i
\(353\) 1.44295 5.38517i 0.0768006 0.286624i −0.916835 0.399266i \(-0.869265\pi\)
0.993636 + 0.112643i \(0.0359315\pi\)
\(354\) −1.89779 3.28706i −0.100866 0.174705i
\(355\) −7.77320 + 13.4636i −0.412559 + 0.714573i
\(356\) −7.70000 7.70000i −0.408099 0.408099i
\(357\) −5.51929 3.80307i −0.292112 0.201280i
\(358\) −4.41035 4.41035i −0.233094 0.233094i
\(359\) −4.84968 + 1.29947i −0.255956 + 0.0685833i −0.384515 0.923119i \(-0.625631\pi\)
0.128559 + 0.991702i \(0.458965\pi\)
\(360\) −11.4820 + 6.62915i −0.605156 + 0.349387i
\(361\) 7.47558 4.31603i 0.393452 0.227159i
\(362\) −4.11297 15.3498i −0.216173 0.806768i
\(363\) −4.84597 −0.254348
\(364\) 4.83828 + 12.4758i 0.253595 + 0.653908i
\(365\) 20.7043 1.08371
\(366\) −0.127335 0.475221i −0.00665591 0.0248402i
\(367\) 2.66201 1.53691i 0.138956 0.0802262i −0.428910 0.903347i \(-0.641102\pi\)
0.567866 + 0.823121i \(0.307769\pi\)
\(368\) −0.564876 + 0.326131i −0.0294462 + 0.0170008i
\(369\) −0.350122 + 0.0938150i −0.0182266 + 0.00488382i
\(370\) −6.22969 6.22969i −0.323866 0.323866i
\(371\) −7.69382 16.1804i −0.399443 0.840045i
\(372\) −2.84937 2.84937i −0.147733 0.147733i
\(373\) −11.6754 + 20.2225i −0.604532 + 1.04708i 0.387594 + 0.921830i \(0.373306\pi\)
−0.992125 + 0.125249i \(0.960027\pi\)
\(374\) 2.06124 + 3.57018i 0.106584 + 0.184609i
\(375\) 1.53459 5.72716i 0.0792458 0.295749i
\(376\) −2.96637 + 5.13790i −0.152979 + 0.264967i
\(377\) 2.75402 37.1989i 0.141839 1.91584i
\(378\) −5.64513 + 1.03925i −0.290354 + 0.0534534i
\(379\) −1.97284 + 1.97284i −0.101338 + 0.101338i −0.755958 0.654620i \(-0.772829\pi\)
0.654620 + 0.755958i \(0.272829\pi\)
\(380\) −6.72801 + 11.6533i −0.345140 + 0.597799i
\(381\) 2.87663 + 4.98247i 0.147374 + 0.255260i
\(382\) 10.3303 + 2.76799i 0.528542 + 0.141623i
\(383\) 2.99094 0.801419i 0.152830 0.0409506i −0.181593 0.983374i \(-0.558125\pi\)
0.334423 + 0.942423i \(0.391459\pi\)
\(384\) −3.24152 + 3.24152i −0.165418 + 0.165418i
\(385\) 0.394481 4.93655i 0.0201046 0.251590i
\(386\) 18.8625 0.960074
\(387\) 17.6256 + 10.1761i 0.895960 + 0.517283i
\(388\) −4.77413 1.27922i −0.242370 0.0649427i
\(389\) −9.53607 + 5.50565i −0.483498 + 0.279148i −0.721873 0.692026i \(-0.756719\pi\)
0.238375 + 0.971173i \(0.423385\pi\)
\(390\) −1.39357 + 2.04795i −0.0705662 + 0.103702i
\(391\) 4.38793i 0.221907i
\(392\) 10.7843 + 14.9186i 0.544690 + 0.753501i
\(393\) 7.52462 0.379567
\(394\) −13.5755 7.83783i −0.683925 0.394864i
\(395\) 4.87660 18.1997i 0.245368 0.915727i
\(396\) −3.83943 1.02877i −0.192939 0.0516978i
\(397\) 9.91254 + 36.9941i 0.497496 + 1.85668i 0.515575 + 0.856845i \(0.327578\pi\)
−0.0180784 + 0.999837i \(0.505755\pi\)
\(398\) −8.09666 + 8.09666i −0.405849 + 0.405849i
\(399\) −5.15696 + 4.39376i −0.258171 + 0.219963i
\(400\) 1.29081i 0.0645407i
\(401\) 6.49711 1.74089i 0.324450 0.0869361i −0.0929177 0.995674i \(-0.529619\pi\)
0.417368 + 0.908738i \(0.362953\pi\)
\(402\) 0.810720 + 1.40421i 0.0404351 + 0.0700356i
\(403\) 20.0757 + 7.00454i 1.00004 + 0.348921i
