Properties

Label 9075.2.a.bi.1.1
Level $9075$
Weight $2$
Character 9075.1
Self dual yes
Analytic conductor $72.464$
Analytic rank $1$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [9075,2,Mod(1,9075)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("9075.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9075, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 9075 = 3 \cdot 5^{2} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9075.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,-2,6,0,0,0,0,2,0,0,-6,0,-20,0,-2,0,0,0,0,0,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(23)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(72.4642398343\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{10})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 363)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(1.61803\) of defining polynomial
Character \(\chi\) \(=\) 9075.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.23607 q^{2} -1.00000 q^{3} +3.00000 q^{4} +2.23607 q^{6} +4.47214 q^{7} -2.23607 q^{8} +1.00000 q^{9} -3.00000 q^{12} -10.0000 q^{14} -1.00000 q^{16} -4.47214 q^{17} -2.23607 q^{18} -4.47214 q^{19} -4.47214 q^{21} +4.00000 q^{23} +2.23607 q^{24} -1.00000 q^{27} +13.4164 q^{28} +4.47214 q^{29} +6.70820 q^{32} +10.0000 q^{34} +3.00000 q^{36} -2.00000 q^{37} +10.0000 q^{38} -4.47214 q^{41} +10.0000 q^{42} -4.47214 q^{43} -8.94427 q^{46} -8.00000 q^{47} +1.00000 q^{48} +13.0000 q^{49} +4.47214 q^{51} -6.00000 q^{53} +2.23607 q^{54} -10.0000 q^{56} +4.47214 q^{57} -10.0000 q^{58} +8.94427 q^{61} +4.47214 q^{63} -13.0000 q^{64} +12.0000 q^{67} -13.4164 q^{68} -4.00000 q^{69} -8.00000 q^{71} -2.23607 q^{72} +8.94427 q^{73} +4.47214 q^{74} -13.4164 q^{76} +13.4164 q^{79} +1.00000 q^{81} +10.0000 q^{82} +8.94427 q^{83} -13.4164 q^{84} +10.0000 q^{86} -4.47214 q^{87} -14.0000 q^{89} +12.0000 q^{92} +17.8885 q^{94} -6.70820 q^{96} -2.00000 q^{97} -29.0689 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{3} + 6 q^{4} + 2 q^{9} - 6 q^{12} - 20 q^{14} - 2 q^{16} + 8 q^{23} - 2 q^{27} + 20 q^{34} + 6 q^{36} - 4 q^{37} + 20 q^{38} + 20 q^{42} - 16 q^{47} + 2 q^{48} + 26 q^{49} - 12 q^{53} - 20 q^{56}+ \cdots - 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.23607 −1.58114 −0.790569 0.612372i \(-0.790215\pi\)
−0.790569 + 0.612372i \(0.790215\pi\)
\(3\) −1.00000 −0.577350
\(4\) 3.00000 1.50000
\(5\) 0 0
\(6\) 2.23607 0.912871
\(7\) 4.47214 1.69031 0.845154 0.534522i \(-0.179509\pi\)
0.845154 + 0.534522i \(0.179509\pi\)
\(8\) −2.23607 −0.790569
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 0 0
\(12\) −3.00000 −0.866025
\(13\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(14\) −10.0000 −2.67261
\(15\) 0 0
\(16\) −1.00000 −0.250000
\(17\) −4.47214 −1.08465 −0.542326 0.840168i \(-0.682456\pi\)
−0.542326 + 0.840168i \(0.682456\pi\)
\(18\) −2.23607 −0.527046
\(19\) −4.47214 −1.02598 −0.512989 0.858395i \(-0.671462\pi\)
−0.512989 + 0.858395i \(0.671462\pi\)
