Properties

Label 91.2.bb.a.47.7
Level $91$
Weight $2$
Character 91.47
Analytic conductor $0.727$
Analytic rank $0$
Dimension $32$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 91 = 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 91.bb (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.726638658394\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(8\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 47.7
Character \(\chi\) \(=\) 91.47
Dual form 91.2.bb.a.31.7

$q$-expansion

\(f(q)\) \(=\) \(q+(1.53492 - 0.411280i) q^{2} +(0.436133 - 0.251802i) q^{3} +(0.454770 - 0.262561i) q^{4} +(-0.0206096 - 0.0769162i) q^{5} +(0.565867 - 0.565867i) q^{6} +(-2.16435 - 1.52171i) q^{7} +(-1.65723 + 1.65723i) q^{8} +(-1.37319 + 2.37844i) q^{9} +O(q^{10})\) \(q+(1.53492 - 0.411280i) q^{2} +(0.436133 - 0.251802i) q^{3} +(0.454770 - 0.262561i) q^{4} +(-0.0206096 - 0.0769162i) q^{5} +(0.565867 - 0.565867i) q^{6} +(-2.16435 - 1.52171i) q^{7} +(-1.65723 + 1.65723i) q^{8} +(-1.37319 + 2.37844i) q^{9} +(-0.0632682 - 0.109584i) q^{10} +(4.08225 + 1.09384i) q^{11} +(0.132227 - 0.229023i) q^{12} +(-0.565867 - 3.56087i) q^{13} +(-3.94794 - 1.44555i) q^{14} +(-0.0283562 - 0.0283562i) q^{15} +(-2.38725 + 4.13483i) q^{16} +(-2.90357 - 5.02912i) q^{17} +(-1.12953 + 4.21547i) q^{18} +(1.36980 + 5.11216i) q^{19} +(-0.0295679 - 0.0295679i) q^{20} +(-1.32711 - 0.118683i) q^{21} +6.71579 q^{22} +(-0.755405 - 0.436133i) q^{23} +(-0.305479 + 1.14006i) q^{24} +(4.32464 - 2.49683i) q^{25} +(-2.33307 - 5.23291i) q^{26} +2.89390i q^{27} +(-1.38382 - 0.123754i) q^{28} +0.362759 q^{29} +(-0.0551867 - 0.0318621i) q^{30} +(-1.34748 - 0.361057i) q^{31} +(-0.750478 + 2.80082i) q^{32} +(2.05583 - 0.550859i) q^{33} +(-6.52511 - 6.52511i) q^{34} +(-0.0724379 + 0.197835i) q^{35} +1.44219i q^{36} +(1.00978 + 3.76857i) q^{37} +(4.20506 + 7.28338i) q^{38} +(-1.14343 - 1.41053i) q^{39} +(0.161623 + 0.0933128i) q^{40} +(7.70995 - 7.70995i) q^{41} +(-2.08582 + 0.363646i) q^{42} -2.65570i q^{43} +(2.14368 - 0.574398i) q^{44} +(0.211242 + 0.0566020i) q^{45} +(-1.33886 - 0.358745i) q^{46} +(-2.79467 + 0.748829i) q^{47} +2.40445i q^{48} +(2.36879 + 6.58702i) q^{49} +(5.61106 - 5.61106i) q^{50} +(-2.53268 - 1.46224i) q^{51} +(-1.19229 - 1.47080i) q^{52} +(-5.26830 - 9.12497i) q^{53} +(1.19020 + 4.44189i) q^{54} -0.336535i q^{55} +(6.10864 - 1.06499i) q^{56} +(1.88467 + 1.88467i) q^{57} +(0.556806 - 0.149196i) q^{58} +(-0.573890 + 2.14179i) q^{59} +(-0.0203408 - 0.00545029i) q^{60} +(3.63628 + 2.09941i) q^{61} -2.21677 q^{62} +(6.59136 - 3.05816i) q^{63} -4.94130i q^{64} +(-0.262226 + 0.116913i) q^{65} +(2.92898 - 1.69105i) q^{66} +(-2.61773 + 9.76951i) q^{67} +(-2.64091 - 1.52473i) q^{68} -0.439276 q^{69} +(-0.0298205 + 0.333453i) q^{70} +(3.65698 + 3.65698i) q^{71} +(-1.66592 - 6.21730i) q^{72} +(-3.08002 + 11.4948i) q^{73} +(3.09987 + 5.36914i) q^{74} +(1.25741 - 2.17790i) q^{75} +(1.96520 + 1.96520i) q^{76} +(-7.17090 - 8.57944i) q^{77} +(-2.33519 - 1.69477i) q^{78} +(-4.27671 + 7.40747i) q^{79} +(0.367236 + 0.0984006i) q^{80} +(-3.39089 - 5.87319i) q^{81} +(8.66319 - 15.0051i) q^{82} +(-4.91372 + 4.91372i) q^{83} +(-0.634692 + 0.294475i) q^{84} +(-0.326980 + 0.326980i) q^{85} +(-1.09224 - 4.07628i) q^{86} +(0.158211 - 0.0913434i) q^{87} +(-8.57795 + 4.95248i) q^{88} +(-7.78209 + 2.08520i) q^{89} +0.347518 q^{90} +(-4.19388 + 8.56804i) q^{91} -0.458047 q^{92} +(-0.678596 + 0.181829i) q^{93} +(-3.98161 + 2.29878i) q^{94} +(0.364977 - 0.210720i) q^{95} +(0.377943 + 1.41050i) q^{96} +(-6.04128 + 6.04128i) q^{97} +(6.34501 + 9.13630i) q^{98} +(-8.20733 + 8.20733i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32q - 2q^{2} - 12q^{3} - 6q^{5} - 6q^{7} - 16q^{8} + 8q^{9} + O(q^{10}) \) \( 32q - 2q^{2} - 12q^{3} - 6q^{5} - 6q^{7} - 16q^{8} + 8q^{9} - 10q^{11} + 28q^{14} - 44q^{15} + 12q^{16} - 4q^{18} + 12q^{19} - 26q^{21} - 8q^{22} - 12q^{24} + 24q^{26} - 6q^{28} + 16q^{29} + 24q^{31} + 4q^{32} + 48q^{33} + 28q^{35} - 8q^{37} - 6q^{39} - 132q^{40} - 16q^{42} - 42q^{44} - 24q^{45} + 12q^{46} + 30q^{47} + 88q^{50} + 36q^{52} - 12q^{53} + 78q^{54} + 40q^{57} + 26q^{58} - 54q^{59} + 16q^{60} - 48q^{61} + 24q^{63} - 8q^{65} + 12q^{66} + 16q^{67} - 48q^{68} + 50q^{70} - 36q^{71} + 22q^{72} + 66q^{73} + 12q^{74} - 176q^{78} - 32q^{79} + 138q^{80} + 16q^{81} - 58q^{84} - 84q^{85} + 42q^{86} - 24q^{87} - 60q^{89} + 48q^{92} + 6q^{93} - 72q^{94} - 42q^{96} - 86q^{98} - 24q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/91\mathbb{Z}\right)^\times\).

