Properties

Label 9075.2.a.cq
Level $9075$
Weight $2$
Character orbit 9075.a
Self dual yes
Analytic conductor $72.464$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [9075,2,Mod(1,9075)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("9075.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9075, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 9075 = 3 \cdot 5^{2} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9075.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-1,4,9,0,-1,8,-3,4,0,0,9,15,7,0,7,6,-1,-1,0,8,0,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(23)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(72.4642398343\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.5725.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 8x^{2} + 6x + 11 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 165)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_{2} + \beta_1) q^{2} + q^{3} + ( - \beta_{3} - \beta_{2} + 3) q^{4} + ( - \beta_{2} + \beta_1) q^{6} + ( - \beta_{3} + \beta_1 + 2) q^{7} + ( - 4 \beta_{2} + \beta_1 + 1) q^{8} + q^{9}+ \cdots + ( - 17 \beta_{2} + 7 \beta_1 + 7) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - q^{2} + 4 q^{3} + 9 q^{4} - q^{6} + 8 q^{7} - 3 q^{8} + 4 q^{9} + 9 q^{12} + 15 q^{13} + 7 q^{14} + 7 q^{16} + 6 q^{17} - q^{18} - q^{19} + 8 q^{21} + q^{23} - 3 q^{24} - 18 q^{26} + 4 q^{27}+ \cdots + q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} - 8x^{2} + 6x + 11 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} - 5\nu + 1 ) / 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{2} - 4 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} + 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 3\beta_{2} + 5\beta _1 - 1 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−0.933531
−2.48008
2.55157
1.86205
−2.55157 1.00000 4.51049 0 −2.55157 4.19499 −6.40567 1.00000 0
1.2 −1.86205 1.00000 1.46722 0 −1.86205 −2.63089 0.992053 1.00000 0
1.3 0.933531 1.00000 −1.12852 0 0.933531 2.04108 −2.92057 1.00000 0
1.4 2.48008 1.00000 4.15081 0 2.48008 4.39482 5.33418 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(5\) \( +1 \)
\(11\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 9075.2.a.cq 4
5.b even 2 1 1815.2.a.v 4
11.b odd 2 1 9075.2.a.dg 4
11.c even 5 2 825.2.n.i 8
15.d odd 2 1 5445.2.a.bk 4
55.d odd 2 1 1815.2.a.r 4
55.j even 10 2 165.2.m.b 8
55.k odd 20 4 825.2.bx.g 16
165.d even 2 1 5445.2.a.br 4
165.o odd 10 2 495.2.n.b 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
165.2.m.b 8 55.j even 10 2
495.2.n.b 8 165.o odd 10 2
825.2.n.i 8 11.c even 5 2
825.2.bx.g 16 55.k odd 20 4
1815.2.a.r 4 55.d odd 2 1
1815.2.a.v 4 5.b even 2 1
5445.2.a.bk 4 15.d odd 2 1
5445.2.a.br 4 165.d even 2 1
9075.2.a.cq 4 1.a even 1 1 trivial
9075.2.a.dg 4 11.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(9075))\):

\( T_{2}^{4} + T_{2}^{3} - 8T_{2}^{2} - 6T_{2} + 11 \) Copy content Toggle raw display
\( T_{7}^{4} - 8T_{7}^{3} + 8T_{7}^{2} + 57T_{7} - 99 \) Copy content Toggle raw display
\( T_{13}^{4} - 15T_{13}^{3} + 76T_{13}^{2} - 150T_{13} + 99 \) Copy content Toggle raw display
\( T_{17}^{4} - 6T_{17}^{3} - 20T_{17}^{2} + 102T_{17} + 99 \) Copy content Toggle raw display
\( T_{19}^{4} + T_{19}^{3} - 10T_{19}^{2} - 12T_{19} + 9 \) Copy content Toggle raw display
\( T_{23}^{4} - T_{23}^{3} - 39T_{23}^{2} + 29T_{23} + 341 \) Copy content Toggle raw display
\( T_{37}^{4} - T_{37}^{3} - 83T_{37}^{2} + 21T_{37} + 1151 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} + T^{3} + \cdots + 11 \) Copy content Toggle raw display
$3$ \( (T - 1)^{4} \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} - 8 T^{3} + \cdots - 99 \) Copy content Toggle raw display
$11$ \( T^{4} \) Copy content Toggle raw display
$13$ \( T^{4} - 15 T^{3} + \cdots + 99 \) Copy content Toggle raw display
$17$ \( T^{4} - 6 T^{3} + \cdots + 99 \) Copy content Toggle raw display
$19$ \( T^{4} + T^{3} - 10 T^{2} + \cdots + 9 \) Copy content Toggle raw display
$23$ \( T^{4} - T^{3} + \cdots + 341 \) Copy content Toggle raw display
$29$ \( T^{4} - 17 T^{3} + \cdots - 619 \) Copy content Toggle raw display
$31$ \( T^{4} - 15 T^{3} + \cdots - 25 \) Copy content Toggle raw display
$37$ \( T^{4} - T^{3} + \cdots + 1151 \) Copy content Toggle raw display
$41$ \( T^{4} + 12 T^{3} + \cdots + 11 \) Copy content Toggle raw display
$43$ \( T^{4} - 14 T^{3} + \cdots + 9 \) Copy content Toggle raw display
$47$ \( T^{4} + 14 T^{3} + \cdots - 3509 \) Copy content Toggle raw display
$53$ \( T^{4} + 2 T^{3} + \cdots + 1711 \) Copy content Toggle raw display
$59$ \( T^{4} + 11 T^{3} + \cdots - 99 \) Copy content Toggle raw display
$61$ \( T^{4} - T^{3} + \cdots + 1111 \) Copy content Toggle raw display
$67$ \( T^{4} + 5 T^{3} + \cdots + 1049 \) Copy content Toggle raw display
$71$ \( T^{4} + 3 T^{3} + \cdots - 821 \) Copy content Toggle raw display
$73$ \( T^{4} - 45 T^{3} + \cdots - 151 \) Copy content Toggle raw display
$79$ \( T^{4} - 229 T^{2} + \cdots - 841 \) Copy content Toggle raw display
$83$ \( T^{4} + 15 T^{3} + \cdots - 1975 \) Copy content Toggle raw display
$89$ \( T^{4} - 2 T^{3} + \cdots + 99 \) Copy content Toggle raw display
$97$ \( T^{4} - 26 T^{3} + \cdots + 891 \) Copy content Toggle raw display
show more
show less