\(20\) 0 0
\(21\) −4.47214 −0.975900
\(22\) 0 0
\(23\) 4.00000 0.834058 0.417029 0.908893i \(-0.363071\pi\)
0.417029 + 0.908893i \(0.363071\pi\)
\(24\) 2.23607 0.456435
\(25\) 0 0
\(26\) 0 0
\(27\) −1.00000 −0.192450
\(28\) 13.4164 2.53546
\(29\) 4.47214 0.830455 0.415227 0.909718i \(-0.363702\pi\)
0.415227 + 0.909718i \(0.363702\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) 6.70820 1.18585
\(33\) 0 0
\(34\) 10.0000 1.71499
\(35\) 0 0
\(36\) 3.00000 0.500000
\(37\) −2.00000 −0.328798 −0.164399 0.986394i \(-0.552568\pi\)
−0.164399 + 0.986394i \(0.552568\pi\)
\(38\) 10.0000 1.62221
\(39\) 0 0
\(40\) 0 0
\(41\) −4.47214 −0.698430 −0.349215 0.937043i \(-0.613552\pi\)
−0.349215 + 0.937043i \(0.613552\pi\)
\(42\) 10.0000 1.54303
\(43\) −4.47214 −0.681994 −0.340997 0.940064i \(-0.610765\pi\)
−0.340997 + 0.940064i \(0.610765\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) −8.94427 −1.31876
\(47\) −8.00000 −1.16692 −0.583460 0.812142i \(-0.698301\pi\)
−0.583460 + 0.812142i \(0.698301\pi\)
\(48\) 1.00000 0.144338
\(49\) 13.0000 1.85714
\(50\) 0 0
\(51\) 4.47214 0.626224
\(52\) 0 0
\(53\) −6.00000 −0.824163 −0.412082 0.911147i \(-0.635198\pi\)
−0.412082 + 0.911147i \(0.635198\pi\)
\(54\) 2.23607 0.304290
\(55\) 0 0
\(56\) −10.0000 −1.33631
\(57\) 4.47214 0.592349
\(58\) −10.0000 −1.31306
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) 8.94427 1.14520 0.572598 0.819836i \(-0.305935\pi\)
0.572598 + 0.819836i \(0.305935\pi\)
\(62\) 0 0
\(63\) 4.47214 0.563436
\(64\) −13.0000 −1.62500
\(65\) 0 0
\(66\) 0 0
\(67\) 12.0000 1.46603 0.733017 0.680211i \(-0.238112\pi\)
0.733017 + 0.680211i \(0.238112\pi\)
\(68\) −13.4164 −1.62698
\(69\) −4.00000 −0.481543
\(70\) 0 0
\(71\) −8.00000 −0.949425 −0.474713 0.880141i \(-0.657448\pi\)
−0.474713 + 0.880141i \(0.657448\pi\)
\(72\) −2.23607 −0.263523
\(73\) 8.94427 1.04685 0.523424 0.852072i \(-0.324654\pi\)
0.523424 + 0.852072i \(0.324654\pi\)
\(74\) 4.47214 0.519875
\(75\) 0 0
\(76\) −13.4164 −1.53897
\(77\) 0 0
\(78\) 0 0
\(79\) 13.4164 1.50946 0.754732 0.656033i \(-0.227767\pi\)
0.754732 + 0.656033i \(0.227767\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 10.0000 1.10432
\(83\) 8.94427 0.981761 0.490881 0.871227i \(-0.336675\pi\)
0.490881 + 0.871227i \(0.336675\pi\)
\(84\) −13.4164 −1.46385
\(85\) 0 0
\(86\) 10.0000 1.07833
\(87\) −4.47214 −0.479463
\(88\) 0 0
\(89\) −14.0000 −1.48400 −0.741999 0.670402i \(-0.766122\pi\)
−0.741999 + 0.670402i \(0.766122\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 12.0000 1.25109
\(93\) 0 0
\(94\) 17.8885 1.84506
\(95\) 0 0
\(96\) −6.70820 −0.684653
\(97\) −2.00000 −0.203069 −0.101535 0.994832i \(-0.532375\pi\)
−0.101535 + 0.994832i \(0.532375\pi\)
\(98\) −29.0689 −2.93640
\(99\) 0 0
\(100\) 0 0
\(101\) 4.47214 0.444994 0.222497 0.974933i \(-0.428579\pi\)
0.222497 + 0.974933i \(0.428579\pi\)
\(102\) −10.0000 −0.990148
\(103\) −16.0000 −1.57653 −0.788263 0.615338i \(-0.789020\pi\)