\(404\) −2.95646 1.70691i −0.147089 0.0849222i
\(405\) −8.93036 8.93036i −0.443753 0.443753i
\(406\) −3.82995 20.8040i −0.190077 1.03248i
\(407\) 6.40725i 0.317595i
\(408\) 1.72429 + 6.43515i 0.0853652 + 0.318587i
\(409\) −8.81009 + 32.8797i −0.435631 + 1.62580i 0.303920 + 0.952697i \(0.401704\pi\)
−0.739552 + 0.673100i \(0.764962\pi\)
\(410\) −0.0478924 + 0.178737i −0.00236524 + 0.00882718i
\(411\) −0.129240 0.482329i −0.00637492 0.0237915i
\(412\) 3.83832i 0.189101i
\(413\) −25.1334 8.93419i −1.23673 0.439623i
\(414\) 1.27384 + 1.27384i 0.0626060 + 0.0626060i
\(415\) 9.31953 + 5.38063i 0.457478 + 0.264125i
\(416\) 6.95676 19.9388i 0.341083 0.977580i
\(417\) −2.77733 4.81048i −0.136007 0.235570i
\(418\) 4.02492 1.07848i 0.196865 0.0527499i
\(419\) 35.5515i 1.73680i 0.495862 + 0.868401i \(0.334852\pi\)
−0.495862 + 0.868401i \(0.665148\pi\)
\(420\) 1.10502 3.10862i 0.0539197 0.151685i
\(421\) −10.3166 + 10.3166i −0.502802 + 0.502802i −0.912308 0.409505i \(-0.865701\pi\)
0.409505 + 0.912308i \(0.365701\pi\)
\(422\) 1.39735 + 5.21497i 0.0680218 + 0.253861i
\(423\) −6.02029 1.61313i −0.292717 0.0784332i
\(424\) −4.60909 + 17.2014i −0.223837 + 0.835372i
\(425\) 7.52024 + 4.34181i 0.364785 + 0.210609i
\(426\) 3.20721 0.155390
\(427\) −2.84707 1.96178i −0.137780 0.0949371i
\(428\) 3.16492i 0.152982i
\(429\) −1.76980 + 0.336515i −0.0854469 + 0.0162471i
\(430\) 8.99784 5.19490i 0.433914 0.250520i
\(431\) 34.4920 + 9.24210i 1.66142 + 0.445176i 0.962778 0.270294i \(-0.0871210\pi\)
0.698643 + 0.715471i \(0.253788\pi\)
\(432\) −1.87940 1.08507i −0.0904226 0.0522055i
\(433\) 18.6845 0.897919 0.448959 0.893552i \(-0.351795\pi\)
0.448959 + 0.893552i \(0.351795\pi\)
\(434\) 12.0199 + 0.960513i 0.576974 + 0.0461061i
\(435\) −6.50305 + 6.50305i −0.311798 + 0.311798i
\(436\) −2.20660 + 0.591256i −0.105677 + 0.0283160i
\(437\) 4.28409 + 1.14792i 0.204936 + 0.0549124i
\(438\) −2.13564 3.69903i −0.102045 0.176747i
\(439\) 11.9158 20.6388i 0.568712 0.985038i −0.427982 0.903787i \(-0.640775\pi\)
0.996694 0.0812508i \(-0.0258915\pi\)
\(440\) −3.48063 + 3.48063i −0.165932 + 0.165932i
\(441\) −12.2064 + 14.9999i −0.581259 + 0.714280i
\(442\) −9.46248 10.9756i −0.450084 0.522057i
\(443\) 11.6908 20.2490i 0.555445 0.962059i −0.442424 0.896806i \(-0.645881\pi\)
0.997869 0.0652531i \(-0.0207855\pi\)
\(444\) 1.10476 4.12302i 0.0524296 0.195670i
\(445\) −7.08343 12.2689i −0.335787 0.581600i
\(446\) 10.6176 18.3903i 0.502760 0.870805i
\(447\) 2.63104 + 2.63104i 0.124444 + 0.124444i
\(448\) 0.628114 7.86025i 0.0296756 0.371362i
\(449\) −17.6188 17.6188i −0.831482 0.831482i 0.156237 0.987720i \(-0.450063\pi\)
−0.987720 + 0.156237i \(0.950063\pi\)
\(450\) 3.44363 0.922717i 0.162334 0.0434973i
\(451\) −0.116544 + 0.0672869i −0.00548786 + 0.00316842i
\(452\) 3.19766 1.84617i 0.150405 0.0868365i
\(453\) 0.863719 + 3.22344i 0.0405810 + 0.151451i
\(454\) −0.0544168 −0.00255391
\(455\) 1.87920 + 17.3067i 0.0880982 + 0.811351i
\(456\) 6.73394 0.315346
