Properties

Label 9075.2.a.cj
Level $9075$
Weight $2$
Character orbit 9075.a
Self dual yes
Analytic conductor $72.464$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9075,2,Mod(1,9075)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9075, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9075.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 9075 = 3 \cdot 5^{2} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9075.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(72.4642398343\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.568.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 6x - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 825)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_1 + 1) q^{2} - q^{3} + (\beta_{2} + 3) q^{4} + (\beta_1 - 1) q^{6} + ( - \beta_{2} - \beta_1 - 1) q^{7} + (2 \beta_{2} - \beta_1 + 3) q^{8} + q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + ( - \beta_1 + 1) q^{2} - q^{3} + (\beta_{2} + 3) q^{4} + (\beta_1 - 1) q^{6} + ( - \beta_{2} - \beta_1 - 1) q^{7} + (2 \beta_{2} - \beta_1 + 3) q^{8} + q^{9} + ( - \beta_{2} - 3) q^{12} + ( - \beta_{2} - 2) q^{13} + ( - \beta_{2} + 2 \beta_1 + 1) q^{14} + (3 \beta_{2} - 2 \beta_1 + 5) q^{16} + ( - 2 \beta_{2} - \beta_1 + 1) q^{17} + ( - \beta_1 + 1) q^{18} + (\beta_{2} - \beta_1 + 1) q^{19} + (\beta_{2} + \beta_1 + 1) q^{21} + (\beta_{2} - 2 \beta_1 + 1) q^{23} + ( - 2 \beta_{2} + \beta_1 - 3) q^{24} + ( - 2 \beta_{2} + 2 \beta_1 - 4) q^{26} - q^{27} + ( - 2 \beta_{2} - \beta_1 - 7) q^{28} - 2 \beta_1 q^{29} + (\beta_{2} + 6) q^{31} + (4 \beta_{2} - \beta_1 + 13) q^{32} + ( - 3 \beta_{2} + 1) q^{34} + (\beta_{2} + 3) q^{36} + ( - 3 \beta_{2} - 1) q^{37} + (3 \beta_{2} + 7) q^{38} + (\beta_{2} + 2) q^{39} + ( - \beta_1 - 1) q^{41} + (\beta_{2} - 2 \beta_1 - 1) q^{42} + (3 \beta_{2} - 2 \beta_1 - 4) q^{43} + (4 \beta_{2} + \beta_1 + 11) q^{46} + (\beta_{2} - 3) q^{47} + ( - 3 \beta_{2} + 2 \beta_1 - 5) q^{48} + 2 \beta_1 q^{49} + (2 \beta_{2} + \beta_1 - 1) q^{51} + ( - 4 \beta_{2} + 2 \beta_1 - 12) q^{52} + ( - 4 \beta_{2} - 4 \beta_1 - 2) q^{53} + (\beta_1 - 1) q^{54} + ( - \beta_{2} + 4 \beta_1 - 9) q^{56} + ( - \beta_{2} + \beta_1 - 1) q^{57} + (2 \beta_{2} + 2 \beta_1 + 8) q^{58} + (\beta_{2} - 2 \beta_1 - 1) q^{59} + (\beta_{2} + 4 \beta_1) q^{61} + (2 \beta_{2} - 6 \beta_1 + 8) q^{62} + ( - \beta_{2} - \beta_1 - 1) q^{63} + (3 \beta_{2} - 8 \beta_1 + 15) q^{64} + ( - \beta_{2} - 6 \beta_1 + 4) q^{67} + ( - 2 \beta_{2} + \beta_1 - 7) q^{68} + ( - \beta_{2} + 2 \beta_1 - 1) q^{69} + (\beta_{2} + 9) q^{71} + (2 \beta_{2} - \beta_1 + 3) q^{72} + ( - 2 \beta_{2} + 2 \beta_1 + 2) q^{73} + ( - 6 \beta_{2} + \beta_1 - 7) q^{74} + (4 \beta_{2} - 5 \beta_1 + 11) q^{76} + (2 \beta_{2} - 2 \beta_1 + 4) q^{78} + (2 \beta_{2} - \beta_1 - 1) q^{79} + q^{81} + (\beta_{2} + 2 \beta_1 + 3) q^{82} + (6 \beta_1 - 4) q^{83} + (2 \beta_{2} + \beta_1 + 7) q^{84} + (8 \beta_{2} + 6 \beta_1 + 10) q^{86} + 2 \beta_1 q^{87} + ( - 4 \beta_1 + 2) q^{89} + (\beta_{2} + 6) q^{91} + (5 \beta_{2} - 8 \beta_1 + 13) q^{92} + ( - \beta_{2} - 6) q^{93} + (2 \beta_{2} + 3 \beta_1 - 1) q^{94} + ( - 4 \beta_{2} + \beta_1 - 13) q^{96} + ( - 2 \beta_{2} - 6 \beta_1 + 11) q^{97} + ( - 2 \beta_{2} - 2 \beta_1 - 8) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 2 q^{2} - 3 q^{3} + 8 q^{4} - 2 q^{6} - 3 q^{7} + 6 q^{8} + 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 3 q + 2 q^{2} - 3 q^{3} + 8 q^{4} - 2 q^{6} - 3 q^{7} + 6 q^{8} + 3 q^{9} - 8 q^{12} - 5 q^{13} + 6 q^{14} + 10 q^{16} + 4 q^{17} + 2 q^{18} + q^{19} + 3 q^{21} - 6 q^{24} - 8 q^{26} - 3 q^{27} - 20 q^{28} - 2 q^{29} + 17 q^{31} + 34 q^{32} + 6 q^{34} + 8 q^{36} + 18 q^{38} + 5 q^{39} - 4 q^{41} - 6 q^{42} - 17 q^{43} + 30 q^{46} - 10 q^{47} - 10 q^{48} + 2 