−0.788263 + 0.615338i \(0.789020\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 13.4164 1.30312
\(107\) −8.94427 −0.864675 −0.432338 0.901712i \(-0.642311\pi\)
−0.432338 + 0.901712i \(0.642311\pi\)
\(108\) −3.00000 −0.288675
\(109\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(110\) 0 0
\(111\) 2.00000 0.189832
\(112\) −4.47214 −0.422577
\(113\) −6.00000 −0.564433 −0.282216 0.959351i \(-0.591070\pi\)
−0.282216 + 0.959351i \(0.591070\pi\)
\(114\) −10.0000 −0.936586
\(115\) 0 0
\(116\) 13.4164 1.24568
\(117\) 0 0
\(118\) 0 0
\(119\) −20.0000 −1.83340
\(120\) 0 0
\(121\) 0 0
\(122\) −20.0000 −1.81071
\(123\) 4.47214 0.403239
\(124\) 0 0
\(125\) 0 0
\(126\) −10.0000 −0.890871
\(127\) −13.4164 −1.19051 −0.595257 0.803535i \(-0.702950\pi\)
−0.595257 + 0.803535i \(0.702950\pi\)
\(128\) 15.6525 1.38350
\(129\) 4.47214 0.393750
\(130\) 0 0
\(131\) −17.8885 −1.56293 −0.781465 0.623949i \(-0.785527\pi\)
−0.781465 + 0.623949i \(0.785527\pi\)
\(132\) 0 0
\(133\) −20.0000 −1.73422
\(134\) −26.8328 −2.31800
\(135\) 0 0
\(136\) 10.0000 0.857493
\(137\) −22.0000 −1.87959 −0.939793 0.341743i \(-0.888983\pi\)
−0.939793 + 0.341743i \(0.888983\pi\)
\(138\) 8.94427 0.761387
\(139\) 13.4164 1.13796 0.568982 0.822350i \(-0.307337\pi\)
0.568982 + 0.822350i \(0.307337\pi\)
\(140\) 0 0
\(141\) 8.00000 0.673722
\(142\) 17.8885 1.50117
\(143\) 0 0
\(144\) −1.00000 −0.0833333
\(145\) 0 0
\(146\) −20.0000 −1.65521
\(147\) −13.0000 −1.07222
\(148\) −6.00000 −0.493197
\(149\) −22.3607 −1.83186 −0.915929 0.401340i \(-0.868545\pi\)
−0.915929 + 0.401340i \(0.868545\pi\)
\(150\) 0 0
\(151\) 13.4164 1.09181 0.545906 0.837846i \(-0.316186\pi\)
0.545906 + 0.837846i \(0.316186\pi\)
\(152\) 10.0000 0.811107
\(153\) −4.47214 −0.361551
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −2.00000 −0.159617 −0.0798087 0.996810i \(-0.525431\pi\)
−0.0798087 + 0.996810i \(0.525431\pi\)
\(158\) −30.0000 −2.38667
\(159\) 6.00000 0.475831
\(160\) 0 0
\(161\) 17.8885 1.40981
\(162\) −2.23607 −0.175682
\(163\) −4.00000 −0.313304 −0.156652 0.987654i \(-0.550070\pi\)
−0.156652 + 0.987654i \(0.550070\pi\)
\(164\) −13.4164 −1.04765
\(165\) 0 0
\(166\) −20.0000 −1.55230
\(167\) −8.94427 −0.692129 −0.346064 0.938211i \(-0.612482\pi\)
−0.346064 + 0.938211i \(0.612482\pi\)
\(168\) 10.0000 0.771517
\(169\) −13.0000 −1.00000
\(170\) 0 0
\(171\) −4.47214 −0.341993
\(172\) −13.4164 −1.02299
\(173\) 13.4164 1.02003 0.510015 0.860165i \(-0.329640\pi\)
0.510015 + 0.860165i \(0.329640\pi\)
\(174\) 10.0000 0.758098
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 31.3050 2.34641
\(179\) −4.00000 −0.298974 −0.149487 0.988764i \(-0.547762\pi\)
−0.149487 + 0.988764i \(0.547762\pi\)
\(180\) 0 0
\(181\) −10.0000 −0.743294 −0.371647 0.928374i \(-0.621207\pi\)
−0.371647 + 0.928374i \(0.621207\pi\)
\(182\) 0 0
\(183\) −8.94427 −0.661180
\(184\) −8.94427 −0.659380
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) −24.0000 −1.75038