\(457\) 1.04994 + 3.91842i 0.0491140 + 0.183296i 0.986125 0.166003i \(-0.0530863\pi\)
−0.937011 + 0.349299i \(0.886420\pi\)
\(458\) −3.65879 + 2.11241i −0.170964 + 0.0987062i
\(459\) −12.6432 + 7.29954i −0.590133 + 0.340713i
\(460\) −2.08623 + 0.559003i −0.0972709 + 0.0260637i
\(461\) 7.54874 + 7.54874i 0.351580 + 0.351580i 0.860697 0.509117i \(-0.170028\pi\)
−0.509117 + 0.860697i \(0.670028\pi\)
\(462\) −0.922657 + 0.438726i −0.0429259 + 0.0204114i
\(463\) 13.5419 + 13.5419i 0.629344 + 0.629344i 0.947903 0.318559i \(-0.103199\pi\)
−0.318559 + 0.947903i \(0.603199\pi\)
\(464\) 3.99881 6.92614i 0.185640 0.321538i
\(465\) −2.62121 4.54006i −0.121556 0.210540i
\(466\) 0.210907 0.787117i 0.00977009 0.0364625i
\(467\) 18.0634 31.2867i 0.835873 1.44777i −0.0574445 0.998349i \(-0.518295\pi\)
0.893318 0.449426i \(-0.148371\pi\)
\(468\) 13.9344 + 1.03164i 0.644120 + 0.0476874i
\(469\) 10.7368 + 3.81662i 0.495780 + 0.176235i
\(470\) −2.24985 + 2.24985i −0.103778 + 0.103778i
\(471\) 3.12921 5.41995i 0.144186 0.249738i
\(472\) 13.2564 + 22.9608i 0.610176 + 1.05686i
\(473\) 7.29863 + 1.95566i 0.335591 + 0.0899215i
\(474\) −3.75459 + 1.00604i −0.172454 + 0.0462089i
\(475\) 6.20642 6.20642i 0.284770 0.284770i
\(476\) 15.8930 + 10.9511i 0.728456 + 0.501943i
\(477\) −18.7085 −0.856601
\(478\) 17.6966 + 10.2171i 0.809423 + 0.467321i
\(479\) −31.8868 8.54403i −1.45694 0.390387i −0.558510 0.829498i \(-0.688627\pi\)
−0.898433 + 0.439111i \(0.855293\pi\)
\(480\) −4.50910 + 2.60333i −0.205811 + 0.118825i
\(481\) 4.20718 + 22.1265i 0.191831 + 1.00888i
\(482\) 7.57443i 0.345006i
\(483\) −1.08398 0.0866213i −0.0493229 0.00394141i
\(484\) 13.9542 0.634281
\(485\) −5.56864 3.21505i −0.252859 0.145988i
\(486\) −2.35887 + 8.80344i −0.107001 + 0.399332i
\(487\) 5.97348 + 1.60059i 0.270684 + 0.0725297i 0.391608 0.920132i \(-0.371919\pi\)
−0.120924 + 0.992662i \(0.538586\pi\)
\(488\) 0.889460 + 3.31951i 0.0402640 + 0.150267i
\(489\) −0.338117 + 0.338117i −0.0152902 + 0.0152902i
\(490\) 3.51583 + 9.22522i 0.158829 + 0.416753i
\(491\) 33.4149i 1.50799i 0.656879 + 0.753996i \(0.271876\pi\)
−0.656879 + 0.753996i \(0.728124\pi\)
\(492\) −0.0865973 + 0.0232037i −0.00390411 + 0.00104610i
\(493\) −26.9010 46.5938i −1.21156 2.09848i
\(494\) −13.1913 + 6.36724i −0.593506 + 0.286476i
\(495\) −4.47839 2.58560i −0.201289 0.116214i
\(496\) 3.22362 + 3.22362i 0.144745 + 0.144745i
\(497\) 17.1566 14.6175i 0.769577 0.655684i
\(498\) 2.22004i 0.0994824i
\(499\) −3.84639 14.3549i −0.172188 0.642615i −0.997013 0.0772276i \(-0.975393\pi\)
0.824825 0.565388i \(-0.191273\pi\)
\(500\) −4.41891 + 16.4916i −0.197620 + 0.737527i
\(501\) 1.64953 6.15612i 0.0736955 0.275035i
\(502\) 4.98561 + 18.6066i 0.222519 + 0.830452i
\(503\) 24.9299i 1.11157i 0.831327 + 0.555784i \(0.187582\pi\)
−0.831327 + 0.555784i \(0.812418\pi\)
\(504\) 18.9043 3.48023i 0.842065 0.155022i
\(505\) −3.14047 3.14047i −0.139749 0.139749i
\(506\) 0.579223 + 0.334415i 0.0257496 + 0.0148665i
\(507\) 5.89080 2.32421i 0.261620 0.103222i
