Properties

Label 9075.2.a.cb.1.2
Level $9075$
Weight $2$
Character 9075.1
Self dual yes
Analytic conductor $72.464$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9075,2,Mod(1,9075)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9075, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9075.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 9075 = 3 \cdot 5^{2} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9075.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(72.4642398343\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{10})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 33)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(1.61803\) of defining polynomial
Character \(\chi\) \(=\) 9075.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.61803 q^{2} +1.00000 q^{3} +4.85410 q^{4} +2.61803 q^{6} +1.00000 q^{7} +7.47214 q^{8} +1.00000 q^{9} +4.85410 q^{12} -0.236068 q^{13} +2.61803 q^{14} +9.85410 q^{16} +1.14590 q^{17} +2.61803 q^{18} +5.85410 q^{19} +1.00000 q^{21} -0.236068 q^{23} +7.47214 q^{24} -0.618034 q^{26} +1.00000 q^{27} +4.85410 q^{28} -6.00000 q^{29} -6.09017 q^{31} +10.8541 q^{32} +3.00000 q^{34} +4.85410 q^{36} +6.23607 q^{37} +15.3262 q^{38} -0.236068 q^{39} +0.236068 q^{41} +2.61803 q^{42} +6.70820 q^{43} -0.618034 q^{46} +10.0902 q^{47} +9.85410 q^{48} -6.00000 q^{49} +1.14590 q^{51} -1.14590 q^{52} +0.381966 q^{53} +2.61803 q^{54} +7.47214 q^{56} +5.85410 q^{57} -15.7082 q^{58} +7.38197 q^{59} -11.5623 q^{61} -15.9443 q^{62} +1.00000 q^{63} +8.70820 q^{64} -1.85410 q^{67} +5.56231 q^{68} -0.236068 q^{69} +10.3262 q^{71} +7.47214 q^{72} +5.70820 q^{73} +16.3262 q^{74} +28.4164 q^{76} -0.618034 q^{78} +11.0000 q^{79} +1.00000 q^{81} +0.618034 q^{82} -1.47214 q^{83} +4.85410 q^{84} +17.5623 q^{86} -6.00000 q^{87} -8.23607 q^{89} -0.236068 q^{91} -1.14590 q^{92} -6.09017 q^{93} +26.4164 q^{94} +10.8541 q^{96} -7.85410 q^{97} -15.7082 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 3 q^{2} + 2 q^{3} + 3 q^{4} + 3 q^{6} + 2 q^{7} + 6 q^{8} + 2 q^{9} + 3 q^{12} + 4 q^{13} + 3 q^{14} + 13 q^{16} + 9 q^{17} + 3 q^{18} + 5 q^{19} + 2 q^{21} + 4 q^{23} + 6 q^{24} + q^{26} + 2 q^{27}+ \cdots - 18 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.61803 1.85123 0.925615 0.378467i \(-0.123549\pi\)
0.925615 + 0.378467i \(0.123549\pi\)
\(3\) 1.00000 0.577350
\(4\) 4.85410 2.42705
\(5\) 0 0
\(6\) 2.61803 1.06881
\(7\) 1.00000 0.377964 0.188982 0.981981i \(-0.439481\pi\)
0.188982 + 0.981981i \(0.439481\pi\)
\(8\) 7.47214 2.64180
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 0 0
\(12\) 4.85410 1.40126
\(13\) −0.236068 −0.0654735 −0.0327367 0.999464i \(-0.510422\pi\)
−0.0327367 + 0.999464i \(0.510422\pi\)
\(14\) 2.61803 0.699699
\(15\) 0 0
\(16\) 9.85410 2.46353
\(17\) 1.14590 0.277921 0.138961 0.990298i \(-0.455624\pi\)
0.138961 + 0.990298i \(0.455624\pi\)
\(18\) 2.61803 0.617077
\(19\) 5.85410 1.34302 0.671512 0.740994i \(-0.265645\pi\)
0.671512 + 0.740994i \(0.265645\pi\)
\(20\) 0 0
\(21\) 1.00000 0.218218
\(22\) 0 0
\(23\) −0.236068 −0.0492236 −0.0246118 0.999697i \(-0.507835\pi\)
−0.0246118 + 0.999697i \(0.507835\pi\)
\(24\) 7.47214 1.52524
\(25\) 0 0
\(26\) −0.618034 −0.121206
\(27\) 1.00000 0.192450
\(28\) 4.85410 0.917339
\(29\) −6.00000 −1.11417 −0.557086 0.830455i \(-0.688081\pi\)
−0.557086 + 0.830455i \(0.688081\pi\)
\(30\) 0 0
\(31\) −6.09017 −1.09383 −0.546913 0.837189i \(-0.684197\pi\)
−0.546913 + 0.837189i \(0.684197\pi\)
\(32\) 10.8541 1.91875
\(33\) 0 0
\(34\) 3.00000 0.514496
\(35\) 0 0
\(36\) 4.85410 0.809017
\(37\) 6.23607 1.02520 0.512602 0.858627i \(-0.328682\pi\)
0.512602 + 0.858627i \(0.328682\pi\)
\(38\) 15.3262 2.48624
\(39\) −0.236068 −0.0378011
\(40\) 0 0
\(41\) 0.236068 0.0368676 0.0184338 0.999830i \(-0.494132\pi\)
0.0184338 + 0.999830i \(0.494132\pi\)
\(42\) 2.61803 0.403971
\(43\) 6.70820 1.02299 0.511496 0.859286i \(-0.329092\pi\)
0.511496 + 0.859286i \(0.329092\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) −0.618034 −0.0911241
\(47\) 10.0902 1.47180 0.735901 0.677089i \(-0.236759\pi\)
0.735901 + 0.677089i \(0.236759\pi\)
\(48\) 9.85410 1.42232
\(49\) −6.00000 −0.857143
\(50\) 0 0
\(51\) 1.14590 0.160458
\(52\) −1.14590 −0.158907
\(53\) 0.381966 0.0524671 0.0262335 0.999656i \(-0.491649\pi\)
0.0262335 + 0.999656i \(0.491649\pi\)
\(54\) 2.61803 0.356269
\(55\) 0 0
\(56\) 7.47214 0.998506
\(57\) 5.85410 0.775395
\(58\) −15.7082 −2.06259
\(59\) 7.38197 0.961050 0.480525 0.876981i \(-0.340446\pi\)
0.480525 + 0.876981i \(0.340446\pi\)
\(60\) 0 0
\(61\) −11.5623 −1.48040 −0.740201 0.672386i \(-0.765270\pi\)
−0.740201 + 0.672386i \(0.765270\pi\)
\(62\) −15.9443 −2.02492
\(63\) 1.00000 0.125988
\(64\) 8.70820 1.08853
\(65\) 0 0
\(66\) 0 0
\(67\) −1.85410 −0.226515 −0.113257 0.993566i \(-0.536128\pi\)
−0.113257 + 0.993566i \(0.536128\pi\)
\(68\) 5.56231 0.674529