\(189\) −4.47214 −0.325300
\(190\) 0 0
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 13.0000 0.938194
\(193\) 17.8885 1.28765 0.643823 0.765175i \(-0.277347\pi\)
0.643823 + 0.765175i \(0.277347\pi\)
\(194\) 4.47214 0.321081
\(195\) 0 0
\(196\) 39.0000 2.78571
\(197\) −22.3607 −1.59313 −0.796566 0.604551i \(-0.793352\pi\)
−0.796566 + 0.604551i \(0.793352\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) 0 0
\(201\) −12.0000 −0.846415
\(202\) −10.0000 −0.703598
\(203\) 20.0000 1.40372
\(204\) 13.4164 0.939336
\(205\) 0 0
\(206\) 35.7771 2.49271
\(207\) 4.00000 0.278019
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −4.47214 −0.307875 −0.153937 0.988081i \(-0.549195\pi\)
−0.153937 + 0.988081i \(0.549195\pi\)
\(212\) −18.0000 −1.23625
\(213\) 8.00000 0.548151
\(214\) 20.0000 1.36717
\(215\) 0 0
\(216\) 2.23607 0.152145
\(217\) 0 0
\(218\) 0 0
\(219\) −8.94427 −0.604398
\(220\) 0 0
\(221\) 0 0
\(222\) −4.47214 −0.300150
\(223\) 16.0000 1.07144 0.535720 0.844396i \(-0.320040\pi\)
0.535720 + 0.844396i \(0.320040\pi\)
\(224\) 30.0000 2.00446
\(225\) 0 0
\(226\) 13.4164 0.892446
\(227\) −8.94427 −0.593652 −0.296826 0.954932i \(-0.595928\pi\)
−0.296826 + 0.954932i \(0.595928\pi\)
\(228\) 13.4164 0.888523
\(229\) 10.0000 0.660819 0.330409 0.943838i \(-0.392813\pi\)
0.330409 + 0.943838i \(0.392813\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −10.0000 −0.656532
\(233\) 4.47214 0.292979 0.146490 0.989212i \(-0.453202\pi\)
0.146490 + 0.989212i \(0.453202\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −13.4164 −0.871489
\(238\) 44.7214 2.89886
\(239\) 8.94427 0.578557 0.289278 0.957245i \(-0.406585\pi\)
0.289278 + 0.957245i \(0.406585\pi\)
\(240\) 0 0
\(241\) 8.94427 0.576151 0.288076 0.957608i \(-0.406985\pi\)
0.288076 + 0.957608i \(0.406985\pi\)
\(242\) 0 0
\(243\) −1.00000 −0.0641500
\(244\) 26.8328 1.71780
\(245\) 0 0
\(246\) −10.0000 −0.637577
\(247\) 0 0
\(248\) 0 0
\(249\) −8.94427 −0.566820
\(250\) 0 0
\(251\) −12.0000 −0.757433 −0.378717 0.925513i \(-0.623635\pi\)
−0.378717 + 0.925513i \(0.623635\pi\)
\(252\) 13.4164 0.845154
\(253\) 0 0
\(254\) 30.0000 1.88237
\(255\) 0 0
\(256\) −9.00000 −0.562500
\(257\) 22.0000 1.37232 0.686161 0.727450i \(-0.259294\pi\)
0.686161 + 0.727450i \(0.259294\pi\)
\(258\) −10.0000 −0.622573
\(259\) −8.94427 −0.555770
\(260\) 0 0
\(261\) 4.47214 0.276818
\(262\) 40.0000 2.47121
\(263\) −8.94427 −0.551527 −0.275764 0.961225i \(-0.588931\pi\)
−0.275764 + 0.961225i \(0.588931\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 44.7214 2.74204
\(267\) 14.0000 0.856786
\(268\) 36.0000 2.19905
\(269\) −10.0000 −0.609711 −0.304855 0.952399i \(-0.598608\pi\)
−0.304855 + 0.952399i \(0.598608\pi\)
\(270\) 0 0
\(271\) −13.4164 −0.814989 −0.407494 0.913208i \(-0.633597\pi\)
−0.407494 + 0.913208i \(0.633597\pi\)
\(272\) 4.47214 0.271163
\(273\) 0 0
\(274\) 49.1935 2.97189
\(275\) 0 0
\(276\) −12.0000 −0.722315
