Properties

Label 9075.2.a.x
Level 9075
Weight 2
Character orbit 9075.a
Self dual yes
Analytic conductor 72.464
Analytic rank 1
Dimension 2
CM no
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 9075 = 3 \cdot 5^{2} \cdot 11^{2} \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 9075.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(72.4642398343\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{5}) \)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 33)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{5})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q -\beta q^{2} - q^{3} + ( -1 + \beta ) q^{4} + \beta q^{6} -3 q^{7} + ( -1 + 2 \beta ) q^{8} + q^{9} +O(q^{10})\) \( q -\beta q^{2} - q^{3} + ( -1 + \beta ) q^{4} + \beta q^{6} -3 q^{7} + ( -1 + 2 \beta ) q^{8} + q^{9} + ( 1 - \beta ) q^{12} + ( -3 - 2 \beta ) q^{13} + 3 \beta q^{14} -3 \beta q^{16} + ( -1 + \beta ) q^{17} -\beta q^{18} + ( 4 - 3 \beta ) q^{19} + 3 q^{21} + ( -1 + 4 \beta ) q^{23} + ( 1 - 2 \beta ) q^{24} + ( 2 + 5 \beta ) q^{26} - q^{27} + ( 3 - 3 \beta ) q^{28} + ( 2 - 4 \beta ) q^{29} + ( 1 - 3 \beta ) q^{31} + ( 5 - \beta ) q^{32} - q^{34} + ( -1 + \beta ) q^{36} + ( 1 + 2 \beta ) q^{37} + ( 3 - \beta ) q^{38} + ( 3 + 2 \beta ) q^{39} + ( -7 + 8 \beta ) q^{41} -3 \beta q^{42} + ( -5 + 2 \beta ) q^{43} + ( -4 - 3 \beta ) q^{46} + ( -1 + \beta ) q^{47} + 3 \beta q^{48} + 2 q^{49} + ( 1 - \beta ) q^{51} + ( 1 - 3 \beta ) q^{52} + ( 9 - \beta ) q^{53} + \beta q^{54} + ( 3 - 6 \beta ) q^{56} + ( -4 + 3 \beta ) q^{57} + ( 4 + 2 \beta ) q^{58} + ( 6 - 7 \beta ) q^{59} + ( 6 - 3 \beta ) q^{61} + ( 3 + 2 \beta ) q^{62} -3 q^{63} + ( 1 + 2 \beta ) q^{64} + ( 4 - 9 \beta ) q^{67} + ( 2 - \beta ) q^{68} + ( 1 - 4 \beta ) q^{69} + 9 \beta q^{71} + ( -1 + 2 \beta ) q^{72} + ( 2 - 2 \beta ) q^{73} + ( -2 - 3 \beta ) q^{74} + ( -7 + 4 \beta ) q^{76} + ( -2 - 5 \beta ) q^{78} + ( 7 - 4 \beta ) q^{79} + q^{81} + ( -8 - \beta ) q^{82} + ( 3 + 6 \beta ) q^{83} + ( -3 + 3 \beta ) q^{84} + ( -2 + 3 \beta ) q^{86} + ( -2 + 4 \beta ) q^{87} + ( 3 + 4 \beta ) q^{89} + ( 9 + 6 \beta ) q^{91} + ( 5 - \beta ) q^{92} + ( -1 + 3 \beta ) q^{93} - q^{94} + ( -5 + \beta ) q^{96} + ( 6 - 13 \beta ) q^{97} -2 \beta q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - q^{2} - 2q^{3} - q^{4} + q^{6} - 6q^{7} + 2q^{9} + O(q^{10}) \) \( 2q - q^{2} - 2q^{3} - q^{4} + q^{6} - 6q^{7} + 2q^{9} + q^{12} - 8q^{13} + 3q^{14} - 3q^{16} - q^{17} - q^{18} + 5q^{19} + 6q^{21} + 2q^{23} + 9q^{26} - 2q^{27} + 3q^{28} - q^{31} + 9q^{32} - 2q^{34} - q^{36} + 4q^{37} + 5q^{38} + 8q^{39} - 6q^{41} - 3q^{42} - 8q^{43} - 11q^{46} - q^{47} + 3q^{48} + 4q^{49} + q^{51} - q^{52} + 17q^{53} + q^{54} - 5q^{57} + 10q^{58} + 5q^{59} + 9q^{61} + 8q^{62} - 6q^{63} + 4q^{64} - q^{67} + 3q^{68} - 2q^{69} + 9q^{71} + 2q^{73} - 7q^{74} - 10q^{76} - 9q^{78} + 10q^{79} + 2q^{81} - 17q^{82} + 12q^{83} - 3q^{84} - q^{86} + 10q^{89} + 24q^{91} + 9q^{92} + q^{93} - 2q^{94} - 9q^{96} - q^{97} - 2q^{98} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
1.61803
−0.618034
−1.61803 −1.00000 0.618034 0 1.61803 −3.00000 2.23607 1.00000 0
1.2 0.618034 −1.00000 −1.61803 0 −0.618034 −3.00000 −2.23607 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 9075.2.a.x 2
5.b even 2 1 363.2.a.h 2
11.b odd 2 1 9075.2.a.bv 2
11.c even 5 2 825.2.n.f 4
15.d odd 2 1 1089.2.a.m 2
20.d odd 2 1 5808.2.a.bl 2
55.d odd 2 1 363.2.a.e 2
55.h odd 10 2 363.2.e.c 4
55.h odd 10 2 363.2.e.j 4
55.j even 10 2 33.2.e.a 4
55.j even 10 2 363.2.e.h 4
55.k odd 20 4 825.2.bx.b 8
165.d even 2 1 1089.2.a.s 2
165.o odd 10 2 99.2.f.b 4
220.g even 2 1 5808.2.a.bm 2
220.n odd 10 2 528.2.y.f 4
495.bl even 30 4 891.2.n.d 8
495.bp odd 30 4 891.2.n.a 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
33.2.e.a 4 55.j even 10 2
99.2.f.b 4 165.o odd 10 2
363.2.a.e 2 55.d odd 2 1
363.2.a.h 2 5.b even 2 1
363.2.e.c 4 55.h odd 10 2
363.2.e.h 4 55.j even 10 2
363.2.e.j 4 55.h odd 10 2
528.2.y.f 4 220.n odd 10 2
825.2.n.f 4 11.c even 5 2
825.2.bx.b 8 55.k odd 20 4
891.2.n.a 8 495.bp odd 30 4
891.2.n.d 8 495.bl even 30 4
1089.2.a.m 2 15.d odd 2 1
1089.2.a.s 2 165.d even 2 1
5808.2.a.bl 2 20.d odd 2 1
5808.2.a.bm 2 220.g even 2 1
9075.2.a.x 2 1.a even 1 1 trivial
9075.2.a.bv 2 11.b odd 2 1