\(n\) \(15\) \(66\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.53492 0.411280i 1.08535 0.290819i 0.328565 0.944482i \(-0.393435\pi\)
0.756786 + 0.653663i \(0.226768\pi\)
\(3\) 0.436133 0.251802i 0.251802 0.145378i −0.368787 0.929514i \(-0.620227\pi\)
0.620589 + 0.784136i \(0.286894\pi\)
\(4\) 0.454770 0.262561i 0.227385 0.131281i
\(5\) −0.0206096 0.0769162i −0.00921691 0.0343980i 0.961164 0.275977i \(-0.0890014\pi\)
−0.970381 + 0.241579i \(0.922335\pi\)
\(6\) 0.565867 0.565867i 0.231014 0.231014i
\(7\) −2.16435 1.52171i −0.818046 0.575153i
\(8\) −1.65723 + 1.65723i −0.585918 + 0.585918i
\(9\) −1.37319 + 2.37844i −0.457731 + 0.792813i
\(10\) −0.0632682 0.109584i −0.0200072 0.0346534i
\(11\) 4.08225 + 1.09384i 1.23084 + 0.329804i 0.814908 0.579590i \(-0.196787\pi\)
0.415936 + 0.909394i \(0.363454\pi\)
\(12\) 0.132227 0.229023i 0.0381706 0.0661134i
\(13\) −0.565867 3.56087i −0.156943 0.987608i
\(14\) −3.94794 1.44555i −1.05513 0.386339i
\(15\) −0.0283562 0.0283562i −0.00732153 0.00732153i
\(16\) −2.38725 + 4.13483i −0.596811 + 1.03371i
\(17\) −2.90357 5.02912i −0.704218 1.21974i −0.966973 0.254879i \(-0.917964\pi\)
0.262755 0.964863i \(-0.415369\pi\)
\(18\) −1.12953 + 4.21547i −0.266233 + 0.993596i
\(19\) 1.36980 + 5.11216i 0.314254 + 1.17281i 0.924682 + 0.380740i \(0.124331\pi\)
−0.610429 + 0.792071i \(0.709003\pi\)
\(20\) −0.0295679 0.0295679i −0.00661158 0.00661158i
\(21\) −1.32711 0.118683i −0.289600 0.0258987i
\(22\) 6.71579 1.43181
\(23\) −0.755405 0.436133i −0.157513 0.0909400i 0.419172 0.907907i \(-0.362320\pi\)
−0.576685 + 0.816967i \(0.695654\pi\)
\(24\) −0.305479 + 1.14006i −0.0623557 + 0.232715i
\(25\) 4.32464 2.49683i 0.864927 0.499366i
\(26\) −2.33307 5.23291i −0.457553 1.02626i
\(27\) 2.89390i 0.556931i
\(28\) −1.38382 0.123754i −0.261518 0.0233873i
\(29\) 0.362759 0.0673627 0.0336814 0.999433i \(-0.489277\pi\)
0.0336814 + 0.999433i \(0.489277\pi\)
\(30\) −0.0551867 0.0318621i −0.0100757 0.00581719i
\(31\) −1.34748 0.361057i −0.242015 0.0648477i 0.135773 0.990740i \(-0.456648\pi\)
−0.377787 + 0.925892i \(0.623315\pi\)
\(32\) −0.750478 + 2.80082i −0.132667 + 0.495120i
\(33\) 2.05583 0.550859i 0.357875 0.0958922i
\(34\) −6.52511 6.52511i −1.11905 1.11905i
\(35\) −0.0724379 + 0.197835i −0.0122442 + 0.0334403i
\(36\) 1.44219i 0.240365i
\(37\) 1.00978 + 3.76857i 0.166008 + 0.619549i 0.997910 + 0.0646262i \(0.0205855\pi\)
−0.831902 + 0.554923i \(0.812748\pi\)
\(38\) 4.20506 + 7.28338i 0.682151 + 1.18152i
\(39\) −1.14343 1.41053i −0.183095 0.225865i
\(40\) 0.161623 + 0.0933128i 0.0255548 + 0.0147541i
\(41\) 7.70995 7.70995i 1.20409 1.20409i 0.231182 0.972911i \(-0.425741\pi\)
0.972911 0.231182i \(-0.0742592\pi\)
\(42\) −2.08582 + 0.363646i −0.321849 + 0.0561119i
\(43\) 2.65570i 0.404990i −0.979283 0.202495i \(-0.935095\pi\)
0.979283 0.202495i \(-0.0649050\pi\)
\(44\) 2.14368 0.574398i 0.323172 0.0865938i
\(45\) 0.211242 + 0.0566020i 0.0314900 + 0.00843773i
\(46\) −1.33886 0.358745i −0.197404 0.0528941i
\(47\) −2.79467 + 0.748829i −0.407644 + 0.109228i −0.456813 0.889563i \(-0.651009\pi\)
0.0491692 + 0.998790i \(0.484343\pi\)
\(48\) 2.40445i 0.347052i
\(49\) 2.36879 + 6.58702i 0.338399 + 0.941003i
\(50\) 5.61106 5.61106i 0.793524 0.793524i
\(51\) −2.53268 1.46224i −0.354646 0.204755i
\(52\) −1.19229 1.47080i −0.165340 0.203963i
\(53\) −5.26830 9.12497i −0.723657 1.25341i −0.959524 0.281625i \(-0.909127\pi\)
0.235868 0.971785i \(-0.424207\pi\)
\(54\) 1.19020 + 4.44189i 0.161966 + 0.604465i
\(55\) 0.336535i 0.0453784i
\(56\) 6.10864 1.06499i 0.816301 0.142316i
\(57\) 1.88467 + 1.88467i 0.249630 + 0.249630i
\(58\) 0.556806 0.149196i 0.0731122 0.0195903i
\(59\) −0.573890 + 2.14179i −0.0747142 + 0.278837i −0.993168 0.116690i \(-0.962772\pi\)
0.918454 + 0.395527i \(0.129438\pi\)
\(60\) −0.0203408 0.00545029i −0.00262598 0.000703630i
\(61\) 3.63628 + 2.09941i 0.465578 + 0.268802i 0.714387 0.699751i \(-0.246706\pi\)
−0.248809 + 0.968553i \(0.580039\pi\)
\(62\) −2.21677 −0.281530
\(63\) 6.59136 3.05816i 0.830433 0.385292i
\(64\) 4.94130i 0.617662i
\(65\) −0.262226 + 0.116913i −0.0325252 + 0.0145012i
\(66\) 2.92898 1.69105i 0.360532 0.208153i
\(67\) −2.61773 + 9.76951i −0.319807 + 1.19354i 0.599623 + 0.800282i \(0.295317\pi\)
−0.919430 + 0.393253i \(0.871350\pi\)
\(68\) −2.64091 1.52473i −0.320257 0.184901i
\(69\) −0.439276 −0.0528826
\(70\) −0.0298205 + 0.333453i −0.00356423 + 0.0398553i
\(71\) 3.65698 + 3.65698i 0.434004 + 0.434004i 0.889988 0.455984i \(-0.150713\pi\)
−0.455984 + 0.889988i \(0.650713\pi\)
\(72\) −1.66592 6.21730i −0.196331 0.732716i
\(73\) −3.08002 + 11.4948i −0.360489 + 1.34536i 0.512945 + 0.858421i \(0.328554\pi\)
−0.873434 + 0.486942i \(0.838112\pi\)
\(74\) 3.09987 + 5.36914i 0.360353 + 0.624150i
\(75\) 1.25741 2.17790i 0.145193 0.251482i
\(76\) 1.96520 + 1.96520i 0.225424 + 0.225424i
\(77\) −7.17090 8.57944i −0.817200 0.977718i
\(78\) −2.33519 1.69477i −0.264408 0.191895i
\(79\) −4.27671 + 7.40747i −0.481167 + 0.833406i −0.999766 0.0216116i \(-0.993120\pi\)
0.518599 + 0.855017i \(0.326454\pi\)
\(80\) 0.367236 + 0.0984006i 0.0410582 + 0.0110015i
\(81\) −3.39089 5.87319i −0.376765 0.652577i
\(82\) 8.66319 15.0051i 0.956690 1.65703i
\(83\) −4.91372 + 4.91372i −0.539351 + 0.539351i −0.923338 0.383987i \(-0.874551\pi\)
0.383987 + 0.923338i \(0.374551\pi\)
\(84\) −0.634692 + 0.294475i −0.0692506 + 0.0321299i
\(85\) −0.326980 + 0.326980i −0.0354659 + 0.0354659i
\(86\) −1.09224 4.07628i −0.117779 0.439557i
\(87\) 0.158211 0.0913434i 0.0169620 0.00979304i
\(88\) −8.57795 + 4.95248i −0.914413 + 0.527936i
\(89\) −7.78209 + 2.08520i −0.824899 + 0.221031i −0.646487 0.762925i \(-0.723763\pi\)
−0.178412 + 0.983956i \(0.557096\pi\)
\(90\) 0.347518 0.0366316
\(91\) −4.19388 + 8.56804i −0.439638 + 0.898175i
\(92\) −0.458047 −0.0477547
\(93\) −0.678596 + 0.181829i −0.0703671 + 0.0188548i
\(94\) −3.98161 + 2.29878i −0.410671 + 0.237101i
\(95\) 0.364977 0.210720i 0.0374459 0.0216194i
\(96\) 0.377943 + 1.41050i 0.0385736 + 0.143959i
\(97\) −6.04128 + 6.04128i −0.613399 + 0.613399i −0.943830 0.330431i \(-0.892806\pi\)
0.330431 + 0.943830i \(0.392806\pi\)
\(98\) 6.34501 + 9.13630i 0.640943 + 0.922905i
\(99\) −8.20733 + 8.20733i −0.824868 + 0.824868i
\(100\) 1.31114 2.27096i 0.131114 0.227096i
\(101\) −5.60987 9.71658i −0.558203 0.966836i −0.997647 0.0685657i \(-0.978158\pi\)
0.439444 0.898270i \(-0.355176\pi\)
\(102\) −4.48885 1.20278i −0.444462 0.119093i
\(103\) −4.82752 + 8.36150i −0.475669 + 0.823883i −0.999612 0.0278704i \(-0.991127\pi\)