\(69\) −0.236068 −0.0284192
\(70\) 0 0
\(71\) 10.3262 1.22550 0.612749 0.790277i \(-0.290063\pi\)
0.612749 + 0.790277i \(0.290063\pi\)
\(72\) 7.47214 0.880600
\(73\) 5.70820 0.668095 0.334047 0.942556i \(-0.391585\pi\)
0.334047 + 0.942556i \(0.391585\pi\)
\(74\) 16.3262 1.89789
\(75\) 0 0
\(76\) 28.4164 3.25959
\(77\) 0 0
\(78\) −0.618034 −0.0699786
\(79\) 11.0000 1.23760 0.618798 0.785550i \(-0.287620\pi\)
0.618798 + 0.785550i \(0.287620\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0.618034 0.0682504
\(83\) −1.47214 −0.161588 −0.0807940 0.996731i \(-0.525746\pi\)
−0.0807940 + 0.996731i \(0.525746\pi\)
\(84\) 4.85410 0.529626
\(85\) 0 0
\(86\) 17.5623 1.89379
\(87\) −6.00000 −0.643268
\(88\) 0 0
\(89\) −8.23607 −0.873021 −0.436511 0.899699i \(-0.643786\pi\)
−0.436511 + 0.899699i \(0.643786\pi\)
\(90\) 0 0
\(91\) −0.236068 −0.0247466
\(92\) −1.14590 −0.119468
\(93\) −6.09017 −0.631521
\(94\) 26.4164 2.72464
\(95\) 0 0
\(96\) 10.8541 1.10779
\(97\) −7.85410 −0.797463 −0.398732 0.917068i \(-0.630549\pi\)
−0.398732 + 0.917068i \(0.630549\pi\)
\(98\) −15.7082 −1.58677
\(99\) 0 0
\(100\) 0 0
\(101\) −10.2361 −1.01853 −0.509263 0.860611i \(-0.670082\pi\)
−0.509263 + 0.860611i \(0.670082\pi\)
\(102\) 3.00000 0.297044
\(103\) 10.9443 1.07837 0.539186 0.842187i \(-0.318732\pi\)
0.539186 + 0.842187i \(0.318732\pi\)
\(104\) −1.76393 −0.172968
\(105\) 0 0
\(106\) 1.00000 0.0971286
\(107\) 11.4721 1.10905 0.554527 0.832166i \(-0.312899\pi\)
0.554527 + 0.832166i \(0.312899\pi\)
\(108\) 4.85410 0.467086
\(109\) −12.0000 −1.14939 −0.574696 0.818367i \(-0.694880\pi\)
−0.574696 + 0.818367i \(0.694880\pi\)
\(110\) 0 0
\(111\) 6.23607 0.591901
\(112\) 9.85410 0.931125
\(113\) −13.4721 −1.26735 −0.633676 0.773599i \(-0.718455\pi\)
−0.633676 + 0.773599i \(0.718455\pi\)
\(114\) 15.3262 1.43543
\(115\) 0 0
\(116\) −29.1246 −2.70415
\(117\) −0.236068 −0.0218245
\(118\) 19.3262 1.77912
\(119\) 1.14590 0.105044
\(120\) 0 0
\(121\) 0 0
\(122\) −30.2705 −2.74056
\(123\) 0.236068 0.0212855
\(124\) −29.5623 −2.65477
\(125\) 0 0
\(126\) 2.61803 0.233233
\(127\) −7.70820 −0.683992 −0.341996 0.939701i \(-0.611103\pi\)
−0.341996 + 0.939701i \(0.611103\pi\)
\(128\) 1.09017 0.0963583
\(129\) 6.70820 0.590624
\(130\) 0 0
\(131\) −11.7984 −1.03083 −0.515414 0.856941i \(-0.672362\pi\)
−0.515414 + 0.856941i \(0.672362\pi\)
\(132\) 0 0
\(133\) 5.85410 0.507615
\(134\) −4.85410 −0.419331
\(135\) 0 0
\(136\) 8.56231 0.734212
\(137\) −9.76393 −0.834189 −0.417095 0.908863i \(-0.636952\pi\)
−0.417095 + 0.908863i \(0.636952\pi\)
\(138\) −0.618034 −0.0526105
\(139\) 14.5623 1.23516 0.617579 0.786509i \(-0.288113\pi\)
0.617579 + 0.786509i \(0.288113\pi\)
\(140\) 0 0
\(141\) 10.0902 0.849746
\(142\) 27.0344 2.26868
\(143\) 0 0
\(144\) 9.85410 0.821175
\(145\) 0 0
\(146\) 14.9443 1.23680
\(147\) −6.00000 −0.494872
\(148\) 30.2705 2.48822
\(149\) −4.23607 −0.347032 −0.173516 0.984831i \(-0.555513\pi\)
−0.173516 + 0.984831i \(0.555513\pi\)
\(150\) 0 0
\(151\) 1.05573 0.0859139 0.0429570 0.999077i \(-0.486322\pi\)
0.0429570 + 0.999077i \(0.486322\pi\)
\(152\) 43.7426 3.54800
\(153\) 1.14590 0.0926404
\(154\) 0 0
\(155\) 0 0
\(156\) −1.14590 −0.0917453
\(157\) −15.7082 −1.25365 −0.626826 0.779160i \(-0.715646\pi\)
−0.626826 + 0.779160i \(0.715646\pi\)
\(158\) 28.7984 2.29108
\(159\) 0.381966 0.0302919
\(160\) 0 0
\(161\) −0.236068 −0.0186048
\(162\) 2.61803 0.205692
\(163\) 5.14590 0.403058 0.201529 0.979483i \(-0.435409\pi\)
0.201529 + 0.979483i \(0.435409\pi\)
\(164\) 1.14590 0.0894796
\(165\) 0 0
\(166\) −3.85410 −0.299136
\(167\) −12.0344 −0.931253 −0.465627 0.884981i \(-0.654171\pi\)
−0.465627 + 0.884981i \(0.654171\pi\)
\(168\) 7.47214 0.576488
\(169\) −12.9443 −0.995713
\(170\) 0 0
\(171\) 5.85410 0.447674
\(172\) 32.5623 2.48285
\(173\) 18.0344 1.37113 0.685567 0.728010i \(-0.259555\pi\)
0.685567 + 0.728010i \(0.259555\pi\)
\(174\) −15.7082 −1.19084
\(175\) 0 0
\(176\) 0 0
\(177\) 7.38197 0.554863
\(178\) −21.5623 −1.61616
\(179\) −8.52786 −0.637402 −0.318701 0.947855i \(-0.603247\pi\)
−0.318701 + 0.947855i \(0.603247\pi\)
\(180\) 0 0
\(181\) 2.52786 0.187895 0.0939473 0.995577i \(-0.470051\pi\)
0.0939473 + 0.995577i \(0.470051\pi\)
\(182\) −0.618034 −0.0458117
\(183\) −11.5623 −0.854710
\(184\) −1.76393 −0.130039
\(185\) 0 0
\(186\) −15.9443 −1.16909
\(187\) 0 0
\(188\) 48.9787 3.57214
\(189\) 1.00000 0.0727393
\(190\) 0 0
\(191\) −0.819660 −0.0593085 −0.0296543 0.999560i \(-0.509441\pi\)
−0.0296543 + 0.999560i \(0.509441\pi\)
\(192\) 8.70820 0.628460
\(193\) 3.14590 0.226447 0.113223 0.993570i \(-0.463882\pi\)
0.113223 + 0.993570i \(0.463882\pi\)
\(194\) −20.5623 −1.47629
\(195\) 0 0
\(196\) −29.1246 −2.08033
\(197\) −13.0344 −0.928666 −0.464333 0.885661i \(-0.653706\pi\)
−0.464333 + 0.885661i \(0.653706\pi\)
\(198\) 0 0
\(199\) 6.70820 0.475532 0.237766 0.971322i \(-0.423585\pi\)
0.237766 + 0.971322i \(0.423585\pi\)
