# Properties

 Label 91.2.bb Level $91$ Weight $2$ Character orbit 91.bb Rep. character $\chi_{91}(5,\cdot)$ Character field $\Q(\zeta_{12})$ Dimension $32$ Newform subspaces $1$ Sturm bound $18$ Trace bound $0$

# Related objects

## Defining parameters

 Level: $$N$$ $$=$$ $$91 = 7 \cdot 13$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 91.bb (of order $$12$$ and degree $$4$$) Character conductor: $$\operatorname{cond}(\chi)$$ $$=$$ $$91$$ Character field: $$\Q(\zeta_{12})$$ Newform subspaces: $$1$$ Sturm bound: $$18$$ Trace bound: $$0$$

## Dimensions

The following table gives the dimensions of various subspaces of $$M_{2}(91, [\chi])$$.

Total New Old
Modular forms 48 48 0
Cusp forms 32 32 0
Eisenstein series 16 16 0

## Trace form

 $$32q - 2q^{2} - 12q^{3} - 6q^{5} - 6q^{7} - 16q^{8} + 8q^{9} + O(q^{10})$$ $$32q - 2q^{2} - 12q^{3} - 6q^{5} - 6q^{7} - 16q^{8} + 8q^{9} - 10q^{11} + 28q^{14} - 44q^{15} + 12q^{16} - 4q^{18} + 12q^{19} - 26q^{21} - 8q^{22} - 12q^{24} + 24q^{26} - 6q^{28} + 16q^{29} + 24q^{31} + 4q^{32} + 48q^{33} + 28q^{35} - 8q^{37} - 6q^{39} - 132q^{40} - 16q^{42} - 42q^{44} - 24q^{45} + 12q^{46} + 30q^{47} + 88q^{50} + 36q^{52} - 12q^{53} + 78q^{54} + 40q^{57} + 26q^{58} - 54q^{59} + 16q^{60} - 48q^{61} + 24q^{63} - 8q^{65} + 12q^{66} + 16q^{67} - 48q^{68} + 50q^{70} - 36q^{71} + 22q^{72} + 66q^{73} + 12q^{74} - 176q^{78} - 32q^{79} + 138q^{80} + 16q^{81} - 58q^{84} - 84q^{85} + 42q^{86} - 24q^{87} - 60q^{89} + 48q^{92} + 6q^{93} - 72q^{94} - 42q^{96} - 86q^{98} - 24q^{99} + O(q^{100})$$

## Decomposition of $$S_{2}^{\mathrm{new}}(91, [\chi])$$ into newform subspaces

Label Dim. $$A$$ Field CM Traces $q$-expansion
$$a_2$$ $$a_3$$ $$a_5$$ $$a_7$$
91.2.bb.a $$32$$ $$0.727$$ None $$-2$$ $$-12$$ $$-6$$ $$-6$$