0.523942 + 0.851754i \(0.324461\pi\)
\(104\) 6.83894 + 4.96340i 0.670613 + 0.486701i
\(105\) 0.0182227 + 0.104522i 0.00177835 + 0.0102003i
\(106\) −11.8393 11.8393i −1.14994 1.14994i
\(107\) 8.81408 15.2664i 0.852089 1.47586i −0.0272305 0.999629i \(-0.508669\pi\)
0.879319 0.476232i \(-0.157998\pi\)
\(108\) 0.759825 + 1.31606i 0.0731142 + 0.126638i
\(109\) 3.53114 13.1784i 0.338222 1.26226i −0.562113 0.827061i \(-0.690011\pi\)
0.900334 0.435199i \(-0.143322\pi\)
\(110\) −0.138410 0.516553i −0.0131969 0.0492514i
\(111\) 1.38933 + 1.38933i 0.131870 + 0.131870i
\(112\) 11.4588 5.31651i 1.08276 0.502363i
\(113\) −6.02917 −0.567176 −0.283588 0.958946i \(-0.591525\pi\)
−0.283588 + 0.958946i \(0.591525\pi\)
\(114\) 3.66793 + 2.11768i 0.343533 + 0.198339i
\(115\) −0.0179771 + 0.0670914i −0.00167637 + 0.00625631i
\(116\) 0.164972 0.0952466i 0.0153173 0.00884343i
\(117\) 9.24635 + 3.54388i 0.854826 + 0.327632i
\(118\) 3.52350i 0.324364i
\(119\) −1.36855 + 15.3032i −0.125455 + 1.40284i
\(120\) 0.0939853 0.00857964
\(121\) 5.94201 + 3.43062i 0.540183 + 0.311875i
\(122\) 6.44484 + 1.72689i 0.583488 + 0.156345i
\(123\) 1.42119 5.30394i 0.128144 0.478240i
\(124\) −0.707593 + 0.189599i −0.0635438 + 0.0170265i
\(125\) −0.562709 0.562709i −0.0503302 0.0503302i
\(126\) 8.85943 7.40492i 0.789261 0.659683i
\(127\) 0.259825i 0.0230558i 0.999934 + 0.0115279i \(0.00366952\pi\)
−0.999934 + 0.0115279i \(0.996330\pi\)
\(128\) −3.53321 13.1861i −0.312295 1.16550i
\(129\) −0.668709 1.15824i −0.0588766 0.101977i
\(130\) −0.354412 + 0.287300i −0.0310840 + 0.0251979i
\(131\) 0.679285 + 0.392185i 0.0593494 + 0.0342654i 0.529381 0.848384i \(-0.322424\pi\)
−0.470032 + 0.882650i \(0.655758\pi\)
\(132\) 0.790296 0.790296i 0.0687865 0.0687865i
\(133\) 4.81451 13.1489i 0.417471 1.14016i
\(134\) 16.0720i 1.38841i
\(135\) 0.222588 0.0596422i 0.0191573 0.00513318i
\(136\) 13.1463 + 3.52253i 1.12728 + 0.302055i
\(137\) 13.3251 + 3.57044i 1.13844 + 0.305044i 0.778323 0.627864i \(-0.216071\pi\)
0.360115 + 0.932908i \(0.382737\pi\)
\(138\) −0.674252 + 0.180665i −0.0573962 + 0.0153793i
\(139\) 3.12982i 0.265468i −0.991152 0.132734i \(-0.957624\pi\)
0.991152 0.132734i \(-0.0423755\pi\)
\(140\) 0.0190014 + 0.108989i 0.00160591 + 0.00921124i
\(141\) −1.03029 + 1.03029i −0.0867661 + 0.0867661i
\(142\) 7.11720 + 4.10912i 0.597262 + 0.344830i
\(143\) 1.58499 15.1553i 0.132544 1.26735i
\(144\) −6.55629 11.3558i −0.546358 0.946319i
\(145\) −0.00747634 0.0279021i −0.000620876 0.00231714i
\(146\) 18.9103i 1.56503i
\(147\) 2.69173 + 2.27635i 0.222010 + 0.187750i
\(148\) 1.44870 + 1.44870i 0.119082 + 0.119082i
\(149\) −3.27187 + 0.876694i −0.268042 + 0.0718216i −0.390337 0.920672i \(-0.627641\pi\)
0.122295 + 0.992494i \(0.460975\pi\)
\(150\) 1.03430 3.86004i 0.0844499 0.315171i
\(151\) 15.7142 + 4.21062i 1.27881 + 0.342655i 0.833398 0.552673i \(-0.186392\pi\)
0.445408 + 0.895328i \(0.353059\pi\)
\(152\) −10.7421 6.20195i −0.871299 0.503044i
\(153\) 15.9486 1.28937
\(154\) −14.5353 10.2195i −1.17129 0.823510i
\(155\) 0.111084i 0.00892252i
\(156\) −0.890345 0.341245i −0.0712847 0.0273215i
\(157\) 16.6451 9.61006i 1.32842 0.766966i 0.343368 0.939201i \(-0.388432\pi\)
0.985056 + 0.172235i \(0.0550988\pi\)
\(158\) −3.51785 + 13.1288i −0.279865 + 1.04447i
\(159\) −4.59536 2.65313i −0.364436 0.210407i
\(160\) 0.230896 0.0182539
\(161\) 0.971289 + 2.09345i 0.0765483 + 0.164987i
\(162\) −7.62026 7.62026i −0.598704 0.598704i
\(163\) 0.321549 + 1.20004i 0.0251857 + 0.0939942i 0.977375 0.211515i \(-0.0678399\pi\)
−0.952189 + 0.305510i \(0.901173\pi\)
\(164\) 1.48192 5.53059i 0.115718 0.431866i
\(165\) −0.0847400 0.146774i −0.00659700 0.0114263i
\(166\) −5.52124 + 9.56307i −0.428532 + 0.742239i
\(167\) 7.31443 + 7.31443i 0.566007 + 0.566007i 0.931007 0.365000i \(-0.118931\pi\)
−0.365000 + 0.931007i \(0.618931\pi\)
\(168\) 2.39601 2.00264i 0.184856 0.154507i
\(169\) −12.3596 + 4.02996i −0.950738 + 0.309997i
\(170\) −0.367407 + 0.636367i −0.0281788 + 0.0488071i
\(171\) −14.0400 3.76200i −1.07366 0.287687i
\(172\) −0.697284 1.20773i −0.0531674 0.0920887i
\(173\) −1.58153 + 2.73929i −0.120241 + 0.208264i −0.919863 0.392240i \(-0.871700\pi\)
0.799621 + 0.600504i \(0.205034\pi\)
\(174\) 0.205274 0.205274i 0.0155618 0.0155618i
\(175\) −13.1595 1.17684i −0.994762 0.0889608i
\(176\) −14.2682 + 14.2682i −1.07550 + 1.07550i
\(177\) 0.289013 + 1.07861i 0.0217235 + 0.0810734i
\(178\) −11.0873 + 6.40123i −0.831025 + 0.479793i
\(179\) 5.02551 2.90148i 0.375624 0.216867i −0.300289 0.953848i \(-0.597083\pi\)
0.675913 + 0.736982i \(0.263750\pi\)
\(180\) 0.110928 0.0297230i 0.00826807 0.00221542i
\(181\) −13.7005 −1.01835 −0.509176 0.860662i \(-0.670050\pi\)
−0.509176 + 0.860662i \(0.670050\pi\)
\(182\) −2.91340 + 14.8761i −0.215955 + 1.10269i
\(183\) 2.11454 0.156311
\(184\) 1.97465 0.529106i 0.145573 0.0390062i
\(185\) 0.269053 0.155338i 0.0197812 0.0114207i
\(186\) −0.966806 + 0.558186i −0.0708896 + 0.0409282i
\(187\) −6.35205 23.7062i −0.464508 1.73357i
\(188\) −1.07432 + 1.07432i −0.0783526 + 0.0783526i
\(189\) 4.40367 6.26339i 0.320320 0.455595i
\(190\) 0.473545 0.473545i 0.0343546 0.0343546i
\(191\) 4.22861 7.32417i 0.305972 0.529958i −0.671506 0.740999i \(-0.734352\pi\)
0.977477 + 0.211041i \(0.0676854\pi\)
\(192\) −1.24423 2.15506i −0.0897943 0.155528i
\(193\) −0.476941 0.127796i −0.0343310 0.00919896i 0.241613 0.970373i \(-0.422324\pi\)
−0.275944 + 0.961174i \(0.588990\pi\)
\(194\) −6.78820 + 11.7575i −0.487365 + 0.844140i
\(195\) −0.0849268 + 0.117018i −0.00608173 + 0.00837987i
\(196\) 2.80675 + 2.37362i 0.200482 + 0.169545i
\(197\) −2.77899 2.77899i −0.197995 0.197995i 0.601145 0.799140i \(-0.294711\pi\)
−0.799140 + 0.601145i \(0.794711\pi\)
\(198\) −9.22207 + 15.9731i −0.655384 + 1.13516i
\(199\) −8.03206 13.9119i −0.569377 0.986191i −0.996628 0.0820571i \(-0.973851\pi\)
0.427250 0.904133i \(-0.359482\pi\)
\(200\) −3.02909 + 11.3047i −0.214189 + 0.799364i
\(201\) 1.31830 + 4.91995i 0.0929856 + 0.347027i
\(202\) −12.6069 12.6069i −0.887020 0.887020i
\(203\) −0.785137 0.552015i −0.0551058 0.0387439i
\(204\) −1.53572 −0.107522
\(205\) −0.751920 0.434121i −0.0525164 0.0303203i
\(206\) −3.97092 + 14.8197i −0.276667 + 1.03254i
\(207\) 2.07463 1.19779i 0.144197 0.0832521i
\(208\) 16.0745 + 6.16091i 1.11456 + 0.427182i
\(209\) 22.3675i 1.54719i
\(210\) 0.0709583 + 0.152939i 0.00489659 + 0.0105538i
\(211\) 21.0547 1.44947 0.724734 0.689029i \(-0.241963\pi\)
0.724734 + 0.689029i \(0.241963\pi\)