\(277\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(278\) −30.0000 −1.79928
\(279\) 0 0
\(280\) 0 0
\(281\) 31.3050 1.86750 0.933748 0.357930i \(-0.116517\pi\)
0.933748 + 0.357930i \(0.116517\pi\)
\(282\) −17.8885 −1.06525
\(283\) 13.4164 0.797523 0.398761 0.917055i \(-0.369440\pi\)
0.398761 + 0.917055i \(0.369440\pi\)
\(284\) −24.0000 −1.42414
\(285\) 0 0
\(286\) 0 0
\(287\) −20.0000 −1.18056
\(288\) 6.70820 0.395285
\(289\) 3.00000 0.176471
\(290\) 0 0
\(291\) 2.00000 0.117242
\(292\) 26.8328 1.57027
\(293\) 22.3607 1.30632 0.653162 0.757218i \(-0.273442\pi\)
0.653162 + 0.757218i \(0.273442\pi\)
\(294\) 29.0689 1.69533
\(295\) 0 0
\(296\) 4.47214 0.259938
\(297\) 0 0
\(298\) 50.0000 2.89642
\(299\) 0 0
\(300\) 0 0
\(301\) −20.0000 −1.15278
\(302\) −30.0000 −1.72631
\(303\) −4.47214 −0.256917
\(304\) 4.47214 0.256495
\(305\) 0 0
\(306\) 10.0000 0.571662
\(307\) 4.47214 0.255238 0.127619 0.991823i \(-0.459266\pi\)
0.127619 + 0.991823i \(0.459266\pi\)
\(308\) 0 0
\(309\) 16.0000 0.910208
\(310\) 0 0
\(311\) −12.0000 −0.680458 −0.340229 0.940343i \(-0.610505\pi\)
−0.340229 + 0.940343i \(0.610505\pi\)
\(312\) 0 0
\(313\) −14.0000 −0.791327 −0.395663 0.918396i \(-0.629485\pi\)
−0.395663 + 0.918396i \(0.629485\pi\)
\(314\) 4.47214 0.252377
\(315\) 0 0
\(316\) 40.2492 2.26420
\(317\) −18.0000 −1.01098 −0.505490 0.862832i \(-0.668688\pi\)
−0.505490 + 0.862832i \(0.668688\pi\)
\(318\) −13.4164 −0.752355
\(319\) 0 0
\(320\) 0 0
\(321\) 8.94427 0.499221
\(322\) −40.0000 −2.22911
\(323\) 20.0000 1.11283
\(324\) 3.00000 0.166667
\(325\) 0 0
\(326\) 8.94427 0.495377
\(327\) 0 0
\(328\) 10.0000 0.552158
\(329\) −35.7771 −1.97245
\(330\) 0 0
\(331\) −20.0000 −1.09930 −0.549650 0.835395i \(-0.685239\pi\)
−0.549650 + 0.835395i \(0.685239\pi\)
\(332\) 26.8328 1.47264
\(333\) −2.00000 −0.109599
\(334\) 20.0000 1.09435
\(335\) 0 0
\(336\) 4.47214 0.243975
\(337\) −8.94427 −0.487226 −0.243613 0.969873i \(-0.578333\pi\)
−0.243613 + 0.969873i \(0.578333\pi\)
\(338\) 29.0689 1.58114
\(339\) 6.00000 0.325875
\(340\) 0 0
\(341\) 0 0
\(342\) 10.0000 0.540738
\(343\) 26.8328 1.44884
\(344\) 10.0000 0.539164
\(345\) 0 0
\(346\) −30.0000 −1.61281
\(347\) −8.94427 −0.480154 −0.240077 0.970754i \(-0.577173\pi\)
−0.240077 + 0.970754i \(0.577173\pi\)
\(348\) −13.4164 −0.719195
\(349\) −26.8328 −1.43633 −0.718164 0.695874i \(-0.755017\pi\)
−0.718164 + 0.695874i \(0.755017\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 14.0000 0.745145 0.372572 0.928003i \(-0.378476\pi\)
0.372572 + 0.928003i \(0.378476\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −42.0000 −2.22600
\(357\) 20.0000 1.05851
\(358\) 8.94427 0.472719
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 22.3607 1.17525
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 20.0000 1.04542
\(367\) −8.00000 −0.417597 −0.208798 0.977959i \(-0.566955\pi\)
−0.208798 + 0.977959i \(0.566955\pi\)
\(368\) −4.00000 −0.208514
\(369\) −4.47214 −0.232810
\(370\) 0 0
\(371\) −26.8328 −1.39309