\(200\) 0 0
\(201\) −1.85410 −0.130778
\(202\) −26.7984 −1.88553
\(203\) −6.00000 −0.421117
\(204\) 5.56231 0.389439
\(205\) 0 0
\(206\) 28.6525 1.99631
\(207\) −0.236068 −0.0164079
\(208\) −2.32624 −0.161296
\(209\) 0 0
\(210\) 0 0
\(211\) 3.61803 0.249076 0.124538 0.992215i \(-0.460255\pi\)
0.124538 + 0.992215i \(0.460255\pi\)
\(212\) 1.85410 0.127340
\(213\) 10.3262 0.707542
\(214\) 30.0344 2.05311
\(215\) 0 0
\(216\) 7.47214 0.508414
\(217\) −6.09017 −0.413428
\(218\) −31.4164 −2.12779
\(219\) 5.70820 0.385725
\(220\) 0 0
\(221\) −0.270510 −0.0181965
\(222\) 16.3262 1.09575
\(223\) −7.18034 −0.480831 −0.240416 0.970670i \(-0.577284\pi\)
−0.240416 + 0.970670i \(0.577284\pi\)
\(224\) 10.8541 0.725220
\(225\) 0 0
\(226\) −35.2705 −2.34616
\(227\) −13.1803 −0.874810 −0.437405 0.899265i \(-0.644102\pi\)
−0.437405 + 0.899265i \(0.644102\pi\)
\(228\) 28.4164 1.88192
\(229\) 0.472136 0.0311996 0.0155998 0.999878i \(-0.495034\pi\)
0.0155998 + 0.999878i \(0.495034\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −44.8328 −2.94342
\(233\) 4.14590 0.271607 0.135803 0.990736i \(-0.456638\pi\)
0.135803 + 0.990736i \(0.456638\pi\)
\(234\) −0.618034 −0.0404021
\(235\) 0 0
\(236\) 35.8328 2.33252
\(237\) 11.0000 0.714527
\(238\) 3.00000 0.194461
\(239\) 0.381966 0.0247073 0.0123537 0.999924i \(-0.496068\pi\)
0.0123537 + 0.999924i \(0.496068\pi\)
\(240\) 0 0
\(241\) 8.29180 0.534122 0.267061 0.963680i \(-0.413948\pi\)
0.267061 + 0.963680i \(0.413948\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) −56.1246 −3.59301
\(245\) 0 0
\(246\) 0.618034 0.0394044
\(247\) −1.38197 −0.0879324
\(248\) −45.5066 −2.88967
\(249\) −1.47214 −0.0932928
\(250\) 0 0
\(251\) −21.9787 −1.38728 −0.693642 0.720320i \(-0.743995\pi\)
−0.693642 + 0.720320i \(0.743995\pi\)
\(252\) 4.85410 0.305780
\(253\) 0 0
\(254\) −20.1803 −1.26623
\(255\) 0 0
\(256\) −14.5623 −0.910144
\(257\) −29.7426 −1.85530 −0.927648 0.373457i \(-0.878172\pi\)
−0.927648 + 0.373457i \(0.878172\pi\)
\(258\) 17.5623 1.09338
\(259\) 6.23607 0.387490
\(260\) 0 0
\(261\) −6.00000 −0.371391
\(262\) −30.8885 −1.90830
\(263\) 15.2705 0.941620 0.470810 0.882235i \(-0.343962\pi\)
0.470810 + 0.882235i \(0.343962\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 15.3262 0.939712
\(267\) −8.23607 −0.504039
\(268\) −9.00000 −0.549762
\(269\) −25.4164 −1.54967 −0.774833 0.632166i \(-0.782166\pi\)
−0.774833 + 0.632166i \(0.782166\pi\)
\(270\) 0 0
\(271\) 18.6180 1.13097 0.565483 0.824760i \(-0.308690\pi\)
0.565483 + 0.824760i \(0.308690\pi\)
\(272\) 11.2918 0.684666
\(273\) −0.236068 −0.0142875
\(274\) −25.5623 −1.54428
\(275\) 0 0
\(276\) −1.14590 −0.0689750
\(277\) 29.2148 1.75535 0.877673 0.479260i \(-0.159095\pi\)
0.877673 + 0.479260i \(0.159095\pi\)
\(278\) 38.1246 2.28656
\(279\) −6.09017 −0.364609
\(280\) 0 0
\(281\) 24.7639 1.47729 0.738646 0.674093i \(-0.235465\pi\)
0.738646 + 0.674093i \(0.235465\pi\)
\(282\) 26.4164 1.57307
\(283\) 5.70820 0.339318 0.169659 0.985503i \(-0.445733\pi\)
0.169659 + 0.985503i \(0.445733\pi\)
\(284\) 50.1246 2.97435
\(285\) 0 0
\(286\) 0 0
\(287\) 0.236068 0.0139347
\(288\) 10.8541 0.639584
\(289\) −15.6869 −0.922760
\(290\) 0 0
\(291\) −7.85410 −0.460416
\(292\) 27.7082 1.62150
\(293\) 21.6525 1.26495 0.632476 0.774580i \(-0.282039\pi\)
0.632476 + 0.774580i \(0.282039\pi\)
\(294\) −15.7082 −0.916121
\(295\) 0 0
\(296\) 46.5967 2.70838
\(297\) 0 0
\(298\) −11.0902 −0.642436
\(299\) 0.0557281 0.00322284
\(300\) 0 0
\(301\) 6.70820 0.386654
\(302\) 2.76393 0.159046
\(303\) −10.2361 −0.588047
\(304\) 57.6869 3.30857
\(305\) 0 0
\(306\) 3.00000 0.171499
\(307\) −27.9787 −1.59683 −0.798415 0.602108i \(-0.794328\pi\)
−0.798415 + 0.602108i \(0.794328\pi\)
\(308\) 0 0
\(309\) 10.9443 0.622598
\(310\) 0 0
\(311\) 11.6525 0.660751 0.330376 0.943850i \(-0.392825\pi\)
0.330376 + 0.943850i \(0.392825\pi\)
\(312\) −1.76393 −0.0998630
\(313\) 2.52786 0.142883 0.0714417 0.997445i \(-0.477240\pi\)
0.0714417 + 0.997445i \(0.477240\pi\)
\(314\) −41.1246 −2.32080
\(315\) 0 0
\(316\) 53.3951 3.00371
\(317\) 6.81966 0.383030 0.191515 0.981490i \(-0.438660\pi\)
0.191515 + 0.981490i \(0.438660\pi\)
\(318\) 1.00000 0.0560772
\(319\) 0 0
\(320\) 0 0
\(321\) 11.4721 0.640312
\(322\) −0.618034 −0.0344417
\(323\) 6.70820 0.373254
\(324\) 4.85410 0.269672
\(325\) 0 0
\(326\) 13.4721 0.746153
\(327\) −12.0000 −0.663602
\(328\) 1.76393 0.0973969
\(329\) 10.0902 0.556289
\(330\) 0 0
\(331\) 16.7082 0.918366 0.459183 0.888342i \(-0.348142\pi\)
0.459183 + 0.888342i \(0.348142\pi\)
\(332\) −7.14590 −0.392182
\(333\) 6.23607 0.341734
\(334\) −31.5066 −1.72396
\(335\) 0 0
\(336\) 9.85410 0.537585
\(337\) 18.1803 0.990346 0.495173 0.868794i \(-0.335105\pi\)
0.495173 + 0.868794i \(0.335105\pi\)
\(338\) −33.8885 −1.84329
\(339\) −13.4721 −0.731706
\(340\) 0 0
\(341\) 0 0
\(342\) 15.3262 0.828748
\(343\) −13.0000 −0.701934