\(212\) −4.79173 2.76651i −0.329097 0.190004i
\(213\) 2.51576 + 0.674096i 0.172377 + 0.0461883i
\(214\) 7.25011 27.0578i 0.495607 1.84963i
\(215\) −0.204266 + 0.0547330i −0.0139309 + 0.00373276i
\(216\) −4.79584 4.79584i −0.326316 0.326316i
\(217\) 2.36699 + 2.83193i 0.160682 + 0.192244i
\(218\) 21.6800i 1.46836i
\(219\) 1.55111 + 5.78881i 0.104814 + 0.391172i
\(220\) −0.0883611 0.153046i −0.00595730 0.0103183i
\(221\) −16.2650 + 13.1850i −1.09410 + 0.886922i
\(222\) 2.70391 + 1.56111i 0.181475 + 0.104775i
\(223\) 19.3108 19.3108i 1.29314 1.29314i 0.360311 0.932832i \(-0.382670\pi\)
0.932832 0.360311i \(-0.117330\pi\)
\(224\) 5.88633 4.91994i 0.393297 0.328727i
\(225\) 13.7145i 0.914300i
\(226\) −9.25428 + 2.47968i −0.615585 + 0.164946i
\(227\) 3.34823 + 0.897156i 0.222230 + 0.0595463i 0.368216 0.929740i \(-0.379969\pi\)
−0.145986 + 0.989287i \(0.546635\pi\)
\(228\) 1.35193 + 0.362248i 0.0895337 + 0.0239905i
\(229\) 18.6186 4.98883i 1.23035 0.329671i 0.415633 0.909532i \(-0.363560\pi\)
0.814715 + 0.579861i \(0.196893\pi\)
\(230\) 0.110373i 0.00727781i
\(231\) −5.28778 1.93613i −0.347911 0.127388i
\(232\) −0.601175 + 0.601175i −0.0394691 + 0.0394691i
\(233\) −4.47705 2.58482i −0.293301 0.169337i 0.346129 0.938187i \(-0.387496\pi\)
−0.639430 + 0.768850i \(0.720829\pi\)
\(234\) 15.6499 + 1.63672i 1.02307 + 0.106996i
\(235\) 0.115194 + 0.199522i 0.00751444 + 0.0130154i
\(236\) 0.301363 + 1.12470i 0.0196171 + 0.0732119i
\(237\) 4.30752i 0.279804i
\(238\) 4.19327 + 24.0519i 0.271809 + 1.55906i
\(239\) 6.85569 + 6.85569i 0.443458 + 0.443458i 0.893172 0.449715i \(-0.148474\pi\)
−0.449715 + 0.893172i \(0.648474\pi\)
\(240\) 0.184941 0.0495548i 0.0119379 0.00319875i
\(241\) −0.578684 + 2.15968i −0.0372763 + 0.139117i −0.982056 0.188589i \(-0.939609\pi\)
0.944780 + 0.327706i \(0.106275\pi\)
\(242\) 10.5314 + 2.82189i 0.676986 + 0.181398i
\(243\) −10.4763 6.04851i −0.672056 0.388012i
\(244\) 2.20490 0.141154
\(245\) 0.457829 0.317955i 0.0292496 0.0203134i
\(246\) 8.72562i 0.556325i
\(247\) 17.4286 7.77049i 1.10896 0.494424i
\(248\) 2.83144 1.63473i 0.179796 0.103805i
\(249\) −0.905754 + 3.38032i −0.0573998 + 0.214219i
\(250\) −1.09514 0.632281i −0.0692629 0.0399890i
\(251\) −24.8342 −1.56752 −0.783759 0.621064i \(-0.786700\pi\)
−0.783759 + 0.621064i \(0.786700\pi\)
\(252\) 2.19459 3.12140i 0.138246 0.196629i
\(253\) −2.60669 2.60669i −0.163881 0.163881i
\(254\) 0.106861 + 0.398810i 0.00670505 + 0.0250236i
\(255\) −0.0602727 + 0.224941i −0.00377442 + 0.0140863i
\(256\) −5.90508 10.2279i −0.369067 0.639244i
\(257\) 6.67557 11.5624i 0.416411 0.721244i −0.579165 0.815210i \(-0.696621\pi\)
0.995575 + 0.0939662i \(0.0299546\pi\)
\(258\) −1.50277 1.50277i −0.0935586 0.0935586i
\(259\) 3.54915 9.69309i 0.220533 0.602299i
\(260\) −0.0885559 + 0.122019i −0.00549200 + 0.00756729i
\(261\) −0.498138 + 0.862801i −0.0308340 + 0.0534060i
\(262\) 1.20394 + 0.322596i 0.0743799 + 0.0199300i
\(263\) 0.211897 + 0.367017i 0.0130662 + 0.0226312i 0.872485 0.488642i \(-0.162507\pi\)
−0.859418 + 0.511273i \(0.829174\pi\)
\(264\) −2.49409 + 4.31988i −0.153500 + 0.265870i
\(265\) −0.593280 + 0.593280i −0.0364449 + 0.0364449i
\(266\) 1.98199 22.1626i 0.121524 1.35888i
\(267\) −2.86897 + 2.86897i −0.175578 + 0.175578i
\(268\) 1.37463 + 5.13019i 0.0839689 + 0.313376i
\(269\) −12.5697 + 7.25714i −0.766390 + 0.442476i −0.831585 0.555397i \(-0.812566\pi\)
0.0651951 + 0.997873i \(0.479233\pi\)
\(270\) 0.317124 0.183092i 0.0192996 0.0111426i
\(271\) −19.1090 + 5.12023i −1.16079 + 0.311032i −0.787280 0.616596i \(-0.788511\pi\)
−0.373506 + 0.927628i \(0.621845\pi\)
\(272\) 27.7261 1.68114
\(273\) 0.328356 + 4.79283i 0.0198730 + 0.290075i
\(274\) 21.9213 1.32432
\(275\) 20.3854 5.46224i 1.22928 0.329386i
\(276\) −0.199769 + 0.115337i −0.0120247 + 0.00694246i
\(277\) −20.5717 + 11.8771i −1.23603 + 0.713623i −0.968281 0.249865i \(-0.919614\pi\)
−0.267751 + 0.963488i \(0.586281\pi\)
\(278\) −1.28723 4.80401i −0.0772030 0.288125i
\(279\) 2.70910 2.70910i 0.162190 0.162190i
\(280\) −0.207812 0.447904i −0.0124191 0.0267674i
\(281\) 9.66092 9.66092i 0.576322 0.576322i −0.357566 0.933888i \(-0.616393\pi\)
0.933888 + 0.357566i \(0.116393\pi\)
\(282\) −1.15767 + 2.00515i −0.0689384 + 0.119405i
\(283\) 13.3825 + 23.1791i 0.795506 + 1.37786i 0.922517 + 0.385956i \(0.126128\pi\)
−0.127011 + 0.991901i \(0.540538\pi\)
\(284\) 2.62326 + 0.702902i 0.155662 + 0.0417095i
\(285\) 0.106119 0.183804i 0.00628595 0.0108876i
\(286\) −3.80025 23.9141i −0.224713 1.41407i
\(287\) −28.4193 + 4.95469i −1.67754 + 0.292466i
\(288\) −5.63103 5.63103i −0.331812 0.331812i
\(289\) −8.36139 + 14.4824i −0.491847 + 0.851903i
\(290\) −0.0229511 0.0397525i −0.00134774 0.00233435i
\(291\) −1.11360 + 4.15600i −0.0652802 + 0.243629i
\(292\) 1.61739 + 6.03618i 0.0946505 + 0.353241i
\(293\) −21.8755 21.8755i −1.27798 1.27798i −0.941797 0.336181i \(-0.890864\pi\)
−0.336181 0.941797i \(-0.609136\pi\)
\(294\) 5.06780 + 2.38696i 0.295560 + 0.139210i
\(295\) 0.176566 0.0102801
\(296\) −7.91882 4.57193i −0.460272 0.265738i
\(297\) −3.16545 + 11.8136i −0.183678 + 0.685495i
\(298\) −4.66148 + 2.69131i −0.270032 + 0.155903i
\(299\) −1.12555 + 2.93669i −0.0650925 + 0.169833i
\(300\) 1.32059i 0.0762443i
\(301\) −4.04121 + 5.74785i −0.232931 + 0.331301i
\(302\) 25.8518 1.48760
\(303\) −4.89330 2.82515i −0.281113 0.162300i
\(304\) −24.4080 6.54010i −1.39989 0.375100i
\(305\) 0.0865362 0.322957i 0.00495505 0.0184925i
\(306\) 24.4798 6.55934i 1.39942 0.374973i
\(307\) −2.49534 2.49534i −0.142417 0.142417i 0.632304 0.774720i \(-0.282109\pi\)
−0.774720 + 0.632304i \(0.782109\pi\)
\(308\) −5.51374 2.01887i −0.314174 0.115036i
\(309\) 4.86230i 0.276607i
\(310\) 0.0456868 + 0.170505i 0.00259484 + 0.00968406i
\(311\) 15.1553 + 26.2497i 0.859378 + 1.48849i 0.872523 + 0.488572i \(0.162482\pi\)
−0.0131458 + 0.999914i \(0.504185\pi\)
\(312\) 4.23248 + 0.442647i 0.239617 + 0.0250599i
\(313\) 16.8628 + 9.73575i 0.953143 + 0.550297i 0.894056 0.447956i \(-0.147848\pi\)
0.0590869 + 0.998253i \(0.481181\pi\)
\(314\) 21.5964 21.5964i 1.21876 1.21876i
\(315\) −0.371068 0.443955i −0.0209073 0.0250140i
\(316\) 4.49159i 0.252672i
\(317\) 4.84229 1.29749i 0.271970 0.0728741i −0.120256 0.992743i \(-0.538372\pi\)
0.392226 + 0.919869i \(0.371705\pi\)
\(318\) −8.14468 2.18236i −0.456731 0.122381i
\(319\) 1.48087 + 0.396799i 0.0829131 + 0.0222165i
\(320\) −0.380066 + 0.101838i −0.0212463 + 0.00569294i
\(321\) 8.87759i 0.495499i