\(372\) 0 0
\(373\) 26.8328 1.38935 0.694675 0.719323i \(-0.255548\pi\)
0.694675 + 0.719323i \(0.255548\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 17.8885 0.922531
\(377\) 0 0
\(378\) 10.0000 0.514344
\(379\) −20.0000 −1.02733 −0.513665 0.857991i \(-0.671713\pi\)
−0.513665 + 0.857991i \(0.671713\pi\)
\(380\) 0 0
\(381\) 13.4164 0.687343
\(382\) 0 0
\(383\) 36.0000 1.83951 0.919757 0.392488i \(-0.128386\pi\)
0.919757 + 0.392488i \(0.128386\pi\)
\(384\) −15.6525 −0.798762
\(385\) 0 0
\(386\) −40.0000 −2.03595
\(387\) −4.47214 −0.227331
\(388\) −6.00000 −0.304604
\(389\) 10.0000 0.507020 0.253510 0.967333i \(-0.418415\pi\)
0.253510 + 0.967333i \(0.418415\pi\)
\(390\) 0 0
\(391\) −17.8885 −0.904663
\(392\) −29.0689 −1.46820
\(393\) 17.8885 0.902358
\(394\) 50.0000 2.51896
\(395\) 0 0
\(396\) 0 0
\(397\) −22.0000 −1.10415 −0.552074 0.833795i \(-0.686163\pi\)
−0.552074 + 0.833795i \(0.686163\pi\)
\(398\) 0 0
\(399\) 20.0000 1.00125
\(400\) 0 0
\(401\) 30.0000 1.49813 0.749064 0.662497i \(-0.230503\pi\)
0.749064 + 0.662497i \(0.230503\pi\)
\(402\) 26.8328 1.33830
\(403\) 0 0
\(404\) 13.4164 0.667491
\(405\) 0 0
\(406\) −44.7214 −2.21948
\(407\) 0 0
\(408\) −10.0000 −0.495074
\(409\) −26.8328 −1.32680 −0.663399 0.748266i \(-0.730887\pi\)
−0.663399 + 0.748266i \(0.730887\pi\)
\(410\) 0 0
\(411\) 22.0000 1.08518
\(412\) −48.0000 −2.36479
\(413\) 0 0
\(414\) −8.94427 −0.439587
\(415\) 0 0
\(416\) 0 0
\(417\) −13.4164 −0.657004
\(418\) 0 0
\(419\) 4.00000 0.195413 0.0977064 0.995215i \(-0.468849\pi\)
0.0977064 + 0.995215i \(0.468849\pi\)
\(420\) 0 0
\(421\) 10.0000 0.487370 0.243685 0.969854i \(-0.421644\pi\)
0.243685 + 0.969854i \(0.421644\pi\)
\(422\) 10.0000 0.486792
\(423\) −8.00000 −0.388973
\(424\) 13.4164 0.651558
\(425\) 0 0
\(426\) −17.8885 −0.866703
\(427\) 40.0000 1.93574
\(428\) −26.8328 −1.29701
\(429\) 0 0
\(430\) 0 0
\(431\) −8.94427 −0.430830 −0.215415 0.976523i \(-0.569110\pi\)
−0.215415 + 0.976523i \(0.569110\pi\)
\(432\) 1.00000 0.0481125
\(433\) 6.00000 0.288342 0.144171 0.989553i \(-0.453949\pi\)
0.144171 + 0.989553i \(0.453949\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −17.8885 −0.855725
\(438\) 20.0000 0.955637
\(439\) −13.4164 −0.640330 −0.320165 0.947362i \(-0.603738\pi\)
−0.320165 + 0.947362i \(0.603738\pi\)
\(440\) 0 0
\(441\) 13.0000 0.619048
\(442\) 0 0
\(443\) 24.0000 1.14027 0.570137 0.821549i \(-0.306890\pi\)
0.570137 + 0.821549i \(0.306890\pi\)
\(444\) 6.00000 0.284747
\(445\) 0 0
\(446\) −35.7771 −1.69409
\(447\) 22.3607 1.05762
\(448\) −58.1378 −2.74675
\(449\) −6.00000 −0.283158 −0.141579 0.989927i \(-0.545218\pi\)
−0.141579 + 0.989927i \(0.545218\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) −18.0000 −0.846649
\(453\) −13.4164 −0.630358
\(454\) 20.0000 0.938647
\(455\) 0 0
\(456\) −10.0000 −0.468293
\(457\) −26.8328 −1.25519 −0.627593 0.778542i \(-0.715960\pi\)
−0.627593 + 0.778542i \(0.715960\pi\)
\(458\) −22.3607 −1.04485