q^{49} - 4 q^{51} - 30 q^{52} - 6 q^{53} - 2 q^{54} - 22 q^{56} - q^{57} + 24 q^{58} - 6 q^{59} + 3 q^{61} + 16 q^{62} - 3 q^{63} + 34 q^{64} + 7 q^{67} - 18 q^{68} + 26 q^{71} + 6 q^{72} + 10 q^{73} - 14 q^{74} + 24 q^{76} + 8 q^{78} - 6 q^{79} + 3 q^{81} + 10 q^{82} - 6 q^{83} + 20 q^{84} + 28 q^{86} + 2 q^{87} + 2 q^{89} + 17 q^{91} + 26 q^{92} - 17 q^{93} - 2 q^{94} - 34 q^{96} + 29 q^{97} - 24 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 6x - 2 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 2\nu - 4 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 2\beta _1 + 4 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
3.12489
−0.363328
−1.76156
−2.12489 −1.00000 2.51514 0 2.12489 −3.64002 −1.09461 1.00000 0
1.2 1.36333 −1.00000 −0.141336 0 −1.36333 2.50466 −2.91934 1.00000 0
1.3 2.76156 −1.00000 5.62620 0 −2.76156 −1.86464 10.0140 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(5\) \( +1 \)
\(11\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 9075.2.a.cj 3
5.b even 2 1 9075.2.a.cd 3
11.b odd 2 1 825.2.a.i 3
33.d even 2 1 2475.2.a.bd 3
55.d odd 2 1 825.2.a.m yes 3
55.e even 4 2 825.2.c.f 6
165.d even 2 1 2475.2.a.z 3
165.l odd 4 2 2475.2.c.q 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
825.2.a.i 3 11.b odd 2 1
825.2.a.m yes 3 55.d odd 2 1
825.2.c.f 6 55.e even 4 2
2475.2.a.z 3 165.d even 2 1
2475.2.a.bd 3 33.d even 2 1
2475.2.c.q 6 165.l odd 4 2
9075.2.a.cd 3 5.b even 2 1
9075.2.a.cj 3 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(9075))\):

\( T_{2}^{3} - 2T_{2}^{2} - 5T_{2} + 8 \) Copy content Toggle raw display
\( T_{7}^{3} + 3T_{7}^{2} - 7T_{7} - 17 \) Copy content Toggle raw display
\( T_{13}^{3} + 5T_{13}^{2} - 8 \) Copy content Toggle raw display
\( T_{17}^{3} - 4T_{17}^{2} - 25T_{17} - 22 \) Copy content Toggle raw display
\( T_{19}^{3} - T_{19}^{2} - 19T_{19} - 25 \) Copy content Toggle raw display
\( T_{23}^{3} - 43T_{23} - 58 \) Copy content Toggle raw display
\( T_{37}^{3} - 75T_{37} + 34 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} - 2 T^{2} + \cdots + 8 \) Copy content Toggle raw display
$3$ \( (T + 1)^{3} \) Copy content Toggle raw display
$5$ \( T^{3} \) Copy content Toggle raw display
$7$ \( T^{3} + 3 T^{2} + \cdots - 17 \) Copy content Toggle raw display
$11$ \( T^{3} \) Copy content Toggle raw display
$13$ \( T^{3} + 5T^{2} - 8 \) Copy content Toggle raw display
$17$ \( T^{3} - 4 T^{2} + \cdots - 22 \) Copy content Toggle raw display
$19$ \( T^{3} - T^{2} + \cdots - 25 \) Copy content Toggle raw display
$23$ \( T^{3} - 43T - 58 \) Copy content Toggle raw display
$29$ \( T^{3} + 2 T^{2} + \cdots + 16 \) Copy content Toggle raw display
$31$ \( T^{3} - 17 T^{2} + \cdots - 136 \) Copy content Toggle raw display
$37$ \( T^{3} - 75T + 34 \) Copy content Toggle raw display
$41$ \( T^{3} + 4T^{2} - T - 2 \) Copy content Toggle raw display
$43$ \( T^{3} + 17 T^{2} + \cdots - 1100 \) Copy content Toggle raw display
$47$ \( T^{3} + 10 T^{2} + \cdots + 8 \) Copy content Toggle raw display
$53$ \( T^{3} + 6 T^{2} + \cdots - 824 \) Copy content Toggle raw display
$59$ \( T^{3} + 6 T^{2} + \cdots - 136 \) Copy content Toggle raw display
$61$ \( T^{3} - 3 T^{2} + \cdots - 244 \) Copy content Toggle raw display
$67$ \( T^{3} - 7 T^{2} + \cdots + 1588 \) Copy content Toggle raw display
$71$ \( T^{3} - 26 T^{2} + \cdots - 580 \) Copy content Toggle raw display
$73$ \( T^{3} - 10 T^{2} + \cdots + 472 \) Copy content Toggle raw display
$79$ \( T^{3} + 6 T^{2} + \cdots - 212 \) Copy content Toggle raw display
$83$ \( T^{3} + 6 T^{2} + \cdots - 1328 \) Copy content Toggle raw display
$89$ \( T^{3} - 2 T^{2} + \cdots + 328 \) Copy content Toggle raw display
$97$ \( T^{3} - 29 T^{2} + \cdots + 2153 \) Copy content Toggle raw display
show more
show less