\(508\) −8.28337 14.3472i −0.367515 0.636555i
\(509\) 1.84025 0.493093i 0.0815676 0.0218560i −0.217804 0.975992i \(-0.569890\pi\)
0.299372 + 0.954136i \(0.403223\pi\)
\(510\) 3.57295i 0.158213i
\(511\) −28.2834 10.0539i −1.25118 0.444759i
\(512\) 6.07668 6.07668i 0.268554 0.268554i
\(513\) 3.81924 + 14.2536i 0.168623 + 0.629311i
\(514\) 2.95792 + 0.792573i 0.130468 + 0.0349589i
\(515\) 1.29243 4.82340i 0.0569511 0.212545i
\(516\) 4.35942 + 2.51691i 0.191913 + 0.110801i
\(517\) −2.31397 −0.101768
\(518\) 5.48505 + 11.5353i 0.240999 + 0.506831i
\(519\) 10.7715i 0.472818i
\(520\) 9.73436 14.3053i 0.426880 0.627330i
\(521\) 9.41368 5.43499i 0.412421 0.238111i −0.279409 0.960172i \(-0.590138\pi\)
0.691829 + 0.722061i \(0.256805\pi\)
\(522\) −21.3360 5.71696i −0.933851 0.250225i
\(523\) −20.2470 11.6896i −0.885339 0.511151i −0.0129241 0.999916i \(-0.504114\pi\)
−0.872415 + 0.488766i \(0.837447\pi\)
\(524\) −21.6675 −0.946547
\(525\) −1.22105 + 1.77207i −0.0532908 + 0.0773394i
\(526\) −16.9009 + 16.9009i −0.736914 + 0.736914i
\(527\) 29.6238 7.93767i 1.29043 0.345770i
\(528\) −0.373099 0.0999715i −0.0162370 0.00435070i
\(529\) −11.1441 19.3021i −0.484524 0.839220i
\(530\) −4.77531 + 8.27109i −0.207426 + 0.359273i
\(531\) −19.6952 + 19.6952i −0.854697 + 0.854697i
\(532\) 14.8497 12.6520i 0.643815 0.548534i
\(533\) 0.358286 0.308892i 0.0155191 0.0133796i
\(534\) −1.46131 + 2.53106i −0.0632369 + 0.109530i
\(535\) −1.06568 + 3.97717i −0.0460733 + 0.171948i
\(536\) −5.66304 9.80868i −0.244606 0.423670i
\(537\) 1.96570 3.40469i 0.0848261 0.146923i
\(538\) 6.01752 + 6.01752i 0.259434 + 0.259434i
\(539\) −2.93606 + 6.55210i −0.126465 + 0.282219i
\(540\) −5.08123 5.08123i −0.218661 0.218661i
\(541\) 6.56763 1.75979i 0.282364 0.0756593i −0.114857 0.993382i \(-0.536641\pi\)
0.397222 + 0.917723i \(0.369974\pi\)
\(542\) 3.35247 1.93555i 0.144001 0.0831390i
\(543\) 8.67457 5.00827i 0.372261 0.214925i
\(544\) −7.88353 29.4217i −0.338003 1.26145i
\(545\) −2.97199 −0.127306
\(546\) 2.89818 2.12092i 0.124031 0.0907669i
\(547\) −14.2303 −0.608446 −0.304223 0.952601i \(-0.598397\pi\)
−0.304223 + 0.952601i \(0.598397\pi\)
\(548\) 0.372151 + 1.38889i 0.0158975 + 0.0593303i
\(549\) −3.12665 + 1.80517i −0.133442 + 0.0770429i
\(550\) 1.14627 0.661800i 0.0488772 0.0282192i
\(551\) −52.5287 + 14.0750i −2.23780 + 0.599616i
\(552\) 0.764286 + 0.764286i 0.0325302 + 0.0325302i
\(553\) −15.4995 + 22.4939i −0.659104 + 0.956540i
\(554\) −6.67114 6.67114i −0.283429 0.283429i
\(555\) 2.77658 4.80917i 0.117859 0.204138i
\(556\) 7.99745 + 13.8520i 0.339167 + 0.587455i
\(557\) 2.09892 7.83328i 0.0889342 0.331907i −0.907096 0.420924i \(-0.861706\pi\)
0.996030 + 0.0890171i \(0.0283726\pi\)
\(558\) 6.29561 10.9043i 0.266514 0.461617i
\(559\) −26.4889 1.96111i −1.12036 0.0829459i
\(560\) −1.25017 + 3.51693i −0.0528292 + 0.148617i
\(561\) −1.83739 + 1.83739i −0.0775749 + 0.0775749i
\(562\) 7.01412 12.1488i 0.295873 0.512467i
\(563\) −17.7523 30.7479i −0.748170 1.29587i −0.948699 0.316181i \(-0.897599\pi\)