\(322\) 2.35184 + 2.81380i 0.131063 + 0.156807i
\(323\) 21.7324 21.7324i 1.20922 1.20922i
\(324\) −3.08415 1.78063i −0.171341 0.0989240i
\(325\) −11.3381 13.9866i −0.628922 0.775836i
\(326\) 0.987103 + 1.70971i 0.0546706 + 0.0946922i
\(327\) −1.77829 6.63667i −0.0983397 0.367009i
\(328\) 25.5543i 1.41100i
\(329\) 7.18813 + 2.63195i 0.396294 + 0.145104i
\(330\) −0.190434 0.190434i −0.0104831 0.0104831i
\(331\) −18.5252 + 4.96381i −1.01824 + 0.272835i −0.729067 0.684443i \(-0.760046\pi\)
−0.289169 + 0.957278i \(0.593379\pi\)
\(332\) −0.944458 + 3.52477i −0.0518339 + 0.193447i
\(333\) −10.3499 2.77326i −0.567173 0.151974i
\(334\) 14.2353 + 8.21877i 0.778922 + 0.449711i
\(335\) 0.805384 0.0440029
\(336\) 3.65888 5.20406i 0.199608 0.283905i
\(337\) 3.01241i 0.164097i −0.996628 0.0820483i \(-0.973854\pi\)
0.996628 0.0820483i \(-0.0261462\pi\)
\(338\) −17.3135 + 11.2689i −0.941731 + 0.612948i
\(339\) −2.62952 + 1.51815i −0.142816 + 0.0824548i
\(340\) −0.0628482 + 0.234553i −0.00340842 + 0.0127204i
\(341\) −5.10582 2.94785i −0.276496 0.159635i
\(342\) −23.0974 −1.24897
\(343\) 4.89665 17.8612i 0.264394 0.964415i
\(344\) 4.40110 + 4.40110i 0.237291 + 0.237291i
\(345\) 0.00905332 + 0.0337874i 0.000487414 + 0.00181905i
\(346\) −1.30090 + 4.85503i −0.0699369 + 0.261008i
\(347\) 4.11910 + 7.13449i 0.221125 + 0.382999i 0.955150 0.296123i \(-0.0956939\pi\)
−0.734025 + 0.679122i \(0.762361\pi\)
\(348\) 0.0479665 0.0830804i 0.00257127 0.00445358i
\(349\) 8.06122 + 8.06122i 0.431507 + 0.431507i 0.889141 0.457634i \(-0.151303\pi\)
−0.457634 + 0.889141i \(0.651303\pi\)
\(350\) −20.6827 + 3.60587i −1.10554 + 0.192742i
\(351\) 10.3048 1.63756i 0.550029 0.0874066i
\(352\) −6.12728 + 10.6128i −0.326585 + 0.565662i
\(353\) 16.3265 + 4.37468i 0.868974 + 0.232841i 0.665644 0.746270i \(-0.268157\pi\)
0.203330 + 0.979110i \(0.434824\pi\)
\(354\) 0.887222 + 1.53671i 0.0471553 + 0.0816754i
\(355\) 0.205912 0.356650i 0.0109287 0.0189290i
\(356\) −2.99156 + 2.99156i −0.158553 + 0.158553i
\(357\) 3.25649 + 7.01881i 0.172352 + 0.371475i
\(358\) 6.52042 6.52042i 0.344615 0.344615i
\(359\) −5.84652 21.8195i −0.308568 1.15159i −0.929831 0.367988i \(-0.880047\pi\)
0.621263 0.783602i \(-0.286620\pi\)
\(360\) −0.443878 + 0.256273i −0.0233944 + 0.0135068i
\(361\) −7.80339 + 4.50529i −0.410705 + 0.237120i
\(362\) −21.0292 + 5.63475i −1.10527 + 0.296156i
\(363\) 3.45534 0.181358
\(364\) 0.342387 + 4.99764i 0.0179460 + 0.261947i
\(365\) 0.947614 0.0496004
\(366\) 3.24564 0.869667i 0.169652 0.0454582i
\(367\) −22.2369 + 12.8385i −1.16076 + 0.670163i −0.951485 0.307695i \(-0.900442\pi\)
−0.209271 + 0.977858i \(0.567109\pi\)
\(368\) 3.60667 2.08231i 0.188011 0.108548i
\(369\) 7.75040 + 28.9249i 0.403470 + 1.50577i
\(370\) 0.349087 0.349087i 0.0181481 0.0181481i
\(371\) −2.48313 + 27.7664i −0.128918 + 1.44156i
\(372\) −0.260863 + 0.260863i −0.0135251 + 0.0135251i
\(373\) −8.31200 + 14.3968i −0.430379 + 0.745439i −0.996906 0.0786048i \(-0.974953\pi\)
0.566527 + 0.824043i \(0.308287\pi\)
\(374\) −19.4997 33.7745i −1.00831 1.74644i
\(375\) −0.387107 0.103725i −0.0199901 0.00535633i
\(376\) 3.39042 5.87238i 0.174848 0.302845i
\(377\) −0.205274 1.29174i −0.0105721 0.0665279i
\(378\) 4.18327 11.4249i 0.215164 0.587635i
\(379\) −27.0566 27.0566i −1.38980 1.38980i −0.825711 0.564094i \(-0.809226\pi\)
−0.564094 0.825711i \(-0.690774\pi\)
\(380\) 0.110654 0.191658i 0.00567642 0.00983184i
\(381\) 0.0654244 + 0.113318i 0.00335179 + 0.00580547i
\(382\) 3.47829 12.9811i 0.177965 0.664173i
\(383\) −6.99065 26.0895i −0.357206 1.33311i −0.877686 0.479236i \(-0.840914\pi\)
0.520480 0.853874i \(-0.325753\pi\)
\(384\) −4.86124 4.86124i −0.248074 0.248074i
\(385\) −0.512109 + 0.728378i −0.0260995 + 0.0371216i
\(386\) −0.784626 −0.0399364
\(387\) 6.31642 + 3.64679i 0.321082 + 0.185377i
\(388\) −1.16118 + 4.33359i −0.0589501 + 0.220005i
\(389\) 16.4981 9.52520i 0.836488 0.482947i −0.0195807 0.999808i \(-0.506233\pi\)
0.856069 + 0.516862i \(0.172900\pi\)
\(390\) −0.0822283 + 0.214542i −0.00416379 + 0.0108638i
\(391\) 5.06536i 0.256166i
\(392\) −14.8418 6.99056i −0.749625 0.353077i
\(393\) 0.395011 0.0199257
\(394\) −5.40846 3.12258i −0.272474 0.157313i
\(395\) 0.657896 + 0.176283i 0.0331024 + 0.00886975i
\(396\) −1.57752 + 5.88738i −0.0792732 + 0.295852i
\(397\) −3.28902 + 0.881290i −0.165071 + 0.0442307i −0.340408 0.940278i \(-0.610565\pi\)
0.175337 + 0.984508i \(0.443899\pi\)
\(398\) −18.0502 18.0502i −0.904777 0.904777i
\(399\) −1.21115 6.94699i −0.0606335 0.347784i
\(400\) 23.8422i 1.19211i
\(401\) 9.54948 + 35.6391i 0.476878 + 1.77973i 0.614138 + 0.789198i \(0.289504\pi\)
−0.137260 + 0.990535i \(0.543830\pi\)
\(402\) 4.04696 + 7.00954i 0.201844 + 0.349604i
\(403\) −0.523180 + 5.00252i −0.0260614 + 0.249193i
\(404\) −5.10240 2.94587i −0.253854 0.146563i
\(405\) −0.381859 + 0.381859i −0.0189747 + 0.0189747i
\(406\) −1.43215 0.524386i −0.0710766 0.0260249i
\(407\) 16.4888i 0.817318i
\(408\) 6.62050 1.77396i 0.327764 0.0878240i
\(409\) 5.42540 + 1.45373i 0.268269 + 0.0718824i 0.390446 0.920626i \(-0.372321\pi\)
−0.122177 + 0.992508i \(0.538988\pi\)
\(410\) −1.33268 0.357091i −0.0658164 0.0176354i
\(411\) 6.71055 1.79809i 0.331007 0.0886931i
\(412\) 5.07008i 0.249785i
\(413\) 4.50128 3.76228i 0.221494 0.185130i
\(414\) 2.69176 2.69176i 0.132293 0.132293i
\(415\) 0.479215 + 0.276675i 0.0235237 + 0.0135814i
\(416\) 10.3980 + 1.08746i 0.509805 + 0.0533171i
\(417\) −0.788093 1.36502i −0.0385931 0.0668452i
\(418\) 9.19929 + 34.3322i 0.449952 + 1.67924i
\(419\) 17.2554i 0.842980i −0.906833 0.421490i \(-0.861507\pi\)
0.906833 0.421490i \(-0.138493\pi\)
\(420\) 0.0357307 + 0.0427491i 0.00174348 + 0.00208594i
\(421\) 5.55993 + 5.55993i 0.270974 + 0.270974i 0.829492 0.558518i \(-0.188630\pi\)
−0.558518 + 0.829492i \(0.688630\pi\)
\(422\) 32.3173 8.65939i 1.57318 0.421533i
\(423\) 2.05657 7.67523i 0.0999939 0.373182i
\(424\) 23.8529 + 6.39137i 1.15840 + 0.310392i
\(425\) −25.1137 14.4994i −1.21819 0.703325i
\(426\) 4.13873 0.200522
\(427\) −4.67548 10.0772i −0.226263 0.487671i
\(428\) 9.25695i 0.447451i
\(429\) −3.12487 7.00884i −0.150870 0.338390i
\(430\) −0.291021 + 0.168021i −0.0140343 + 0.00810271i
\(431\) −2.11538 + 7.89471i −0.101894 + 0.380275i −0.997974 0.0636179i \(-0.979736\pi\)
0.896080 + 0.443892i \(0.146403\pi\)
\(432\) −11.9658 6.90844i −0.575704 0.332383i
\(433\) 6.91474 0.332301 0.166151 0.986100i \(-0.446866\pi\)
0.166151 + 0.986100i \(0.446866\pi\)
\(434\) 4.79785 + 3.37328i 0.230304 + 0.161923i