\(459\) 4.47214 0.208741
\(460\) 0 0
\(461\) 13.4164 0.624864 0.312432 0.949940i \(-0.398856\pi\)
0.312432 + 0.949940i \(0.398856\pi\)
\(462\) 0 0
\(463\) −24.0000 −1.11537 −0.557687 0.830051i \(-0.688311\pi\)
−0.557687 + 0.830051i \(0.688311\pi\)
\(464\) −4.47214 −0.207614
\(465\) 0 0
\(466\) −10.0000 −0.463241
\(467\) 8.00000 0.370196 0.185098 0.982720i \(-0.440740\pi\)
0.185098 + 0.982720i \(0.440740\pi\)
\(468\) 0 0
\(469\) 53.6656 2.47805
\(470\) 0 0
\(471\) 2.00000 0.0921551
\(472\) 0 0
\(473\) 0 0
\(474\) 30.0000 1.37795
\(475\) 0 0
\(476\) −60.0000 −2.75010
\(477\) −6.00000 −0.274721
\(478\) −20.0000 −0.914779
\(479\) −8.94427 −0.408674 −0.204337 0.978901i \(-0.565504\pi\)
−0.204337 + 0.978901i \(0.565504\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) −20.0000 −0.910975
\(483\) −17.8885 −0.813957
\(484\) 0 0
\(485\) 0 0
\(486\) 2.23607 0.101430
\(487\) −8.00000 −0.362515 −0.181257 0.983436i \(-0.558017\pi\)
−0.181257 + 0.983436i \(0.558017\pi\)
\(488\) −20.0000 −0.905357
\(489\) 4.00000 0.180886
\(490\) 0 0
\(491\) −26.8328 −1.21095 −0.605474 0.795865i \(-0.707016\pi\)
−0.605474 + 0.795865i \(0.707016\pi\)
\(492\) 13.4164 0.604858
\(493\) −20.0000 −0.900755
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −35.7771 −1.60482
\(498\) 20.0000 0.896221
\(499\) −20.0000 −0.895323 −0.447661 0.894203i \(-0.647743\pi\)
−0.447661 + 0.894203i \(0.647743\pi\)
\(500\) 0 0
\(501\) 8.94427 0.399601
\(502\) 26.8328 1.19761
\(503\) 26.8328 1.19642 0.598208 0.801341i \(-0.295880\pi\)
0.598208 + 0.801341i \(0.295880\pi\)
\(504\) −10.0000 −0.445435
\(505\) 0 0
\(506\) 0 0
\(507\) 13.0000 0.577350
\(508\) −40.2492 −1.78577
\(509\) 30.0000 1.32973 0.664863 0.746965i \(-0.268490\pi\)
0.664863 + 0.746965i \(0.268490\pi\)
\(510\) 0 0
\(511\) 40.0000 1.76950
\(512\) −11.1803 −0.494106
\(513\) 4.47214 0.197450
\(514\) −49.1935 −2.16983
\(515\) 0 0
\(516\) 13.4164 0.590624
\(517\) 0 0
\(518\) 20.0000 0.878750
\(519\) −13.4164 −0.588915
\(520\) 0 0
\(521\) 30.0000 1.31432 0.657162 0.753749i \(-0.271757\pi\)
0.657162 + 0.753749i \(0.271757\pi\)
\(522\) −10.0000 −0.437688
\(523\) −4.47214 −0.195553 −0.0977764 0.995208i \(-0.531173\pi\)
−0.0977764 + 0.995208i \(0.531173\pi\)
\(524\) −53.6656 −2.34439
\(525\) 0 0
\(526\) 20.0000 0.872041
\(527\) 0 0
\(528\) 0 0
\(529\) −7.00000 −0.304348
\(530\) 0 0
\(531\) 0 0
\(532\) −60.0000 −2.60133
\(533\) 0 0
\(534\) −31.3050 −1.35470
\(535\) 0 0
\(536\) −26.8328 −1.15900
\(537\) 4.00000 0.172613
\(538\) 22.3607 0.964037
\(539\) 0 0
\(540\) 0 0
\(541\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(542\) 30.0000 1.28861
\(543\) 10.0000 0.429141
\(544\) −30.0000 −1.28624
\(545\) 0 0
\(546\) 0 0
\(547\) −40.2492 −1.72093 −0.860466 0.509507i \(-0.829828\pi\)
−0.860466 + 0.509507i \(0.829828\pi\)
\(548\) −66.0000 −2.81938
\(549\) 8.94427 0.381732
\(550\) 0 0
\(551\) −20.0000 −0.852029
\(552\) 8.94427 0.380693
\(553\) 60.0000 2.55146
\(554\) 0 0
\(555\) 0 0