0.200529 0.979688i \(-0.435734\pi\)
\(564\) −1.48902 0.398983i −0.0626992 0.0168002i
\(565\) 4.63995 1.24327i 0.195204 0.0523048i
\(566\) 9.23508 9.23508i 0.388179 0.388179i
\(567\) 7.86291 + 16.5360i 0.330211 + 0.694447i
\(568\) −22.4030 −0.940009
\(569\) −27.4931 15.8731i −1.15257 0.665437i −0.203058 0.979167i \(-0.565088\pi\)
−0.949512 + 0.313730i \(0.898421\pi\)
\(570\) 3.48840 + 0.934713i 0.146113 + 0.0391508i
\(571\) −7.15860 + 4.13302i −0.299578 + 0.172961i −0.642253 0.766492i \(-0.722000\pi\)
0.342675 + 0.939454i \(0.388667\pi\)
\(572\) 5.09623 0.969008i 0.213084 0.0405162i
\(573\) 6.74103i 0.281611i
\(574\) 0.152218 0.220910i 0.00635346 0.00922060i
\(575\) 1.40883 0.0587521
\(576\) −7.13073 4.11693i −0.297114 0.171539i
\(577\) −0.871473 + 3.25238i −0.0362799 + 0.135398i −0.981690 0.190483i \(-0.938994\pi\)
0.945411 + 0.325882i \(0.105661\pi\)
\(578\) −7.49942 2.00946i −0.311935 0.0835826i
\(579\) 3.07718 + 11.4842i 0.127883 + 0.477267i
\(580\) 18.7258 18.7258i 0.777547 0.777547i
\(581\) −10.1183 11.8758i −0.419777 0.492692i
\(582\) 1.32653i 0.0549863i
\(583\) −6.70912 + 1.79770i −0.277864 + 0.0744533i
\(584\) 14.9178 + 25.8385i 0.617305 + 1.06920i
\(585\) 17.1632 + 5.98835i 0.709613 + 0.247588i
\(586\) 10.5238 + 6.07591i 0.434734 + 0.250994i
\(587\) 3.33097 + 3.33097i 0.137484 + 0.137484i 0.772499 0.635016i \(-0.219006\pi\)
−0.635016 + 0.772499i \(0.719006\pi\)
\(588\) −3.01907 + 3.70999i −0.124504 + 0.152997i
\(589\) 30.9993i 1.27730i
\(590\) 3.68014 + 13.7345i 0.151509 + 0.565440i
\(591\) 2.55729 9.54395i 0.105193 0.392586i
\(592\) −1.24987 + 4.66457i −0.0513692 + 0.191713i
\(593\) 3.89048 + 14.5195i 0.159763 + 0.596243i 0.998650 + 0.0519381i \(0.0165398\pi\)
−0.838888 + 0.544305i \(0.816793\pi\)
\(594\) 2.22526i 0.0913035i
\(595\) 16.2844 + 19.1131i 0.667597 + 0.783559i
\(596\) −7.57618 7.57618i −0.310332 0.310332i
\(597\) −6.25043 3.60869i −0.255813 0.147694i
\(598\) −2.21985 0.774518i −0.0907764 0.0316724i
\(599\) −3.63773 6.30073i −0.148633 0.257441i 0.782089 0.623167i \(-0.214154\pi\)
−0.930723 + 0.365726i \(0.880821\pi\)
\(600\) 2.06612 0.553616i 0.0843491 0.0226013i
\(601\) 2.83288i 0.115555i −0.998329 0.0577777i \(-0.981599\pi\)
0.998329 0.0577777i \(-0.0184015\pi\)
\(602\) −14.8143 + 2.72726i −0.603784 + 0.111155i
\(603\) 8.41363 8.41363i 0.342630 0.342630i
\(604\) −2.48711 9.28204i −0.101199 0.377681i
\(605\) 17.5354 + 4.69860i 0.712916 + 0.191025i
\(606\) −0.237139 + 0.885016i −0.00963313 + 0.0359513i
\(607\) −23.8592 13.7751i −0.968414 0.559114i −0.0696619 0.997571i \(-0.522192\pi\)
−0.898752 + 0.438456i \(0.855525\pi\)
\(608\) −30.7878 −1.24861
\(609\) 12.0415 5.72574i 0.487945 0.232019i
\(610\) 1.84308i 0.0746239i
\(611\) 7.99096 1.51942i 0.323280 0.0614692i
\(612\) 17.4537 10.0769i 0.705524 0.407334i
\(613\) 23.7405 + 6.36125i 0.958870 + 0.256928i 0.704122 0.710079i \(-0.251341\pi\)
0.254748 + 0.967008i \(0.418008\pi\)
\(614\) 13.8765 + 8.01163i 0.560012 + 0.323323i
\(615\) −0.116635 −0.00470318