\(435\) −0.0102865 0.0102865i −0.000493198 0.000493198i
\(436\) −1.85428 6.92027i −0.0888039 0.331421i
\(437\) 1.19483 4.45917i 0.0571565 0.213311i
\(438\) 4.76164 + 8.24741i 0.227520 + 0.394077i
\(439\) 2.14789 3.72026i 0.102513 0.177558i −0.810206 0.586145i \(-0.800645\pi\)
0.912719 + 0.408587i \(0.133978\pi\)
\(440\) 0.557715 + 0.557715i 0.0265880 + 0.0265880i
\(441\) −18.9196 3.41122i −0.900935 0.162439i
\(442\) −19.5427 + 26.9274i −0.929553 + 1.28081i
\(443\) 11.5068 19.9303i 0.546702 0.946916i −0.451795 0.892122i \(-0.649216\pi\)
0.998498 0.0547947i \(-0.0174504\pi\)
\(444\) 0.996611 + 0.267041i 0.0472971 + 0.0126732i
\(445\) 0.320772 + 0.555593i 0.0152061 + 0.0263377i
\(446\) 21.6983 37.5825i 1.02744 1.77958i
\(447\) −1.20622 + 1.20622i −0.0570521 + 0.0570521i
\(448\) −7.51923 + 10.6947i −0.355250 + 0.505276i
\(449\) −7.20816 + 7.20816i −0.340174 + 0.340174i −0.856433 0.516259i \(-0.827324\pi\)
0.516259 + 0.856433i \(0.327324\pi\)
\(450\) 5.64050 + 21.0506i 0.265896 + 0.992336i
\(451\) 39.9074 23.0405i 1.87916 1.08494i
\(452\) −2.74188 + 1.58303i −0.128967 + 0.0744593i
\(453\) 7.91373 2.12048i 0.371820 0.0996288i
\(454\) 5.50824 0.258515
\(455\) 0.745456 + 0.145993i 0.0349475 + 0.00684427i
\(456\) −6.24664 −0.292526
\(457\) −15.0670 + 4.03718i −0.704803 + 0.188851i −0.593381 0.804922i \(-0.702207\pi\)
−0.111422 + 0.993773i \(0.535540\pi\)
\(458\) 26.5261 15.3149i 1.23949 0.715617i
\(459\) 14.5538 8.40262i 0.679312 0.392201i
\(460\) 0.00944018 + 0.0352312i 0.000440151 + 0.00164266i
\(461\) 10.2849 10.2849i 0.479017 0.479017i −0.425800 0.904817i \(-0.640007\pi\)
0.904817 + 0.425800i \(0.140007\pi\)
\(462\) −8.91261 0.797048i −0.414652 0.0370820i
\(463\) −15.2514 + 15.2514i −0.708792 + 0.708792i −0.966281 0.257489i \(-0.917105\pi\)
0.257489 + 0.966281i \(0.417105\pi\)
\(464\) −0.865996 + 1.49995i −0.0402028 + 0.0696334i
\(465\) 0.0279712 + 0.0484476i 0.00129714 + 0.00224670i
\(466\) −7.93498 2.12617i −0.367581 0.0984930i
\(467\) −8.90667 + 15.4268i −0.412152 + 0.713868i −0.995125 0.0986238i \(-0.968556\pi\)
0.582973 + 0.812491i \(0.301889\pi\)
\(468\) 5.13545 0.816087i 0.237386 0.0377237i
\(469\) 20.5321 17.1612i 0.948082 0.792429i
\(470\) 0.258873 + 0.258873i 0.0119409 + 0.0119409i
\(471\) 4.83965 8.38253i 0.222999 0.386246i
\(472\) −2.59836 4.50050i −0.119599 0.207152i
\(473\) 2.90490 10.8412i 0.133567 0.498480i
\(474\) 1.77160 + 6.61169i 0.0813722 + 0.303685i
\(475\) 18.6881 + 18.6881i 0.857468 + 0.857468i
\(476\) 3.39564 + 7.31874i 0.155639 + 0.335454i
\(477\) 28.9376 1.32496
\(478\) 13.3425 + 7.70331i 0.610273 + 0.352341i
\(479\) 6.55934 24.4798i 0.299704 1.11851i −0.637706 0.770280i \(-0.720116\pi\)
0.937409 0.348229i \(-0.113217\pi\)
\(480\) 0.100701 0.0581399i 0.00459636 0.00265371i
\(481\) 12.8480 5.72822i 0.585817 0.261184i
\(482\) 3.55293i 0.161832i
\(483\) 0.950745 + 0.668451i 0.0432604 + 0.0304156i
\(484\) 3.60299 0.163772
\(485\) 0.589181 + 0.340164i 0.0267533 + 0.0154460i
\(486\) −18.5679 4.97526i −0.842258 0.225682i
\(487\) −8.64006 + 32.2452i −0.391519 + 1.46117i 0.436111 + 0.899893i \(0.356355\pi\)
−0.827630 + 0.561275i \(0.810311\pi\)
\(488\) −9.50535 + 2.54695i −0.430287 + 0.115295i
\(489\) 0.442410 + 0.442410i 0.0200065 + 0.0200065i
\(490\) 0.571961 0.676330i 0.0258386 0.0305535i
\(491\) 14.4968i 0.654231i −0.944984 0.327115i \(-0.893923\pi\)
0.944984 0.327115i \(-0.106077\pi\)
\(492\) −0.746298 2.78522i −0.0336457 0.125567i
\(493\) −1.05330 1.82436i −0.0474381 0.0821651i
\(494\) 23.5557 19.0951i 1.05982 0.859129i
\(495\) 0.800427 + 0.462127i 0.0359765 + 0.0207711i
\(496\) 4.70968 4.70968i 0.211471 0.211471i
\(497\) −2.35010 13.4798i −0.105417 0.604653i
\(498\) 5.56103i 0.249196i
\(499\) −9.55534 + 2.56035i −0.427756 + 0.114617i −0.466273 0.884641i \(-0.654403\pi\)
0.0385167 + 0.999258i \(0.487737\pi\)
\(500\) −0.403649 0.108157i −0.0180517 0.00483694i
\(501\) 5.03185 + 1.34828i 0.224806 + 0.0602367i
\(502\) −38.1184 + 10.2138i −1.70131 + 0.455864i
\(503\) 32.9620i 1.46970i 0.678229 + 0.734851i \(0.262748\pi\)
−0.678229 + 0.734851i \(0.737252\pi\)
\(504\) −5.85531 + 15.9915i −0.260816 + 0.712316i
\(505\) −0.631745 + 0.631745i −0.0281123 + 0.0281123i
\(506\) −5.07314 2.92898i −0.225528 0.130209i
\(507\) −4.37567 + 4.86976i −0.194331 + 0.216274i
\(508\) 0.0682200 + 0.118161i 0.00302678 + 0.00524253i
\(509\) 8.92421 + 33.3056i 0.395559 + 1.47624i 0.820827 + 0.571177i \(0.193513\pi\)
−0.425268 + 0.905067i \(0.639820\pi\)
\(510\) 0.370054i 0.0163863i
\(511\) 24.1580 20.1918i 1.06869 0.893233i
\(512\) 6.03549 + 6.03549i 0.266733 + 0.266733i
\(513\) −14.7941 + 3.96406i −0.653174 + 0.175018i
\(514\) 5.49105 20.4929i 0.242200 0.903903i
\(515\) 0.742629 + 0.198987i 0.0327241 + 0.00876840i
\(516\) −0.608217 0.351154i −0.0267753 0.0154587i
\(517\) −12.2276 −0.537770
\(518\) 1.46108 16.3378i 0.0641960 0.717841i
\(519\) 1.59292i 0.0699216i
\(520\) 0.240818 0.628320i 0.0105606 0.0275536i
\(521\) −28.0062 + 16.1694i −1.22697 + 0.708393i −0.966395 0.257060i \(-0.917246\pi\)
−0.260577 + 0.965453i \(0.583913\pi\)
\(522\) −0.409749 + 1.52920i −0.0179342 + 0.0669314i
\(523\) −16.8623 9.73548i −0.737339 0.425703i 0.0837622 0.996486i \(-0.473306\pi\)
−0.821101 + 0.570783i \(0.806640\pi\)
\(524\) 0.411891 0.0179935
\(525\) −6.03561 + 2.80031i −0.263415 + 0.122216i
\(526\) 0.476192 + 0.476192i 0.0207629 + 0.0207629i
\(527\) 2.09670 + 7.82500i 0.0913338 + 0.340863i
\(528\) −2.63007 + 9.81556i −0.114459 + 0.427167i
\(529\) −11.1196 19.2597i −0.483460 0.837377i
\(530\) −0.666632 + 1.15464i −0.0289566 + 0.0501544i
\(531\) −4.30605 4.30605i −0.186867 0.186867i
\(532\) −1.26291 7.24384i −0.0547540 0.314060i
\(533\) −31.8169 23.0913i −1.37815 1.00020i
\(534\) −3.22368 + 5.58358i −0.139502 + 0.241625i
\(535\) −1.35589 0.363310i −0.0586203 0.0157073i
\(536\) −11.8521 20.5285i −0.511934 0.886695i
\(537\) 1.46119 2.53086i 0.0630551 0.109215i
\(538\) −16.3088 + 16.3088i −0.703122 + 0.703122i
\(539\) 2.46488 + 29.4809i 0.106170 + 1.26983i
\(540\) 0.0855664 0.0855664i 0.00368219 0.00368219i
\(541\) −1.98308 7.40097i −0.0852594 0.318193i 0.910104 0.414380i \(-0.136002\pi\)
−0.995363 + 0.0961879i \(0.969335\pi\)
\(542\) −27.2248 + 15.7183i −1.16941 + 0.675157i
\(543\) −5.97525 + 3.44981i −0.256423 + 0.148046i
\(544\) 16.2647 4.35812i 0.697345 0.186853i
\(545\) −1.08641 −0.0465366
\(546\) 2.47519 + 7.22156i 0.105929 + 0.309054i
\(547\) −17.3075 −0.740016 −0.370008 0.929029i \(-0.620645\pi\)
−0.370008 + 0.929029i \(0.620645\pi\)