\(344\) 50.1246 2.70254
\(345\) 0 0
\(346\) 47.2148 2.53828
\(347\) 1.52786 0.0820200 0.0410100 0.999159i \(-0.486942\pi\)
0.0410100 + 0.999159i \(0.486942\pi\)
\(348\) −29.1246 −1.56124
\(349\) 12.7082 0.680255 0.340127 0.940379i \(-0.389530\pi\)
0.340127 + 0.940379i \(0.389530\pi\)
\(350\) 0 0
\(351\) −0.236068 −0.0126004
\(352\) 0 0
\(353\) 12.0000 0.638696 0.319348 0.947638i \(-0.396536\pi\)
0.319348 + 0.947638i \(0.396536\pi\)
\(354\) 19.3262 1.02718
\(355\) 0 0
\(356\) −39.9787 −2.11887
\(357\) 1.14590 0.0606474
\(358\) −22.3262 −1.17998
\(359\) −9.70820 −0.512379 −0.256190 0.966627i \(-0.582467\pi\)
−0.256190 + 0.966627i \(0.582467\pi\)
\(360\) 0 0
\(361\) 15.2705 0.803711
\(362\) 6.61803 0.347836
\(363\) 0 0
\(364\) −1.14590 −0.0600614
\(365\) 0 0
\(366\) −30.2705 −1.58226
\(367\) −22.1459 −1.15601 −0.578003 0.816034i \(-0.696168\pi\)
−0.578003 + 0.816034i \(0.696168\pi\)
\(368\) −2.32624 −0.121264
\(369\) 0.236068 0.0122892
\(370\) 0 0
\(371\) 0.381966 0.0198307
\(372\) −29.5623 −1.53273
\(373\) −0.888544 −0.0460071 −0.0230035 0.999735i \(-0.507323\pi\)
−0.0230035 + 0.999735i \(0.507323\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 75.3951 3.88821
\(377\) 1.41641 0.0729487
\(378\) 2.61803 0.134657
\(379\) −24.8885 −1.27844 −0.639219 0.769024i \(-0.720742\pi\)
−0.639219 + 0.769024i \(0.720742\pi\)
\(380\) 0 0
\(381\) −7.70820 −0.394903
\(382\) −2.14590 −0.109794
\(383\) 12.7082 0.649359 0.324679 0.945824i \(-0.394744\pi\)
0.324679 + 0.945824i \(0.394744\pi\)
\(384\) 1.09017 0.0556325
\(385\) 0 0
\(386\) 8.23607 0.419205
\(387\) 6.70820 0.340997
\(388\) −38.1246 −1.93548
\(389\) −36.7426 −1.86293 −0.931463 0.363836i \(-0.881467\pi\)
−0.931463 + 0.363836i \(0.881467\pi\)
\(390\) 0 0
\(391\) −0.270510 −0.0136803
\(392\) −44.8328 −2.26440
\(393\) −11.7984 −0.595149
\(394\) −34.1246 −1.71917
\(395\) 0 0
\(396\) 0 0
\(397\) 18.7082 0.938938 0.469469 0.882949i \(-0.344445\pi\)
0.469469 + 0.882949i \(0.344445\pi\)
\(398\) 17.5623 0.880319
\(399\) 5.85410 0.293072
\(400\) 0 0
\(401\) −31.6869 −1.58237 −0.791185 0.611577i \(-0.790535\pi\)
−0.791185 + 0.611577i \(0.790535\pi\)
\(402\) −4.85410 −0.242101
\(403\) 1.43769 0.0716166
\(404\) −49.6869 −2.47202
\(405\) 0 0
\(406\) −15.7082 −0.779585
\(407\) 0 0
\(408\) 8.56231 0.423897
\(409\) −6.47214 −0.320027 −0.160013 0.987115i \(-0.551154\pi\)
−0.160013 + 0.987115i \(0.551154\pi\)
\(410\) 0 0
\(411\) −9.76393 −0.481619
\(412\) 53.1246 2.61726
\(413\) 7.38197 0.363243
\(414\) −0.618034 −0.0303747
\(415\) 0 0
\(416\) −2.56231 −0.125627
\(417\) 14.5623 0.713119
\(418\) 0 0
\(419\) 31.4508 1.53647 0.768237 0.640165i \(-0.221134\pi\)
0.768237 + 0.640165i \(0.221134\pi\)
\(420\) 0 0
\(421\) 10.5066 0.512059 0.256030 0.966669i \(-0.417586\pi\)
0.256030 + 0.966669i \(0.417586\pi\)
\(422\) 9.47214 0.461096
\(423\) 10.0902 0.490601
\(424\) 2.85410 0.138607
\(425\) 0 0
\(426\) 27.0344 1.30982
\(427\) −11.5623 −0.559539
\(428\) 55.6869 2.69173
\(429\) 0 0
\(430\) 0 0
\(431\) −5.90983 −0.284666 −0.142333 0.989819i \(-0.545460\pi\)
−0.142333 + 0.989819i \(0.545460\pi\)
\(432\) 9.85410 0.474106
\(433\) −35.3050 −1.69665 −0.848324 0.529478i \(-0.822388\pi\)
−0.848324 + 0.529478i \(0.822388\pi\)
\(434\) −15.9443 −0.765350
\(435\) 0 0
\(436\) −58.2492 −2.78963
\(437\) −1.38197 −0.0661084
\(438\) 14.9443 0.714065
\(439\) 23.2918 1.11166 0.555828 0.831297i \(-0.312401\pi\)
0.555828 + 0.831297i \(0.312401\pi\)
\(440\) 0 0
\(441\) −6.00000 −0.285714
\(442\) −0.708204 −0.0336858
\(443\) 31.5967 1.50121 0.750603 0.660753i \(-0.229763\pi\)
0.750603 + 0.660753i \(0.229763\pi\)
\(444\) 30.2705 1.43657
\(445\) 0 0
\(446\) −18.7984 −0.890129
\(447\) −4.23607 −0.200359
\(448\) 8.70820 0.411424
\(449\) −9.05573 −0.427366 −0.213683 0.976903i \(-0.568546\pi\)
−0.213683 + 0.976903i \(0.568546\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) −65.3951 −3.07593
\(453\) 1.05573 0.0496024
\(454\) −34.5066 −1.61947
\(455\) 0 0
\(456\) 43.7426 2.04844
\(457\) −23.9787 −1.12168 −0.560838 0.827925i \(-0.689521\pi\)
−0.560838 + 0.827925i \(0.689521\pi\)
\(458\) 1.23607 0.0577577
\(459\) 1.14590 0.0534859
\(460\) 0 0
\(461\) 9.27051 0.431771 0.215885 0.976419i \(-0.430736\pi\)
0.215885 + 0.976419i \(0.430736\pi\)
\(462\) 0 0
\(463\) −1.72949 −0.0803762 −0.0401881 0.999192i \(-0.512796\pi\)
−0.0401881 + 0.999192i \(0.512796\pi\)
\(464\) −59.1246 −2.74479
\(465\) 0 0
\(466\) 10.8541 0.502807
\(467\) −20.8885 −0.966607 −0.483303 0.875453i \(-0.660563\pi\)
−0.483303 + 0.875453i \(0.660563\pi\)
\(468\) −1.14590 −0.0529692
\(469\) −1.85410 −0.0856145
\(470\) 0 0
\(471\) −15.7082 −0.723796
\(472\) 55.1591 2.53890
\(473\) 0 0
\(474\) 28.7984 1.32275
\(475\) 0 0
\(476\) 5.56231 0.254948
\(477\) 0.381966 0.0174890
\(478\) 1.00000 0.0457389
\(479\) −28.3820 −1.29681 −0.648403 0.761298i \(-0.724563\pi\)
−0.648403 + 0.761298i \(0.724563\pi\)
\(480\) 0 0