\(616\) 6.44494 3.06458i 0.259674 0.123476i
\(617\) −10.3106 + 10.3106i −0.415090 + 0.415090i −0.883507 0.468417i \(-0.844824\pi\)
0.468417 + 0.883507i \(0.344824\pi\)
\(618\) −0.995064 + 0.266627i −0.0400274 + 0.0107253i
\(619\) 29.2803 + 7.84564i 1.17688 + 0.315343i 0.793686 0.608327i \(-0.208159\pi\)
0.383189 + 0.923670i \(0.374826\pi\)
\(620\) 7.54788 + 13.0733i 0.303130 + 0.525037i
\(621\) −1.18427 + 2.05122i −0.0475232 + 0.0823126i
\(622\) −5.85080 + 5.85080i −0.234596 + 0.234596i
\(623\) 3.71872 + 20.1998i 0.148987 + 0.809286i
\(624\) 1.35409 + 0.100250i 0.0542069 + 0.00401320i
\(625\) −6.93163 + 12.0059i −0.277265 + 0.480237i
\(626\) 2.15015 8.02445i 0.0859371 0.320722i
\(627\) 1.31323 + 2.27459i 0.0524455 + 0.0908383i
\(628\) −9.01070 + 15.6070i −0.359566 + 0.622786i
\(629\) 22.9715 + 22.9715i 0.915935 + 0.915935i
\(630\) 10.2761 + 0.821167i 0.409410 + 0.0327161i
\(631\) −9.56348 9.56348i −0.380716 0.380716i 0.490644 0.871360i \(-0.336762\pi\)
−0.871360 + 0.490644i \(0.836762\pi\)
\(632\) 26.2265 7.02738i 1.04324 0.279534i
\(633\) −2.94712 + 1.70152i −0.117137 + 0.0676293i
\(634\) −7.84675 + 4.53032i −0.311634 + 0.179922i
\(635\) −5.57829 20.8185i −0.221368 0.826156i
\(636\) −4.62724 −0.183482
\(637\) 5.83696 24.5546i 0.231269 0.972890i
\(638\) −8.20074 −0.324671
\(639\) −6.09146 22.7336i −0.240974 0.899329i
\(640\) 14.8726 8.58668i 0.587890 0.339418i
\(641\) 23.6472 13.6527i 0.934010 0.539251i 0.0459322 0.998945i \(-0.485374\pi\)
0.888077 + 0.459694i \(0.152041\pi\)
\(642\) 0.820487 0.219849i 0.0323820 0.00867674i
\(643\) 17.4331 + 17.4331i 0.687495 + 0.687495i 0.961678 0.274183i \(-0.0884073\pi\)
−0.274183 + 0.961678i \(0.588407\pi\)
\(644\) 3.12137 + 0.249430i 0.122999 + 0.00982891i
\(645\) 4.63075 + 4.63075i 0.182335 + 0.182335i
\(646\) −10.5637 + 18.2969i −0.415625 + 0.719883i
\(647\) 9.60708 + 16.6399i 0.377693 + 0.654184i 0.990726 0.135874i \(-0.0433841\pi\)
−0.613033 + 0.790057i \(0.710051\pi\)
\(648\) 4.71039 17.5794i 0.185042 0.690584i
\(649\) −5.17046 + 8.95549i −0.202958 + 0.351534i
\(650\) −3.52392 + 3.03810i −0.138220 + 0.119164i
\(651\) 1.37610 + 7.47487i 0.0539337 + 0.292963i
\(652\) 0.973622 0.973622i 0.0381300 0.0381300i
\(653\) 9.08140 15.7294i 0.355383 0.615541i −0.631801 0.775131i \(-0.717684\pi\)
0.987183 + 0.159590i \(0.0510173\pi\)
\(654\) 0.306560 + 0.530977i 0.0119874 + 0.0207628i
\(655\) −27.2283 7.29579i −1.06390 0.285070i
\(656\) 0.0979717 0.0262514i 0.00382515 0.00102495i
\(657\) −22.1636 + 22.1636i −0.864683 + 0.864683i
\(658\) 4.16595 1.98092i 0.162406 0.0772243i
\(659\) −36.6851 −1.42905 −0.714525 0.699610i \(-0.753357\pi\)
−0.714525 + 0.699610i \(0.753357\pi\)
\(660\) −1.10766 0.639507i −0.0431156 0.0248928i
\(661\) −2.43297 0.651913i −0.0946316 0.0253565i 0.211193 0.977444i \(-0.432265\pi\)
−0.305824 + 0.952088i \(0.598932\pi\)
\(662\) 18.1468 10.4771i 0.705296 0.407203i
\(663\) 5.13869 7.55166i 0.199570 0.293282i
\(664\) 15.5074i 0.601805i
\(665\) 22.9209 10.8989i 0.888834 0.422642i