\(548\) 6.99730 1.87492i 0.298910 0.0800927i
\(549\) −9.98663 + 5.76578i −0.426219 + 0.246078i
\(550\) 29.0433 16.7682i 1.23841 0.714998i
\(551\) 0.496908 + 1.85449i 0.0211690 + 0.0790037i
\(552\) 0.727980 0.727980i 0.0309849 0.0309849i
\(553\) 20.5283 9.52443i 0.872952 0.405020i
\(554\) −26.6910 + 26.6910i −1.13399 + 1.13399i
\(555\) 0.0782285 0.135496i 0.00332062 0.00575148i
\(556\) −0.821769 1.42335i −0.0348508 0.0603633i
\(557\) −16.0740 4.30702i −0.681078 0.182494i −0.0983379 0.995153i \(-0.531353\pi\)
−0.582740 + 0.812659i \(0.698019\pi\)
\(558\) 3.04405 5.27245i 0.128865 0.223200i
\(559\) −9.45660 + 1.50277i −0.399972 + 0.0635605i
\(560\) −0.645089 0.771800i −0.0272600 0.0326145i
\(561\) −8.73959 8.73959i −0.368986 0.368986i
\(562\) 10.8554 18.8021i 0.457906 0.793117i
\(563\) 1.95468 + 3.38561i 0.0823800 + 0.142686i 0.904272 0.426957i \(-0.140415\pi\)
−0.821892 + 0.569644i \(0.807081\pi\)
\(564\) −0.198030 + 0.739059i −0.00833858 + 0.0311200i
\(565\) 0.124259 + 0.463741i 0.00522762 + 0.0195097i
\(566\) 30.0741 + 30.0741i 1.26411 + 1.26411i
\(567\) −1.59824 + 17.8716i −0.0671198 + 0.750536i
\(568\) −12.1209 −0.508581
\(569\) −2.28143 1.31718i −0.0956424 0.0552192i 0.451416 0.892314i \(-0.350919\pi\)
−0.547058 + 0.837094i \(0.684252\pi\)
\(570\) 0.0872893 0.325768i 0.00365615 0.0136449i
\(571\) −16.2796 + 9.39903i −0.681280 + 0.393337i −0.800337 0.599550i \(-0.795346\pi\)
0.119057 + 0.992887i \(0.462013\pi\)
\(572\) −3.25840 7.30834i −0.136240 0.305577i
\(573\) 4.25908i 0.177926i
\(574\) −41.5836 + 19.2933i −1.73566 + 0.805288i
\(575\) −4.35580 −0.181649
\(576\) 11.7526 + 6.78535i 0.489690 + 0.282723i
\(577\) 43.2935 + 11.6005i 1.80233 + 0.482934i 0.994339 0.106257i \(-0.0338865\pi\)
0.807994 + 0.589190i \(0.200553\pi\)
\(578\) −6.87775 + 25.6681i −0.286076 + 1.06765i
\(579\) −0.240189 + 0.0643585i −0.00998192 + 0.00267465i
\(580\) −0.0107260 0.0107260i −0.000445374 0.000445374i
\(581\) 18.1123 3.15773i 0.751423 0.131005i
\(582\) 6.83712i 0.283408i
\(583\) −11.5253 43.0130i −0.477330 1.78142i
\(584\) −13.9452 24.1538i −0.577056 0.999491i
\(585\) 0.0820177 0.784233i 0.00339101 0.0324240i
\(586\) −42.5740 24.5801i −1.75872 1.01539i
\(587\) −21.2468 + 21.2468i −0.876947 + 0.876947i −0.993218 0.116270i \(-0.962906\pi\)
0.116270 + 0.993218i \(0.462906\pi\)
\(588\) 1.82180 + 0.328471i 0.0751297 + 0.0135459i
\(589\) 7.38312i 0.304216i
\(590\) 0.271014 0.0726180i 0.0111575 0.00298964i
\(591\) −1.91176 0.512255i −0.0786394 0.0210714i
\(592\) −17.9930 4.82121i −0.739508 0.198151i
\(593\) 34.9791 9.37263i 1.43642 0.384888i 0.545142 0.838344i \(-0.316476\pi\)
0.891279 + 0.453456i \(0.149809\pi\)
\(594\) 19.4348i 0.797419i
\(595\) 1.20527 0.210129i 0.0494111 0.00861444i
\(596\) −1.25776 + 1.25776i −0.0515198 + 0.0515198i
\(597\) −7.00609 4.04497i −0.286740 0.165550i
\(598\) −0.519831 + 4.97050i −0.0212575 + 0.203259i
\(599\) 1.01128 + 1.75158i 0.0413196 + 0.0715677i 0.885946 0.463789i \(-0.153510\pi\)
−0.844626 + 0.535357i \(0.820177\pi\)
\(600\) 1.52546 + 5.69309i 0.0622766 + 0.232419i
\(601\) 16.8573i 0.687623i 0.939039 + 0.343811i \(0.111718\pi\)
−0.939039 + 0.343811i \(0.888282\pi\)
\(602\) −3.83894 + 10.4845i −0.156464 + 0.427318i
\(603\) −19.6415 19.6415i −0.799865 0.799865i
\(604\) 8.25190 2.21109i 0.335765 0.0899680i
\(605\) 0.141408 0.527741i 0.00574904 0.0214557i
\(606\) −8.67274 2.32385i −0.352306 0.0944001i
\(607\) 20.1392 + 11.6274i 0.817424 + 0.471940i 0.849528 0.527544i \(-0.176887\pi\)
−0.0321030 + 0.999485i \(0.510220\pi\)
\(608\) −15.3463 −0.622373
\(609\) −0.481422 0.0430533i −0.0195082 0.00174461i
\(610\) 0.531303i 0.0215118i
\(611\) 4.24789 + 9.52771i 0.171851 + 0.385450i
\(612\) 7.25295 4.18749i 0.293183 0.169269i
\(613\) −0.603323 + 2.25163i −0.0243680 + 0.0909426i −0.977039 0.213061i \(-0.931657\pi\)
0.952671 + 0.304003i \(0.0983234\pi\)
\(614\) −4.85642 2.80386i −0.195989 0.113155i
\(615\) −0.437249 −0.0176316
\(616\) 26.1019 + 2.33427i 1.05168 + 0.0940506i
\(617\) −8.67485 8.67485i −0.349236 0.349236i 0.510589 0.859825i \(-0.329428\pi\)
−0.859825 + 0.510589i \(0.829428\pi\)
\(618\) 1.99977 + 7.46323i 0.0804424 + 0.300215i
\(619\) 6.89158 25.7197i 0.276996 1.03376i −0.677496 0.735527i \(-0.736935\pi\)
0.954492 0.298237i \(-0.0963986\pi\)
\(620\) 0.0291665 + 0.0505178i 0.00117135 + 0.00202885i
\(621\) 1.26212 2.18606i 0.0506473 0.0877237i
\(622\) 34.0581 + 34.0581i 1.36561 + 1.36561i
\(623\) 20.0162 + 7.32898i 0.801932 + 0.293629i
\(624\) 8.56193 1.36060i 0.342751 0.0544675i
\(625\) 12.4525 21.5683i 0.498099 0.862732i
\(626\) 29.8871 + 8.00824i 1.19453 + 0.320074i
\(627\) 5.63216 + 9.75519i 0.224927 + 0.389585i
\(628\) 5.04646 8.74072i 0.201376 0.348793i
\(629\) 16.0206 16.0206i 0.638784 0.638784i
\(630\) −0.752148 0.528821i −0.0299663 0.0210687i
\(631\) −2.58488 + 2.58488i −0.102903 + 0.102903i −0.756684 0.653781i \(-0.773182\pi\)
0.653781 + 0.756684i \(0.273182\pi\)
\(632\) −5.18839 19.3633i −0.206383 0.770232i
\(633\) 9.18267 5.30162i 0.364978 0.210720i
\(634\) 6.89888 3.98307i 0.273989 0.158188i
\(635\) 0.0199848 0.00535490i 0.000793071 0.000212503i
\(636\) −2.78644 −0.110490
\(637\) 22.1151 12.1623i 0.876232 0.481889i
\(638\) 2.43622 0.0964507
\(639\) −13.7196 + 3.67616i −0.542740 + 0.145427i
\(640\) −0.941409 + 0.543523i −0.0372125 + 0.0214846i
\(641\) 26.8165 15.4825i 1.05919 0.611523i 0.133981 0.990984i \(-0.457224\pi\)
0.925208 + 0.379461i \(0.123891\pi\)
\(642\) −3.65118 13.6264i −0.144100 0.537790i
\(643\) 9.81258 9.81258i 0.386970 0.386970i −0.486635 0.873605i \(-0.661776\pi\)
0.873605 + 0.486635i \(0.161776\pi\)
\(644\) 0.991372 + 0.697015i 0.0390655 + 0.0274662i
\(645\) −0.0753055 + 0.0753055i −0.00296515 + 0.00296515i
\(646\) 24.4193 42.2955i 0.960766 1.66410i
\(647\) 13.7400 + 23.7983i 0.540174 + 0.935608i 0.998894 + 0.0470275i \(0.0149748\pi\)
−0.458720 + 0.888581i \(0.651692\pi\)
\(648\) 15.3527 + 4.11374i 0.603111 + 0.161603i
\(649\) −4.68553 + 8.11557i −0.183923 + 0.318564i
\(650\) −23.1554 16.8051i −0.908229 0.659152i
\(651\) 1.74541 + 0.639085i 0.0684079 + 0.0250477i
\(652\) 0.461314 + 0.461314i 0.0180665 + 0.0180665i
\(653\) −5.05778 + 8.76034i −0.197926 + 0.342819i −0.947856 0.318699i \(-0.896754\pi\)
0.749930 + 0.661518i \(0.230087\pi\)
\(654\) −5.45906 9.45537i −0.213466 0.369734i
\(655\) 0.0161656 0.0603308i 0.000631642 0.00235732i
\(656\) 13.4738 + 50.2849i 0.526063 + 1.96330i
\(657\) −23.1102 23.1102i −0.901615 0.901615i
\(658\) 12.1157 + 1.08349i 0.472317 + 0.0422390i
