Properties

Label 9075.2.a.g
Level $9075$
Weight $2$
Character orbit 9075.a
Self dual yes
Analytic conductor $72.464$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 9075 = 3 \cdot 5^{2} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9075.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(72.4642398343\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 15)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q - q^{2} + q^{3} - q^{4} - q^{6} + 3q^{8} + q^{9} + O(q^{10}) \) \( q - q^{2} + q^{3} - q^{4} - q^{6} + 3q^{8} + q^{9} - q^{12} - 2q^{13} - q^{16} + 2q^{17} - q^{18} - 4q^{19} + 3q^{24} + 2q^{26} + q^{27} + 2q^{29} - 5q^{32} - 2q^{34} - q^{36} + 10q^{37} + 4q^{38} - 2q^{39} - 10q^{41} + 4q^{43} - 8q^{47} - q^{48} - 7q^{49} + 2q^{51} + 2q^{52} + 10q^{53} - q^{54} - 4q^{57} - 2q^{58} - 4q^{59} + 2q^{61} + 7q^{64} - 12q^{67} - 2q^{68} - 8q^{71} + 3q^{72} + 10q^{73} - 10q^{74} + 4q^{76} + 2q^{78} + q^{81} + 10q^{82} + 12q^{83} - 4q^{86} + 2q^{87} - 6q^{89} + 8q^{94} - 5q^{96} - 2q^{97} + 7q^{98} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−1.00000 1.00000 −1.00000 0 −1.00000 0 3.00000 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \(-1\)
\(5\) \(1\)
\(11\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 9075.2.a.g 1
5.b even 2 1 1815.2.a.d 1
11.b odd 2 1 75.2.a.b 1
15.d odd 2 1 5445.2.a.c 1
33.d even 2 1 225.2.a.b 1
44.c even 2 1 1200.2.a.e 1
55.d odd 2 1 15.2.a.a 1
55.e even 4 2 75.2.b.b 2
77.b even 2 1 3675.2.a.j 1
88.b odd 2 1 4800.2.a.t 1
88.g even 2 1 4800.2.a.bz 1
132.d odd 2 1 3600.2.a.u 1
165.d even 2 1 45.2.a.a 1
165.l odd 4 2 225.2.b.b 2
220.g even 2 1 240.2.a.d 1
220.i odd 4 2 1200.2.f.h 2
385.h even 2 1 735.2.a.c 1
385.o even 6 2 735.2.i.d 2
385.q odd 6 2 735.2.i.e 2
440.c even 2 1 960.2.a.a 1
440.o odd 2 1 960.2.a.l 1
440.t even 4 2 4800.2.f.bf 2
440.w odd 4 2 4800.2.f.c 2
495.o odd 6 2 405.2.e.f 2
495.r even 6 2 405.2.e.c 2
660.g odd 2 1 720.2.a.c 1
660.q even 4 2 3600.2.f.e 2
715.c odd 2 1 2535.2.a.j 1
880.x odd 4 2 3840.2.k.m 2
880.bi even 4 2 3840.2.k.r 2
935.h odd 2 1 4335.2.a.c 1
1045.e even 2 1 5415.2.a.j 1
1155.e odd 2 1 2205.2.a.i 1
1265.f even 2 1 7935.2.a.d 1
1320.b odd 2 1 2880.2.a.bc 1
1320.u even 2 1 2880.2.a.y 1
2145.k even 2 1 7605.2.a.g 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
15.2.a.a 1 55.d odd 2 1
45.2.a.a 1 165.d even 2 1
75.2.a.b 1 11.b odd 2 1
75.2.b.b 2 55.e even 4 2
225.2.a.b 1 33.d even 2 1
225.2.b.b 2 165.l odd 4 2
240.2.a.d 1 220.g even 2 1
405.2.e.c 2 495.r even 6 2
405.2.e.f 2 495.o odd 6 2
720.2.a.c 1 660.g odd 2 1
735.2.a.c 1 385.h even 2 1
735.2.i.d 2 385.o even 6 2
735.2.i.e 2 385.q odd 6 2
960.2.a.a 1 440.c even 2 1
960.2.a.l 1 440.o odd 2 1
1200.2.a.e 1 44.c even 2 1
1200.2.f.h 2 220.i odd 4 2
1815.2.a.d 1 5.b even 2 1
2205.2.a.i 1 1155.e odd 2 1
2535.2.a.j 1 715.c odd 2 1
2880.2.a.y 1 1320.u even 2 1
2880.2.a.bc 1 1320.b odd 2 1
3600.2.a.u 1 132.d odd 2 1
3600.2.f.e 2 660.q even 4 2
3675.2.a.j 1 77.b even 2 1
3840.2.k.m 2 880.x odd 4 2
3840.2.k.r 2 880.bi even 4 2
4335.2.a.c 1 935.h odd 2 1
4800.2.a.t 1 88.b odd 2 1
4800.2.a.bz 1 88.g even 2 1
4800.2.f.c 2 440.w odd 4 2
4800.2.f.bf 2 440.t even 4 2
5415.2.a.j 1 1045.e even 2 1
5445.2.a.c 1 15.d odd 2 1
7605.2.a.g 1 2145.k even 2 1
7935.2.a.d 1 1265.f even 2 1
9075.2.a.g 1 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(9075))\):

\( T_{2} + 1 \)
\( T_{7} \)
\( T_{13} + 2 \)
\( T_{17} - 2 \)
\( T_{19} + 4 \)
\( T_{23} \)
\( T_{37} - 10 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 1 + T \)
$3$ \( -1 + T \)
$5$ \( T \)
$7$ \( T \)
$11$ \( T \)
$13$ \( 2 + T \)
$17$ \( -2 + T \)
$19$ \( 4 + T \)
$23$ \( T \)
$29$ \( -2 + T \)
$31$ \( T \)
$37$ \( -10 + T \)
$41$ \( 10 + T \)
$43$ \( -4 + T \)
$47$ \( 8 + T \)
$53$ \( -10 + T \)
$59$ \( 4 + T \)
$61$ \( -2 + T \)
$67$ \( 12 + T \)
$71$ \( 8 + T \)
$73$ \( -10 + T \)
$79$ \( T \)
$83$ \( -12 + T \)
$89$ \( 6 + T \)
$97$ \( 2 + T \)
show more
show less