\(666\) 13.3376 0.516820
\(667\) −7.55935 4.36440i −0.292699 0.168990i
\(668\) −4.74988 + 17.7268i −0.183779 + 0.685871i
\(669\) 12.9289 + 3.46428i 0.499858 + 0.133937i
\(670\) −1.57213 5.86727i −0.0607367 0.226673i
\(671\) −0.947803 + 0.947803i −0.0365895 + 0.0365895i
\(672\) 7.42389 1.36672i 0.286383 0.0527222i
\(673\) 3.52257i 0.135785i 0.997693 + 0.0678925i \(0.0216275\pi\)
−0.997693 + 0.0678925i \(0.978373\pi\)
\(674\) −15.3714 + 4.11875i −0.592084 + 0.158648i
\(675\) 2.34365 + 4.05932i 0.0902072 + 0.156243i
\(676\) −16.9628 + 6.69266i −0.652415 + 0.257410i
\(677\) 18.4439 + 10.6486i 0.708857 + 0.409259i 0.810638 0.585548i \(-0.199121\pi\)
−0.101781 + 0.994807i \(0.532454\pi\)
\(678\) −0.700732 0.700732i −0.0269115 0.0269115i
\(679\) 6.04591 + 7.09609i 0.232021 + 0.272323i
\(680\) 24.9578i 0.957087i
\(681\) −0.00887743 0.0331310i −0.000340184 0.00126958i
\(682\) 1.20990 4.51540i 0.0463293 0.172903i
\(683\) 0.523307 1.95301i 0.0200238 0.0747298i −0.955191 0.295990i \(-0.904350\pi\)
0.975215 + 0.221260i \(0.0710171\pi\)
\(684\) −5.27239 19.6768i −0.201595 0.752363i
\(685\) 1.87064i 0.0714736i
\(686\) −0.323121 14.3095i −0.0123368 0.546340i
\(687\) −1.88300 1.88300i −0.0718410 0.0718410i
\(688\) −4.93202 2.84750i −0.188031 0.108560i
\(689\) 21.9886 10.6135i 0.837698 0.404343i
\(690\) 0.289837 + 0.502012i 0.0110339 + 0.0191113i
\(691\) −1.22886 + 0.329271i −0.0467479 + 0.0125261i −0.282117 0.959380i \(-0.591037\pi\)
0.235369 + 0.971906i \(0.424370\pi\)
\(692\) 31.0171i 1.17909i
\(693\) 4.86221 + 5.70679i 0.184700 + 0.216783i
\(694\) 8.18579 8.18579i 0.310728 0.310728i
\(695\) 5.38575 + 20.0999i 0.204293 + 0.762432i
\(696\) −12.8013 3.43009i −0.485230 0.130017i
\(697\) 0.176600 0.659080i 0.00668920 0.0249644i
\(698\) 3.08279 + 1.77985i 0.116685 + 0.0673683i
\(699\) 0.513634 0.0194274
\(700\) 3.51605 5.10275i 0.132894 0.192866i
\(701\) 2.12113i 0.0801138i 0.999197 + 0.0400569i \(0.0127539\pi\)
−0.999197 + 0.0400569i \(0.987246\pi\)
\(702\) −1.46117 7.68462i −0.0551483 0.290037i
\(703\) 28.4374 16.4184i 1.07254 0.619230i
\(704\) −2.95278 0.791196i −0.111287 0.0298193i
\(705\) −1.73683 1.00276i −0.0654127 0.0377660i
\(706\) 4.30869 0.162160
\(707\) 2.76509 + 5.81509i 0.103992 + 0.218699i
\(708\) −4.87129 + 4.87129i −0.183074 + 0.183074i
\(709\) 1.35323 0.362596i 0.0508214 0.0136176i −0.233319 0.972400i \(-0.574959\pi\)
0.284140 + 0.958783i \(0.408292\pi\)
\(710\) −11.6055 3.10968i −0.435546 0.116704i
\(711\) 14.2622 + 24.7028i 0.534873 + 0.926428i
\(712\) 10.2075 17.6799i 0.382543 0.662583i
\(713\) 3.51834 3.51834i 0.131763 0.131763i
\(714\) 1.73501 4.88089i 0.0649312 0.182663i
\(715\) 6.73041 + 0.498286i 0.251703 + 0.0186348i
\(716\) −5.66031 + 9.80394i −0.211536 + 0.366390i
\(717\) −3.33360 + 12.4412i −0.124496 + 0.464624i
\(718\) −1.94012 3.36038i −0.0724046 0.125408i
\(719\) −16.5251 + 28.6223i −0.616281 + 1.06743i 0.373877 + 0.927478i \(0.378028\pi\)
−0.990158 + 0.139952i \(0.955305\pi\)
\(720\) 2.75596 + 2.75596i 0.102708 + 0.102708i
