Properties

Label 9075.2.a.bm
Level $9075$
Weight $2$
Character orbit 9075.a
Self dual yes
Analytic conductor $72.464$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 9075 = 3 \cdot 5^{2} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9075.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(72.4642398343\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{15}) \)
Defining polynomial: \(x^{2} - 15\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{15}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{3} -2 q^{4} + \beta q^{7} + q^{9} +O(q^{10})\) \( q + q^{3} -2 q^{4} + \beta q^{7} + q^{9} -2 q^{12} -\beta q^{13} + 4 q^{16} -2 \beta q^{17} + \beta q^{19} + \beta q^{21} + 6 q^{23} + q^{27} -2 \beta q^{28} + 2 \beta q^{29} -5 q^{31} -2 q^{36} + 2 q^{37} -\beta q^{39} -2 \beta q^{41} + \beta q^{43} -12 q^{47} + 4 q^{48} + 8 q^{49} -2 \beta q^{51} + 2 \beta q^{52} + 6 q^{53} + \beta q^{57} + 3 \beta q^{61} + \beta q^{63} -8 q^{64} -7 q^{67} + 4 \beta q^{68} + 6 q^{69} + 12 q^{71} -2 \beta q^{76} + 2 \beta q^{79} + q^{81} + 2 \beta q^{83} -2 \beta q^{84} + 2 \beta q^{87} + 6 q^{89} -15 q^{91} -12 q^{92} -5 q^{93} + 7 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{3} - 4 q^{4} + 2 q^{9} + O(q^{10}) \) \( 2 q + 2 q^{3} - 4 q^{4} + 2 q^{9} - 4 q^{12} + 8 q^{16} + 12 q^{23} + 2 q^{27} - 10 q^{31} - 4 q^{36} + 4 q^{37} - 24 q^{47} + 8 q^{48} + 16 q^{49} + 12 q^{53} - 16 q^{64} - 14 q^{67} + 12 q^{69} + 24 q^{71} + 2 q^{81} + 12 q^{89} - 30 q^{91} - 24 q^{92} - 10 q^{93} + 14 q^{97} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−3.87298
3.87298
0 1.00000 −2.00000 0 0 −3.87298 0 1.00000 0
1.2 0 1.00000 −2.00000 0 0 3.87298 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \(-1\)
\(5\) \(1\)
\(11\) \(1\)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
11.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 9075.2.a.bm yes 2
5.b even 2 1 9075.2.a.bf 2
11.b odd 2 1 inner 9075.2.a.bm yes 2
55.d odd 2 1 9075.2.a.bf 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
9075.2.a.bf 2 5.b even 2 1
9075.2.a.bf 2 55.d odd 2 1
9075.2.a.bm yes 2 1.a even 1 1 trivial
9075.2.a.bm yes 2 11.b odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(9075))\):

\( T_{2} \)
\( T_{7}^{2} - 15 \)
\( T_{13}^{2} - 15 \)
\( T_{17}^{2} - 60 \)
\( T_{19}^{2} - 15 \)
\( T_{23} - 6 \)
\( T_{37} - 2 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \)
$3$ \( ( -1 + T )^{2} \)
$5$ \( T^{2} \)
$7$ \( -15 + T^{2} \)
$11$ \( T^{2} \)
$13$ \( -15 + T^{2} \)
$17$ \( -60 + T^{2} \)
$19$ \( -15 + T^{2} \)
$23$ \( ( -6 + T )^{2} \)
$29$ \( -60 + T^{2} \)
$31$ \( ( 5 + T )^{2} \)
$37$ \( ( -2 + T )^{2} \)
$41$ \( -60 + T^{2} \)
$43$ \( -15 + T^{2} \)
$47$ \( ( 12 + T )^{2} \)
$53$ \( ( -6 + T )^{2} \)
$59$ \( T^{2} \)
$61$ \( -135 + T^{2} \)
$67$ \( ( 7 + T )^{2} \)
$71$ \( ( -12 + T )^{2} \)
$73$ \( T^{2} \)
$79$ \( -60 + T^{2} \)
$83$ \( -60 + T^{2} \)
$89$ \( ( -6 + T )^{2} \)
$97$ \( ( -7 + T )^{2} \)
show more
show less