\(481\) −1.47214 −0.0671236
\(482\) 21.7082 0.988782
\(483\) −0.236068 −0.0107415
\(484\) 0 0
\(485\) 0 0
\(486\) 2.61803 0.118756
\(487\) 12.7082 0.575864 0.287932 0.957651i \(-0.407032\pi\)
0.287932 + 0.957651i \(0.407032\pi\)
\(488\) −86.3951 −3.91092
\(489\) 5.14590 0.232706
\(490\) 0 0
\(491\) −17.9098 −0.808259 −0.404130 0.914702i \(-0.632426\pi\)
−0.404130 + 0.914702i \(0.632426\pi\)
\(492\) 1.14590 0.0516611
\(493\) −6.87539 −0.309652
\(494\) −3.61803 −0.162783
\(495\) 0 0
\(496\) −60.0132 −2.69467
\(497\) 10.3262 0.463195
\(498\) −3.85410 −0.172706
\(499\) −18.1459 −0.812322 −0.406161 0.913802i \(-0.633133\pi\)
−0.406161 + 0.913802i \(0.633133\pi\)
\(500\) 0 0
\(501\) −12.0344 −0.537659
\(502\) −57.5410 −2.56818
\(503\) −8.65248 −0.385795 −0.192897 0.981219i \(-0.561788\pi\)
−0.192897 + 0.981219i \(0.561788\pi\)
\(504\) 7.47214 0.332835
\(505\) 0 0
\(506\) 0 0
\(507\) −12.9443 −0.574875
\(508\) −37.4164 −1.66008
\(509\) 38.7426 1.71724 0.858619 0.512615i \(-0.171323\pi\)
0.858619 + 0.512615i \(0.171323\pi\)
\(510\) 0 0
\(511\) 5.70820 0.252516
\(512\) −40.3050 −1.78124
\(513\) 5.85410 0.258465
\(514\) −77.8673 −3.43458
\(515\) 0 0
\(516\) 32.5623 1.43348
\(517\) 0 0
\(518\) 16.3262 0.717334
\(519\) 18.0344 0.791624
\(520\) 0 0
\(521\) 8.94427 0.391856 0.195928 0.980618i \(-0.437228\pi\)
0.195928 + 0.980618i \(0.437228\pi\)
\(522\) −15.7082 −0.687529
\(523\) −18.2705 −0.798914 −0.399457 0.916752i \(-0.630801\pi\)
−0.399457 + 0.916752i \(0.630801\pi\)
\(524\) −57.2705 −2.50187
\(525\) 0 0
\(526\) 39.9787 1.74315
\(527\) −6.97871 −0.303998
\(528\) 0 0
\(529\) −22.9443 −0.997577
\(530\) 0 0
\(531\) 7.38197 0.320350
\(532\) 28.4164 1.23201
\(533\) −0.0557281 −0.00241385
\(534\) −21.5623 −0.933092
\(535\) 0 0
\(536\) −13.8541 −0.598406
\(537\) −8.52786 −0.368004
\(538\) −66.5410 −2.86879
\(539\) 0 0
\(540\) 0 0
\(541\) −7.49342 −0.322167 −0.161084 0.986941i \(-0.551499\pi\)
−0.161084 + 0.986941i \(0.551499\pi\)
\(542\) 48.7426 2.09368
\(543\) 2.52786 0.108481
\(544\) 12.4377 0.533262
\(545\) 0 0
\(546\) −0.618034 −0.0264494
\(547\) 30.7426 1.31446 0.657230 0.753690i \(-0.271728\pi\)
0.657230 + 0.753690i \(0.271728\pi\)
\(548\) −47.3951 −2.02462
\(549\) −11.5623 −0.493467
\(550\) 0 0
\(551\) −35.1246 −1.49636
\(552\) −1.76393 −0.0750779
\(553\) 11.0000 0.467768
\(554\) 76.4853 3.24955
\(555\) 0 0
\(556\) 70.6869 2.99779
\(557\) −37.6312 −1.59448 −0.797242 0.603659i \(-0.793709\pi\)
−0.797242 + 0.603659i \(0.793709\pi\)
\(558\) −15.9443 −0.674975
\(559\) −1.58359 −0.0669788
\(560\) 0 0
\(561\) 0 0
\(562\) 64.8328 2.73481
\(563\) −40.5967 −1.71095 −0.855474 0.517845i \(-0.826734\pi\)
−0.855474 + 0.517845i \(0.826734\pi\)
\(564\) 48.9787 2.06238
\(565\) 0 0
\(566\) 14.9443 0.628155
\(567\) 1.00000 0.0419961
\(568\) 77.1591 3.23752
\(569\) 34.1803 1.43291 0.716457 0.697631i \(-0.245763\pi\)
0.716457 + 0.697631i \(0.245763\pi\)
\(570\) 0 0
\(571\) −9.09017 −0.380412 −0.190206 0.981744i \(-0.560916\pi\)
−0.190206 + 0.981744i \(0.560916\pi\)
\(572\) 0 0
\(573\) −0.819660 −0.0342418
\(574\) 0.618034 0.0257962
\(575\) 0 0
\(576\) 8.70820 0.362842
\(577\) −31.7082 −1.32003 −0.660015 0.751253i \(-0.729450\pi\)
−0.660015 + 0.751253i \(0.729450\pi\)
\(578\) −41.0689 −1.70824
\(579\) 3.14590 0.130739
\(580\) 0 0
\(581\) −1.47214 −0.0610745
\(582\) −20.5623 −0.852335
\(583\) 0 0
\(584\) 42.6525 1.76497
\(585\) 0 0
\(586\) 56.6869 2.34171
\(587\) 2.12461 0.0876921 0.0438461 0.999038i \(-0.486039\pi\)
0.0438461 + 0.999038i \(0.486039\pi\)
\(588\) −29.1246 −1.20108
\(589\) −35.6525 −1.46903
\(590\) 0 0
\(591\) −13.0344 −0.536165
\(592\) 61.4508 2.52561
\(593\) 14.0344 0.576325 0.288163 0.957581i \(-0.406956\pi\)
0.288163 + 0.957581i \(0.406956\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −20.5623 −0.842265
\(597\) 6.70820 0.274549
\(598\) 0.145898 0.00596621
\(599\) 12.6525 0.516966 0.258483 0.966016i \(-0.416777\pi\)
0.258483 + 0.966016i \(0.416777\pi\)
\(600\) 0 0
\(601\) −6.88854 −0.280990 −0.140495 0.990081i \(-0.544869\pi\)
−0.140495 + 0.990081i \(0.544869\pi\)
\(602\) 17.5623 0.715786
\(603\) −1.85410 −0.0755049
\(604\) 5.12461 0.208517
\(605\) 0 0
\(606\) −26.7984 −1.08861
\(607\) 16.5623 0.672243 0.336122 0.941819i \(-0.390885\pi\)
0.336122 + 0.941819i \(0.390885\pi\)
\(608\) 63.5410 2.57693
\(609\) −6.00000 −0.243132
\(610\) 0 0
\(611\) −2.38197 −0.0963640
\(612\) 5.56231 0.224843
\(613\) 14.2918 0.577240 0.288620 0.957444i \(-0.406804\pi\)
0.288620 + 0.957444i \(0.406804\pi\)
\(614\) −73.2492 −2.95610
\(615\) 0 0
\(616\) 0 0
\(617\) −11.1803 −0.450104 −0.225052 0.974347i \(-0.572255\pi\)
−0.225052 + 0.974347i \(0.572255\pi\)
\(618\) 28.6525 1.15257
\(619\) 24.1246 0.969650 0.484825 0.874611i \(-0.338883\pi\)
0.484825 + 0.874611i \(0.338883\pi\)
\(620\) 0 0
\(621\) −0.236068 −0.00947308
\(622\) 30.5066 1.22320
\(623\) −8.23607 −0.329971
\(624\) −2.32624 −0.0931240
