Properties

Label 91.2.ba
Level $91$
Weight $2$
Character orbit 91.ba
Rep. character $\chi_{91}(45,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $28$
Newform subspaces $1$
Sturm bound $18$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 91 = 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 91.ba (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 91 \)
Character field: \(\Q(\zeta_{12})\)
Newform subspaces: \( 1 \)
Sturm bound: \(18\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(91, [\chi])\).

Total New Old
Modular forms 44 44 0
Cusp forms 28 28 0
Eisenstein series 16 16 0

Trace form

\( 28q - 2q^{2} - 6q^{3} - 6q^{5} - 12q^{6} - 6q^{7} - 4q^{8} + 6q^{9} + O(q^{10}) \) \( 28q - 2q^{2} - 6q^{3} - 6q^{5} - 12q^{6} - 6q^{7} - 4q^{8} + 6q^{9} - 6q^{10} + 2q^{11} - 8q^{12} - 20q^{14} + 10q^{15} + 4q^{16} - 12q^{17} + 2q^{18} + 14q^{19} + 36q^{20} - 6q^{21} - 8q^{22} - 18q^{24} + 24q^{26} + 2q^{28} - 8q^{29} - 30q^{30} - 4q^{31} + 10q^{32} - 12q^{33} - 12q^{34} - 20q^{35} + 54q^{36} - 10q^{37} - 20q^{39} + 48q^{40} - 18q^{41} - 10q^{42} + 48q^{43} - 6q^{44} - 6q^{45} + 24q^{46} - 6q^{47} - 12q^{48} - 50q^{49} + 10q^{50} - 12q^{51} - 26q^{52} + 12q^{53} - 30q^{54} + 6q^{55} + 54q^{56} + 12q^{57} - 46q^{58} + 42q^{59} + 10q^{60} + 30q^{61} + 36q^{62} + 54q^{63} + 28q^{65} + 66q^{66} - 10q^{67} - 42q^{69} - 88q^{70} - 42q^{71} + 46q^{72} + 40q^{73} + 12q^{74} - 40q^{75} - 52q^{76} - 62q^{78} + 4q^{79} + 30q^{80} - 6q^{81} - 54q^{82} + 66q^{83} + 104q^{84} - 54q^{85} - 18q^{86} - 6q^{88} + 72q^{90} + 26q^{91} - 156q^{92} + 20q^{93} - 18q^{94} - 66q^{96} - 62q^{97} - 56q^{98} - 36q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(91, [\chi])\) into newform subspaces

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
91.2.ba.a \(28\) \(0.727\) None \(-2\) \(-6\) \(-6\) \(-6\)