\(659\) 39.4336 1.53612 0.768058 0.640380i \(-0.221223\pi\)
0.768058 + 0.640380i \(0.221223\pi\)
\(660\) −0.0770744 0.0444989i −0.00300012 0.00173212i
\(661\) −6.57200 + 24.5270i −0.255621 + 0.953992i 0.712123 + 0.702055i \(0.247734\pi\)
−0.967744 + 0.251936i \(0.918933\pi\)
\(662\) −26.3931 + 15.2381i −1.02580 + 0.592244i
\(663\) −3.77370 + 9.84599i −0.146558 + 0.382386i
\(664\) 16.2863i 0.632032i
\(665\) −1.11059 0.0993194i −0.0430669 0.00385144i
\(666\) −17.0269 −0.659778
\(667\) −0.274030 0.158211i −0.0106105 0.00612597i
\(668\) 5.24687 + 1.40589i 0.203007 + 0.0543957i
\(669\) 3.55958 13.2845i 0.137621 0.513610i
\(670\) 1.23620 0.331238i 0.0477585 0.0127969i
\(671\) 12.5478 + 12.5478i 0.484403 + 0.484403i
\(672\) 1.32838 3.62793i 0.0512433 0.139951i
\(673\) 20.9026i 0.805734i 0.915258 + 0.402867i \(0.131986\pi\)
−0.915258 + 0.402867i \(0.868014\pi\)
\(674\) −1.23894 4.62380i −0.0477224 0.178102i
\(675\) 7.22557 + 12.5150i 0.278112 + 0.481704i
\(676\) −4.56265 + 5.07785i −0.175487 + 0.195302i
\(677\) −13.6905 7.90421i −0.526169 0.303784i 0.213286 0.976990i \(-0.431583\pi\)
−0.739455 + 0.673206i \(0.764917\pi\)
\(678\) −3.41171 + 3.41171i −0.131026 + 0.131026i
\(679\) 22.2685 3.88234i 0.854586 0.148990i
\(680\) 1.08376i 0.0415603i
\(681\) 1.68618 0.451810i 0.0646145 0.0173134i
\(682\) −9.04940 2.42478i −0.346520 0.0928496i
\(683\) −11.2605 3.01723i −0.430870 0.115451i 0.0368647 0.999320i \(-0.488263\pi\)
−0.467734 + 0.883869i \(0.654930\pi\)
\(684\) −7.37271 + 1.97551i −0.281902 + 0.0755355i
\(685\) 1.09850i 0.0419715i
\(686\) 0.170005 29.4294i 0.00649081 1.12362i
\(687\) 6.86397 6.86397i 0.261877 0.261877i
\(688\) 10.9809 + 6.33981i 0.418642 + 0.241703i
\(689\) −29.5117 + 23.9233i −1.12430 + 0.911403i
\(690\) 0.0277922 + 0.0481375i 0.00105803 + 0.00183256i
\(691\) −2.70856 10.1085i −0.103038 0.384545i 0.895077 0.445912i \(-0.147121\pi\)
−0.998115 + 0.0613673i \(0.980454\pi\)
\(692\) 1.66099i 0.0631415i
\(693\) 30.2527 5.27432i 1.14921 0.200355i
\(694\) 9.25675 + 9.25675i 0.351381 + 0.351381i
\(695\) −0.240734 + 0.0645044i −0.00913155 + 0.00244679i
\(696\) −0.110815 + 0.413569i −0.00420045 + 0.0156763i
\(697\) −61.1607 16.3880i −2.31663 0.620738i
\(698\) 15.6887 + 9.05789i 0.593827 + 0.342846i
\(699\) −2.60345 −0.0984716
\(700\) −6.29352 + 2.91998i −0.237873 + 0.110365i
\(701\) 36.2902i 1.37066i −0.728232 0.685331i \(-0.759657\pi\)
0.728232 0.685331i \(-0.240343\pi\)
\(702\) 15.1435 6.75167i 0.571555 0.254826i
\(703\) −17.8823 + 10.3244i −0.674445 + 0.389391i
\(704\) 5.40497 20.1716i 0.203707 0.760246i
\(705\) 0.100480 + 0.0580122i 0.00378430 + 0.00218486i
\(706\) 26.8591 1.01086
\(707\) −2.64412 + 29.5666i −0.0994425 + 1.11197i
\(708\) 0.414636 + 0.414636i 0.0155830 + 0.0155830i
\(709\) 1.66812 + 6.22549i 0.0626474 + 0.233803i 0.990149 0.140015i \(-0.0447151\pi\)
−0.927502 + 0.373818i \(0.878048\pi\)
\(710\) 0.169375 0.632116i 0.00635653 0.0237229i
\(711\) −11.7455 20.3438i −0.440490 0.762951i
\(712\) 9.44103 16.3523i 0.353818 0.612830i
\(713\) 0.860425 + 0.860425i 0.0322232 + 0.0322232i
\(714\) 7.88514 + 9.43397i 0.295094 + 0.353058i
\(715\) −1.19836 + 0.190434i −0.0448160 + 0.00712183i
\(716\) 1.52363 2.63901i 0.0569408 0.0986244i
\(717\) 4.71627 + 1.26372i 0.176132 + 0.0471945i
\(718\) −17.9479 31.0866i −0.669808 1.16014i
\(719\) 2.59436 4.49357i 0.0967533 0.167582i −0.813586 0.581445i \(-0.802488\pi\)
0.910339 + 0.413863i \(0.135821\pi\)
\(720\) −0.738325 + 0.738325i −0.0275158 + 0.0275158i
\(721\) 23.1722 10.7511i 0.862978 0.400392i
\(722\) −10.1246 + 10.1246i −0.376799 + 0.376799i
\(723\) 0.291427 + 1.08762i 0.0108383 + 0.0404491i
\(724\) −6.23059 + 3.59723i −0.231558 + 0.133690i
\(725\) 1.56880 0.905748i 0.0582639 0.0336387i
\(726\) 5.30366 1.42111i 0.196837 0.0527424i
\(727\) 23.5345 0.872848 0.436424 0.899741i \(-0.356245\pi\)
0.436424 + 0.899741i \(0.356245\pi\)
\(728\) −7.24898 21.1494i −0.268665 0.783849i
\(729\) 14.2532 0.527898
\(730\) 1.45451 0.389735i 0.0538338 0.0144247i
\(731\) −13.3558 + 7.71100i −0.493984 + 0.285202i
\(732\) 0.961628 0.555196i 0.0355428 0.0205206i
\(733\) −0.491030 1.83255i −0.0181366 0.0676867i 0.956264 0.292503i \(-0.0944883\pi\)
−0.974401 + 0.224817i \(0.927822\pi\)
\(734\) −28.8516 + 28.8516i −1.06493 + 1.06493i
\(735\) 0.119613 0.253953i 0.00441198 0.00936718i
\(736\) 1.78844 1.78844i 0.0659230 0.0659230i
\(737\) −21.3725 + 37.0182i −0.787265 + 1.36358i
\(738\) 23.7925 + 41.2097i 0.875812 + 1.51695i
\(739\) −6.31322 1.69162i −0.232236 0.0622274i 0.140824 0.990035i \(-0.455025\pi\)
−0.373060 + 0.927807i \(0.621691\pi\)
\(740\) 0.0815714 0.141286i 0.00299862 0.00519377i
\(741\) 5.64458 7.77752i 0.207359 0.285714i
\(742\) 7.60837 + 43.6404i 0.279312 + 1.60209i
\(743\) 12.2516 + 12.2516i 0.449468 + 0.449468i 0.895178 0.445709i \(-0.147049\pi\)
−0.445709 + 0.895178i \(0.647049\pi\)
\(744\) 0.823255 1.42592i 0.0301820 0.0522768i
\(745\) 0.134864 + 0.233591i 0.00494103 + 0.00855812i
\(746\) −6.83712 + 25.5165i −0.250325 + 0.934225i
\(747\) −4.93950 18.4345i −0.180727 0.674482i
\(748\) −9.11304 9.11304i −0.333206 0.333206i
\(749\) −42.3078 + 19.6294i −1.54589 + 0.717241i
\(750\) −0.636837 −0.0232540
\(751\) −35.4951 20.4931i −1.29524 0.747805i −0.315659 0.948873i \(-0.602225\pi\)
−0.979577 + 0.201068i \(0.935559\pi\)
\(752\) 3.57528 13.3431i 0.130377 0.486573i
\(753\) −10.8310 + 6.25328i −0.394704 + 0.227882i
\(754\) −0.846344 1.89829i −0.0308220 0.0691316i
\(755\) 1.29546i 0.0471466i
\(756\) 0.358132 4.00464i 0.0130251 0.145647i
\(757\) −25.7292 −0.935142 −0.467571 0.883955i \(-0.654871\pi\)
−0.467571 + 0.883955i \(0.654871\pi\)
\(758\) −52.6575 30.4018i −1.91261 1.10424i
\(759\) −1.79323 0.480496i −0.0650903 0.0174409i
\(760\) −0.255640 + 0.954061i −0.00927303 + 0.0346074i
\(761\) 27.4299 7.34981i 0.994332 0.266430i 0.275263 0.961369i \(-0.411235\pi\)
0.719069 + 0.694939i \(0.244568\pi\)
\(762\) 0.147027 + 0.147027i 0.00532621 + 0.00532621i
\(763\) −27.6963 + 23.1492i −1.00267 + 0.838058i
\(764\) 4.44108i 0.160673i
\(765\) −0.328695 1.22671i −0.0118840 0.0443517i
\(766\) −21.4601 37.1701i −0.775387 1.34301i
\(767\) 7.95138 + 0.831581i 0.287108 + 0.0300267i
\(768\) −5.15080 2.97382i −0.185864 0.107308i
\(769\) 20.7240 20.7240i 0.747328 0.747328i −0.226649 0.973977i \(-0.572777\pi\)
0.973977 + 0.226649i \(0.0727770\pi\)
\(770\) −0.486477 + 1.32862i −0.0175314 + 0.0478802i
\(771\) 6.72367i 0.242147i
\(772\) −0.250453 + 0.0671086i −0.00901399 + 0.00241529i
\(773\) 5.88696 + 1.57741i 0.211739 </