\(721\) −4.10777 + 5.96149i −0.152981 + 0.222017i
\(722\) 4.71725 + 4.71725i 0.175558 + 0.175558i
\(723\) 4.61161 1.23568i 0.171507 0.0459553i
\(724\) −24.9788 + 14.4215i −0.928329 + 0.535971i
\(725\) −14.9598 + 8.63705i −0.555593 + 0.320772i
\(726\) −0.969318 3.61755i −0.0359748 0.134260i
\(727\) 33.8896 1.25689 0.628447 0.777852i \(-0.283691\pi\)
0.628447 + 0.777852i \(0.283691\pi\)
\(728\) −20.2444 + 14.8150i −0.750307 + 0.549082i
\(729\) 15.0172 0.556192
\(730\) 4.14138 + 15.4558i 0.153279 + 0.572046i
\(731\) −33.1789 + 19.1558i −1.22717 + 0.708504i
\(732\) −0.773329 + 0.446481i −0.0285830 + 0.0165024i
\(733\) 38.0411 10.1931i 1.40508 0.376490i 0.524913 0.851156i \(-0.324098\pi\)
0.880166 + 0.474666i \(0.157431\pi\)
\(734\) 1.67978 + 1.67978i 0.0620020 + 0.0620020i
\(735\) −5.04311 + 3.64556i −0.186018 + 0.134468i
\(736\) −3.49434 3.49434i −0.128803 0.128803i
\(737\) 2.20878 3.82572i 0.0813615 0.140922i
\(738\) −0.140067 0.242603i −0.00515593 0.00893034i
\(739\) −9.75398 + 36.4024i −0.358806 + 1.33908i 0.516820 + 0.856094i \(0.327115\pi\)
−0.875627 + 0.482989i \(0.839551\pi\)
\(740\) −7.99527 + 13.8482i −0.293912 + 0.509070i
\(741\) −6.02863 6.99266i −0.221467 0.256882i
\(742\) 10.5398 8.97997i 0.386928 0.329665i
\(743\) −31.2340 + 31.2340i −1.14587 + 1.14587i −0.158508 + 0.987358i \(0.550668\pi\)
−0.987358 + 0.158508i \(0.949332\pi\)
\(744\) 3.77727 6.54242i 0.138481 0.239857i
\(745\) −6.96952 12.0716i −0.255344 0.442268i
\(746\) −17.4316 4.67077i −0.638215 0.171009i
\(747\) −15.7363 + 4.21652i −0.575760 + 0.154275i
\(748\) 5.29086 5.29086i 0.193453 0.193453i
\(749\) 3.38709 4.91559i 0.123762 0.179612i
\(750\) 4.58231 0.167322
\(751\) 15.6656 + 9.04454i 0.571646 + 0.330040i 0.757806 0.652479i \(-0.226271\pi\)
−0.186161 + 0.982519i \(0.559604\pi\)
\(752\) 1.68460 + 0.451388i 0.0614312 + 0.0164604i
\(753\) −10.5151 + 6.07087i −0.383190 + 0.221235i
\(754\) 28.3201 5.38484i 1.03136 0.196104i
\(755\) 12.5017i 0.454982i
\(756\) 4.47386 + 9.40871i 0.162713 + 0.342192i
\(757\) 4.04733 0.147103 0.0735514 0.997291i \(-0.476567\pi\)
0.0735514 + 0.997291i \(0.476567\pi\)
\(758\) −1.86735 1.07812i −0.0678254 0.0391590i
\(759\) −0.109111 + 0.407209i −0.00396049 + 0.0147808i
\(760\) −24.3671 6.52916i −0.883889 0.236837i
\(761\) −9.92634 37.0456i −0.359830 1.34290i −0.874296 0.485392i \(-0.838677\pi\)
0.514467 0.857510i \(-0.327990\pi\)
\(762\) −3.14404 + 3.14404i −0.113897 + 0.113897i
\(763\) 4.05993 + 1.44319i 0.146979 + 0.0522469i
\(764\) 19.4111i 0.702268i
\(765\) 25.3261 6.78611i 0.915667 0.245352i
\(766\) 1.19653 + 2.07245i 0.0432323 + 0.0748805i
\(767\) 11.9750 34.3216i 0.432392 1.23928i
\(768\) −5.58285 3.22326i −0.201454 0.116309i
\(769\) −24.8051 24.8051i −0.894496 0.894496i 0.100446 0.994942i \(-0.467973\pi\)
−0.994942 + 0.100446i \(0.967973\pi\)
\(770\) 3.76407 0.692954i 0.135648 0.0249723i
\(771\) 1.93020i 0.0695143i
\(772\) −8.86087 33.0692i −0.318910 1.19019i
\(773\) 7.79813 29.1030i 0.280479 1.04676i −0.671600 0.740914i \(-0.734393\pi\)