\(625\) 0 0
\(626\) 6.61803 0.264510
\(627\) 0 0
\(628\) −76.2492 −3.04268
\(629\) 7.14590 0.284926
\(630\) 0 0
\(631\) 19.2148 0.764928 0.382464 0.923970i \(-0.375076\pi\)
0.382464 + 0.923970i \(0.375076\pi\)
\(632\) 82.1935 3.26948
\(633\) 3.61803 0.143804
\(634\) 17.8541 0.709077
\(635\) 0 0
\(636\) 1.85410 0.0735199
\(637\) 1.41641 0.0561201
\(638\) 0 0
\(639\) 10.3262 0.408500
\(640\) 0 0
\(641\) −25.0902 −0.991002 −0.495501 0.868607i \(-0.665016\pi\)
−0.495501 + 0.868607i \(0.665016\pi\)
\(642\) 30.0344 1.18536
\(643\) −20.8541 −0.822406 −0.411203 0.911544i \(-0.634891\pi\)
−0.411203 + 0.911544i \(0.634891\pi\)
\(644\) −1.14590 −0.0451547
\(645\) 0 0
\(646\) 17.5623 0.690980
\(647\) −45.0344 −1.77049 −0.885243 0.465128i \(-0.846008\pi\)
−0.885243 + 0.465128i \(0.846008\pi\)
\(648\) 7.47214 0.293533
\(649\) 0 0
\(650\) 0 0
\(651\) −6.09017 −0.238693
\(652\) 24.9787 0.978242
\(653\) 5.61803 0.219851 0.109925 0.993940i \(-0.464939\pi\)
0.109925 + 0.993940i \(0.464939\pi\)
\(654\) −31.4164 −1.22848
\(655\) 0 0
\(656\) 2.32624 0.0908243
\(657\) 5.70820 0.222698
\(658\) 26.4164 1.02982
\(659\) −41.1246 −1.60199 −0.800994 0.598673i \(-0.795695\pi\)
−0.800994 + 0.598673i \(0.795695\pi\)
\(660\) 0 0
\(661\) 36.5623 1.42211 0.711054 0.703137i \(-0.248218\pi\)
0.711054 + 0.703137i \(0.248218\pi\)
\(662\) 43.7426 1.70011
\(663\) −0.270510 −0.0105057
\(664\) −11.0000 −0.426883
\(665\) 0 0
\(666\) 16.3262 0.632629
\(667\) 1.41641 0.0548435
\(668\) −58.4164 −2.26020
\(669\) −7.18034 −0.277608
\(670\) 0 0
\(671\) 0 0
\(672\) 10.8541 0.418706
\(673\) −35.8328 −1.38125 −0.690627 0.723211i \(-0.742665\pi\)
−0.690627 + 0.723211i \(0.742665\pi\)
\(674\) 47.5967 1.83336
\(675\) 0 0
\(676\) −62.8328 −2.41665
\(677\) −13.5279 −0.519918 −0.259959 0.965620i \(-0.583709\pi\)
−0.259959 + 0.965620i \(0.583709\pi\)
\(678\) −35.2705 −1.35456
\(679\) −7.85410 −0.301413
\(680\) 0 0
\(681\) −13.1803 −0.505072
\(682\) 0 0
\(683\) −9.06888 −0.347011 −0.173506 0.984833i \(-0.555509\pi\)
−0.173506 + 0.984833i \(0.555509\pi\)
\(684\) 28.4164 1.08653
\(685\) 0 0
\(686\) −34.0344 −1.29944
\(687\) 0.472136 0.0180131
\(688\) 66.1033 2.52017
\(689\) −0.0901699 −0.00343520
\(690\) 0 0
\(691\) 1.34752 0.0512622 0.0256311 0.999671i \(-0.491840\pi\)
0.0256311 + 0.999671i \(0.491840\pi\)
\(692\) 87.5410 3.32781
\(693\) 0 0
\(694\) 4.00000 0.151838
\(695\) 0 0
\(696\) −44.8328 −1.69938
\(697\) 0.270510 0.0102463
\(698\) 33.2705 1.25931
\(699\) 4.14590 0.156812
\(700\) 0 0
\(701\) −34.7984 −1.31432 −0.657158 0.753753i \(-0.728242\pi\)
−0.657158 + 0.753753i \(0.728242\pi\)
\(702\) −0.618034 −0.0233262
\(703\) 36.5066 1.37687
\(704\) 0 0
\(705\) 0 0
\(706\) 31.4164 1.18237
\(707\) −10.2361 −0.384967
\(708\) 35.8328 1.34668
\(709\) 11.2148 0.421180 0.210590 0.977574i \(-0.432462\pi\)
0.210590 + 0.977574i \(0.432462\pi\)
\(710\) 0 0
\(711\) 11.0000 0.412532
\(712\) −61.5410 −2.30635
\(713\) 1.43769 0.0538421
\(714\) 3.00000 0.112272
\(715\) 0 0
\(716\) −41.3951 −1.54701
\(717\) 0.381966 0.0142648
\(718\) −25.4164 −0.948532
\(719\) −38.4853 −1.43526 −0.717630 0.696425i \(-0.754773\pi\)
−0.717630 + 0.696425i \(0.754773\pi\)
\(720\) 0 0
\(721\) 10.9443 0.407586
\(722\) 39.9787 1.48785
\(723\) 8.29180 0.308375
\(724\) 12.2705 0.456030
\(725\) 0 0
\(726\) 0 0
\(727\) 9.14590 0.339203 0.169601 0.985513i \(-0.445752\pi\)
0.169601 + 0.985513i \(0.445752\pi\)
\(728\) −1.76393 −0.0653757
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 7.68692 0.284311
\(732\) −56.1246 −2.07443
\(733\) 0.403252 0.0148945 0.00744723 0.999972i \(-0.497629\pi\)
0.00744723 + 0.999972i \(0.497629\pi\)
\(734\) −57.9787 −2.14003
\(735\) 0 0
\(736\) −2.56231 −0.0944478
\(737\) 0 0
\(738\) 0.618034 0.0227501
\(739\) 3.00000 0.110357 0.0551784 0.998477i \(-0.482427\pi\)
0.0551784 + 0.998477i \(0.482427\pi\)
\(740\) 0 0
\(741\) −1.38197 −0.0507678
\(742\) 1.00000 0.0367112
\(743\) 42.8885 1.57343 0.786714 0.617318i \(-0.211781\pi\)
0.786714 + 0.617318i \(0.211781\pi\)
\(744\) −45.5066 −1.66835
\(745\) 0 0
\(746\) −2.32624 −0.0851696
\(747\) −1.47214 −0.0538626
\(748\) 0 0
\(749\) 11.4721 0.419183
\(750\) 0 0
\(751\) 16.1459 0.589172 0.294586 0.955625i \(-0.404818\pi\)
0.294586 + 0.955625i \(0.404818\pi\)
\(752\) 99.4296 3.62582
\(753\) −21.9787 −0.800949
\(754\) 3.70820 0.135045
\(755\) 0 0
\(756\) 4.85410 0.176542
\(757\) −5.00000 −0.181728 −0.0908640 0.995863i \(-0.528963\pi\)
−0.0908640 + 0.995863i \(0.528963\pi\)
\(758\) −65.1591 −2.36668
\(759\) 0 0
\(760\) 0 0
\(761\) 29.2918 1.06183 0.530913 0.847426i \(-0.321849\pi\)
0.530913 + 0.847426i \(0.321849\pi\)
\(762\) −20.1803 −0.731057
\(763\) −12.0000 −0.434429
\(764\) −3.97871 −0.143945
\(765\) 0 0
\(766\) 33.2705 1.20211
\(767\) −1.74265 −0.0629233
\(768\) −14.5623 −0.525472
\(769\) −34.5066 −1.24434 −0.622170 0.782883i \(-0.713749\pi\)
−0.622170 + 0.782883i \(0.713749\pi\)