Atkin-Lehner signs

\( p \) Sign
\(3\) \(1\)
\(5\) \(1\)
\(11\) \(1\)

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(9075))\):

\( T_{2}^{2} + T_{2} - 1 \)
\( T_{7} + 3 \)
\( T_{13}^{2} + 8 T_{13} + 11 \)
\( T_{17}^{2} + T_{17} - 1 \)
\( T_{19}^{2} - 5 T_{19} - 5 \)
\( T_{23}^{2} - 2 T_{23} - 19 \)
\( T_{37}^{2} - 4 T_{37} - 1 \)

Hecke Characteristic Polynomials

$p$ $F_p(T)$
$2$ \( 1 + T + 3 T^{2} + 2 T^{3} + 4 T^{4} \)
$3$ \( ( 1 + T )^{2} \)
$5$ 1
$7$ \( ( 1 + 3 T + 7 T^{2} )^{2} \)
$11$ 1
$13$ \( 1 + 8 T + 37 T^{2} + 104 T^{3} + 169 T^{4} \)
$17$ \( 1 + T + 33 T^{2} + 17 T^{3} + 289 T^{4} \)
$19$ \( 1 - 5 T + 33 T^{2} - 95 T^{3} + 361 T^{4} \)
$23$ \( 1 - 2 T + 27 T^{2} - 46 T^{3} + 529 T^{4} \)
$29$ \( 1 + 38 T^{2} + 841 T^{4} \)
$31$ \( 1 + T + 51 T^{2} + 31 T^{3} + 961 T^{4} \)
$37$ \( 1 - 4 T + 73 T^{2} - 148 T^{3} + 1369 T^{4} \)
$41$ \( 1 + 6 T + 11 T^{2} + 246 T^{3} + 1681 T^{4} \)
$43$ \( 1 + 8 T + 97 T^{2} + 344 T^{3} + 1849 T^{4} \)
$47$ \( 1 + T + 93 T^{2} + 47 T^{3} + 2209 T^{4} \)
$53$ \( 1 - 17 T + 177 T^{2} - 901 T^{3} + 2809 T^{4} \)
$59$ \( 1 - 5 T + 63 T^{2} - 295 T^{3} + 3481 T^{4} \)
$61$ \( 1 - 9 T + 131 T^{2} - 549 T^{3} + 3721 T^{4} \)
$67$ \( 1 + T + 33 T^{2} + 67 T^{3} + 4489 T^{4} \)
$71$ \( 1 - 9 T + 61 T^{2} - 639 T^{3} + 5041 T^{4} \)
$73$ \( 1 - 2 T + 142 T^{2} - 146 T^{3} + 5329 T^{4} \)
$79$ \( 1 - 10 T + 163 T^{2} - 790 T^{3} + 6241 T^{4} \)
$83$ \( 1 - 12 T + 157 T^{2} - 996 T^{3} + 6889 T^{4} \)
$89$ \( 1 - 10 T + 183 T^{2} - 890 T^{3} + 7921 T^{4} \)
$97$ \( 1 + T - 17 T^{2} + 97 T^{3} + 9409 T^{4} \)
show more
show less