\(770\) 0 0
\(771\) −29.7426 −1.07116
\(772\) 15.2705 0.549598
\(773\) −27.1803 −0.977609 −0.488804 0.872393i \(-0.662567\pi\)
−0.488804 + 0.872393i \(0.662567\pi\)
\(774\) 17.5623 0.631264
\(775\) 0 0
\(776\) −58.6869 −2.10674
\(777\) 6.23607 0.223718
\(778\) −96.1935 −3.44870
\(779\) 1.38197 0.0495141
\(780\) 0 0
\(781\) 0 0
\(782\) −0.708204 −0.0253253
\(783\) −6.00000 −0.214423
\(784\) −59.1246 −2.11159
\(785\) 0 0
\(786\) −30.8885 −1.10176
\(787\) 9.70820 0.346060 0.173030 0.984917i \(-0.444644\pi\)
0.173030 + 0.984917i \(0.444644\pi\)
\(788\) −63.2705 −2.25392
\(789\) 15.2705 0.543645
\(790\) 0 0
\(791\) −13.4721 −0.479014
\(792\) 0 0
\(793\) 2.72949 0.0969270
\(794\) 48.9787 1.73819
\(795\) 0 0
\(796\) 32.5623 1.15414
\(797\) −18.5410 −0.656757 −0.328378 0.944546i \(-0.606502\pi\)
−0.328378 + 0.944546i \(0.606502\pi\)
\(798\) 15.3262 0.542543
\(799\) 11.5623 0.409045
\(800\) 0 0
\(801\) −8.23607 −0.291007
\(802\) −82.9574 −2.92933
\(803\) 0 0
\(804\) −9.00000 −0.317406
\(805\) 0 0
\(806\) 3.76393 0.132579
\(807\) −25.4164 −0.894700
\(808\) −76.4853 −2.69074
\(809\) 27.0902 0.952440 0.476220 0.879326i \(-0.342007\pi\)
0.476220 + 0.879326i \(0.342007\pi\)
\(810\) 0 0
\(811\) 36.5623 1.28388 0.641938 0.766756i \(-0.278131\pi\)
0.641938 + 0.766756i \(0.278131\pi\)
\(812\) −29.1246 −1.02207
\(813\) 18.6180 0.652963
\(814\) 0 0
\(815\) 0 0
\(816\) 11.2918 0.395292
\(817\) 39.2705 1.37390
\(818\) −16.9443 −0.592443
\(819\) −0.236068 −0.00824888
\(820\) 0 0
\(821\) 40.5967 1.41684 0.708418 0.705793i \(-0.249409\pi\)
0.708418 + 0.705793i \(0.249409\pi\)
\(822\) −25.5623 −0.891588
\(823\) 27.8328 0.970191 0.485095 0.874461i \(-0.338785\pi\)
0.485095 + 0.874461i \(0.338785\pi\)
\(824\) 81.7771 2.84884
\(825\) 0 0
\(826\) 19.3262 0.672446
\(827\) 10.6525 0.370423 0.185211 0.982699i \(-0.440703\pi\)
0.185211 + 0.982699i \(0.440703\pi\)
\(828\) −1.14590 −0.0398227
\(829\) −31.3951 −1.09040 −0.545199 0.838307i \(-0.683546\pi\)
−0.545199 + 0.838307i \(0.683546\pi\)
\(830\) 0 0
\(831\) 29.2148 1.01345
\(832\) −2.05573 −0.0712695
\(833\) −6.87539 −0.238218
\(834\) 38.1246 1.32015
\(835\) 0 0
\(836\) 0 0
\(837\) −6.09017 −0.210507
\(838\) 82.3394 2.84437
\(839\) −17.8328 −0.615657 −0.307829 0.951442i \(-0.599602\pi\)
−0.307829 + 0.951442i \(0.599602\pi\)
\(840\) 0 0
\(841\) 7.00000 0.241379
\(842\) 27.5066 0.947939
\(843\) 24.7639 0.852915
\(844\) 17.5623 0.604519
\(845\) 0 0
\(846\) 26.4164 0.908215
\(847\) 0 0
\(848\) 3.76393 0.129254
\(849\) 5.70820 0.195905
\(850\) 0 0
\(851\) −1.47214 −0.0504642
\(852\) 50.1246 1.71724
\(853\) 55.8328 1.91168 0.955840 0.293889i \(-0.0949496\pi\)
0.955840 + 0.293889i \(0.0949496\pi\)
\(854\) −30.2705 −1.03584
\(855\) 0 0
\(856\) 85.7214 2.92990
\(857\) −27.7639 −0.948398 −0.474199 0.880418i \(-0.657262\pi\)
−0.474199 + 0.880418i \(0.657262\pi\)
\(858\) 0 0
\(859\) −34.4164 −1.17427 −0.587136 0.809488i \(-0.699745\pi\)
−0.587136 + 0.809488i \(0.699745\pi\)
\(860\) 0 0
\(861\) 0.236068 0.00804518
\(862\) −15.4721 −0.526983
\(863\) −0.111456 −0.00379401 −0.00189701 0.999998i \(-0.500604\pi\)
−0.00189701 + 0.999998i \(0.500604\pi\)
\(864\) 10.8541 0.369264
\(865\) 0 0
\(866\) −92.4296 −3.14088
\(867\) −15.6869 −0.532756
\(868\) −29.5623 −1.00341
\(869\) 0 0
\(870\) 0 0
\(871\) 0.437694 0.0148307
\(872\) −89.6656 −3.03646
\(873\) −7.85410 −0.265821
\(874\) −3.61803 −0.122382
\(875\) 0 0
\(876\) 27.7082 0.936173
\(877\) 57.9443 1.95664 0.978320 0.207101i \(-0.0664030\pi\)
0.978320 + 0.207101i \(0.0664030\pi\)
\(878\) 60.9787 2.05793
\(879\) 21.6525 0.730320
\(880\) 0 0
\(881\) 6.20163 0.208938 0.104469 0.994528i \(-0.466686\pi\)
0.104469 + 0.994528i \(0.466686\pi\)
\(882\) −15.7082 −0.528923
\(883\) −1.05573 −0.0355281 −0.0177640 0.999842i \(-0.505655\pi\)
−0.0177640 + 0.999842i \(0.505655\pi\)
\(884\) −1.31308 −0.0441637
\(885\) 0 0
\(886\) 82.7214 2.77908
\(887\) 54.4853 1.82944 0.914719 0.404092i \(-0.132412\pi\)
0.914719 + 0.404092i \(0.132412\pi\)
\(888\) 46.5967 1.56368
\(889\) −7.70820 −0.258525
\(890\) 0 0
\(891\) 0 0
\(892\) −34.8541 −1.16700
\(893\) 59.0689 1.97666
\(894\) −11.0902 −0.370911
\(895\) 0 0
\(896\) 1.09017 0.0364200
\(897\) 0.0557281 0.00186071
\(898\) −23.7082 −0.791153
\(899\) 36.5410 1.21871
\(900\) 0 0
\(901\) 0.437694 0.0145817
\(902\) 0 0
\(903\) 6.70820 0.223235
\(904\) −100.666 −3.34809
\(905\) 0 0
\(906\) 2.76393 0.0918255
\(907\) 42.3951 1.40771 0.703853 0.710345i \(-0.251461\pi\)
0.703853 + 0.710345i \(0.251461\pi\)
\(908\) −63.9787 −2.12321
\(909\) −10.2361 −0.339509
\(910\) 0 0
\(911\) 38.5967 1.27877 0.639384 0.768888i \(-0.279190\pi\)
0.639384 + 0.768888i \(0.279190\pi\)
\(912\) 57.6869 1.91020
\(913\) 0 0
\(914\) −62.7771 −2.07648
\(915\) 0 0
\(916\) 2.29180 0.0757231
\(917\) −11.7984 −0.389617
\(918\) 3.00000 0.0990148
\(919\) 25.6525 0.846197 0.423099 0.906084i \(-0.360942\pi\)
0.423099 + 0.906084i \(0.360942\pi\)
\(920\) 0 0
\(921\) −27.9787 −0.921930
\(922\) 24.2705 0.799307
\(923\) −2.43769 −0.0802377
\(924\) 0 0
\(925\) 0 0
\(926\) −4.52786 −0.148795
\(927\) 10.9443 0.359457
\(928\) −65.1246 −2.13782
\(929\) −12.7082 −0.416943 −0.208471 0.978028i \(-0.566849\pi\)
−0.208471 + 0.978028i \(0.566849\pi\)
\(930\) 0 0
\(931\) −35.1246 −1.15116
\(932\) 20.1246 0.659204
\(933\) 11.6525 0.381485
\(934\) −54.6869 −1.78941
\(935\) 0 0
\(936\) −1.76393 −0.0576559
\(937\) −41.6525 −1.36073 −0.680364 0.732875i \(-0.738178\pi\)
−0.680364 + 0.732875i \(0.738178\pi\)
\(938\) −4.85410 −0.158492
\(939\) 2.52786 0.0824937
\(940\) 0 0
\(941\) −14.4508 −0.471084 −0.235542 0.971864i \(-0.575687\pi\)
−0.235542 + 0.971864i \(0.575687\pi\)
\(942\) −41.1246 −1.33991
\(943\) −0.0557281 −0.00181476
\(944\) 72.7426 2.36757
\(945\) 0 0
\(946\) 0 0
\(947\) 32.3951 1.05270 0.526350 0.850268i \(-0.323560\pi\)
0.526350 + 0.850268i \(0.323560\pi\)
\(948\) 53.3951 1.73419
\(949\) −1.34752 −0.0437425
\(950\) 0 0
\(951\) 6.81966 0.221143
\(952\) 8.56231 0.277506
\(953\) −11.3475 −0.367582 −0.183791 0.982965i \(-0.558837\pi\)
−0.183791 + 0.982965i \(0.558837\pi\)
\(954\) 1.00000 0.0323762
\(955\) 0 0
\(956\) 1.85410 0.0599659
\(957\) 0 0
\(958\) −74.3050 −2.40068
\(959\) −9.76393 −0.315294
\(960\) 0 0
\(961\) 6.09017 0.196457
\(962\) −3.85410 −0.124261
\(963\) 11.4721 0.369684
\(964\) 40.2492 1.29634
\(965\) 0 0
\(966\) −0.618034 −0.0198849
\(967\) −43.9230 −1.41247 −0.706234 0.707978i \(-0.749607\pi\)
−0.706234 + 0.707978i \(0.749607\pi\)
\(968\) 0 0
\(969\) 6.70820 0.215499
\(970\) 0 0
\(971\) −42.0000 −1.34784 −0.673922 0.738802i \(-0.735392\pi\)
−0.673922 + 0.738802i \(0.735392\pi\)
\(972\) 4.85410 0.155695
\(973\) 14.5623 0.466846
\(974\) 33.2705 1.06606
\(975\) 0 0
\(976\) −113.936 −3.64701
\(977\) 0.596748 0.0190917 0.00954583 0.999954i \(-0.496961\pi\)
0.00954583 + 0.999954i \(0.496961\pi\)
\(978\) 13.4721 0.430791
\(979\) 0 0
\(980\) 0 0
\(981\) −12.0000 −0.383131
\(982\) −46.8885 −1.49627
\(983\) 8.11146 0.258715 0.129358 0.991598i \(-0.458708\pi\)
0.129358 + 0.991598i \(0.458708\pi\)
\(984\) 1.76393 0.0562321
\(985\) 0 0
\(986\) −18.0000 −0.573237
\(987\) 10.0902 0.321174
\(988\) −6.70820 −0.213416
\(989\) −1.58359 −0.0503553
\(990\) 0 0
\(991\) 3.74265 0.118889 0.0594445 0.998232i \(-0.481067\pi\)
0.0594445 + 0.998232i \(0.481067\pi\)
\(992\) −66.1033 −2.09878
\(993\) 16.7082 0.530219
\(994\) 27.0344 0.857480
\(995\) 0 0
\(996\) −7.14590 −0.226426
\(997\) 21.2016 0.671462 0.335731 0.941958i \(-0.391017\pi\)
0.335731 + 0.941958i \(0.391017\pi\)
\(998\) −47.5066 −1.50379
\(999\) 6.23607 0.197300
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9075.2.a.cb.1.2 2
5.4 even 2 363.2.a.d.1.1 2
11.3 even 5 825.2.n.c.526.1 4
11.4 even 5 825.2.n.c.676.1 4
11.10 odd 2 9075.2.a.u.1.1 2
15.14 odd 2 1089.2.a.t.1.2 2
20.19 odd 2 5808.2.a.cj.1.1 2
55.3 odd 20 825.2.bx.d.724.1 8
55.4 even 10 33.2.e.b.16.1 4
55.9 even 10 363.2.e.k.202.1 4
55.14 even 10 33.2.e.b.31.1 yes 4
55.19 odd 10 363.2.e.f.130.1 4
55.24 odd 10 363.2.e.b.202.1 4
55.29 odd 10 363.2.e.f.148.1 4
55.37 odd 20 825.2.bx.d.49.1 8
55.39 odd 10 363.2.e.b.124.1 4
55.47 odd 20 825.2.bx.d.724.2 8
55.48 odd 20 825.2.bx.d.49.2 8
55.49 even 10 363.2.e.k.124.1 4
55.54 odd 2 363.2.a.i.1.2 2
165.14 odd 10 99.2.f.a.64.1 4
165.59 odd 10 99.2.f.a.82.1 4
165.164 even 2 1089.2.a.l.1.1 2
220.59 odd 10 528.2.y.b.49.1 4
220.179 odd 10 528.2.y.b.97.1 4
220.219 even 2 5808.2.a.ci.1.1 2
495.4 even 30 891.2.n.c.379.1 8
495.14 odd 30 891.2.n.b.460.1 8
495.59 odd 30 891.2.n.b.379.1 8
495.124 even 30 891.2.n.c.757.1 8
495.169 even 30 891.2.n.c.676.1 8
495.344 odd 30 891.2.n.b.757.1 8
495.389 odd 30 891.2.n.b.676.1 8
495.454 even 30 891.2.n.c.460.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
33.2.e.b.16.1 4 55.4 even 10
33.2.e.b.31.1 yes 4 55.14 even 10
99.2.f.a.64.1 4 165.14 odd 10
99.2.f.a.82.1 4 165.59 odd 10
363.2.a.d.1.1 2 5.4 even 2
363.2.a.i.1.2 2 55.54 odd 2
363.2.e.b.124.1 4 55.39 odd 10
363.2.e.b.202.1 4 55.24 odd 10
363.2.e.f.130.1 4 55.19 odd 10
363.2.e.f.148.1 4 55.29 odd 10
363.2.e.k.124.1 4 55.49 even 10
363.2.e.k.202.1 4 55.9 even 10
528.2.y.b.49.1 4 220.59 odd 10
528.2.y.b.97.1 4 220.179 odd 10
825.2.n.c.526.1 4 11.3 even 5
825.2.n.c.676.1 4 11.4 even 5
825.2.bx.d.49.1 8 55.37 odd 20
825.2.bx.d.49.2 8 55.48 odd 20
825.2.bx.d.724.1 8 55.3 odd 20
825.2.bx.d.724.2 8 55.47 odd 20
891.2.n.b.379.1 8 495.59 odd 30
891.2.n.b.460.1 8 495.14 odd 30
891.2.n.b.676.1 8 495.389 odd 30
891.2.n.b.757.1 8 495.344 odd 30
891.2.n.c.379.1 8 495.4 even 30
891.2.n.c.460.1 8 495.454 even 30
891.2.n.c.676.1 8 495.169 even 30
891.2.n.c.757.1 8 495.124 even 30
1089.2.a.l.1.1 2 165.164 even 2
1089.2.a.t.1.2 2 15.14 odd 2
5808.2.a.ci.1.1 2 220.219 even 2
5808.2.a.cj.1.1 2 20.19 odd 2
9075.2.a.u.1.1 2 11.10 odd 2
9075.2.a.cb.1.2 2 1.1 even 1 trivial