\(556\) 40.2492 1.70695
\(557\) 40.2492 1.70541 0.852707 0.522389i \(-0.174959\pi\)
0.852707 + 0.522389i \(0.174959\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) −70.0000 −2.95277
\(563\) −17.8885 −0.753912 −0.376956 0.926231i \(-0.623029\pi\)
−0.376956 + 0.926231i \(0.623029\pi\)
\(564\) 24.0000 1.01058
\(565\) 0 0
\(566\) −30.0000 −1.26099
\(567\) 4.47214 0.187812
\(568\) 17.8885 0.750587
\(569\) 4.47214 0.187482 0.0937408 0.995597i \(-0.470117\pi\)
0.0937408 + 0.995597i \(0.470117\pi\)
\(570\) 0 0
\(571\) −13.4164 −0.561459 −0.280730 0.959787i \(-0.590576\pi\)
−0.280730 + 0.959787i \(0.590576\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 44.7214 1.86663
\(575\) 0 0
\(576\) −13.0000 −0.541667
\(577\) 2.00000 0.0832611 0.0416305 0.999133i \(-0.486745\pi\)
0.0416305 + 0.999133i \(0.486745\pi\)
\(578\) −6.70820 −0.279024
\(579\) −17.8885 −0.743423
\(580\) 0 0
\(581\) 40.0000 1.65948
\(582\) −4.47214 −0.185376
\(583\) 0 0
\(584\) −20.0000 −0.827606
\(585\) 0 0
\(586\) −50.0000 −2.06548
\(587\) 8.00000 0.330195 0.165098 0.986277i \(-0.447206\pi\)
0.165098 + 0.986277i \(0.447206\pi\)
\(588\) −39.0000 −1.60833
\(589\) 0 0
\(590\) 0 0
\(591\) 22.3607 0.919795
\(592\) 2.00000 0.0821995
\(593\) 22.3607 0.918243 0.459122 0.888373i \(-0.348164\pi\)
0.459122 + 0.888373i \(0.348164\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −67.0820 −2.74779
\(597\) 0 0
\(598\) 0 0
\(599\) −36.0000 −1.47092 −0.735460 0.677568i \(-0.763034\pi\)
−0.735460 + 0.677568i \(0.763034\pi\)
\(600\) 0 0
\(601\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(602\) 44.7214 1.82271
\(603\) 12.0000 0.488678
\(604\) 40.2492 1.63772
\(605\) 0 0
\(606\) 10.0000 0.406222
\(607\) 4.47214 0.181518 0.0907592 0.995873i \(-0.471071\pi\)
0.0907592 + 0.995873i \(0.471071\pi\)
\(608\) −30.0000 −1.21666
\(609\) −20.0000 −0.810441
\(610\) 0 0
\(611\) 0 0
\(612\) −13.4164 −0.542326
\(613\) −44.7214 −1.80628 −0.903139 0.429348i \(-0.858744\pi\)
−0.903139 + 0.429348i \(0.858744\pi\)
\(614\) −10.0000 −0.403567
\(615\) 0 0
\(616\) 0 0
\(617\) 2.00000 0.0805170 0.0402585 0.999189i \(-0.487182\pi\)
0.0402585 + 0.999189i \(0.487182\pi\)
\(618\) −35.7771 −1.43917
\(619\) 44.0000 1.76851 0.884255 0.467005i \(-0.154667\pi\)
0.884255 + 0.467005i \(0.154667\pi\)
\(620\) 0 0
\(621\) −4.00000 −0.160514
\(622\) 26.8328 1.07590
\(623\) −62.6099 −2.50841
\(624\) 0 0
\(625\) 0 0
\(626\) 31.3050 1.25120
\(627\) 0 0
\(628\) −6.00000 −0.239426
\(629\) 8.94427 0.356631
\(630\) 0 0
\(631\) 32.0000 1.27390 0.636950 0.770905i \(-0.280196\pi\)
0.636950 + 0.770905i \(0.280196\pi\)
\(632\) −30.0000 −1.19334
\(633\) 4.47214 0.177751
\(634\) 40.2492 1.59850
\(635\) 0 0
\(636\) 18.0000 0.713746
\(637\) 0 0
\(638\) 0 0
\(639\) −8.00000 −0.316475
\(640\) 0 0
\(641\) −30.0000 −1.18493 −0.592464 0.805597i \(-0.701845\pi\)
−0.592464 + 0.805597i \(0.701845\pi\)
\(642\) −20.0000 −0.789337
\(643\) −36.0000 −1.41970 −0.709851 0.704352i \(-0.751238\pi\)
−0.709851 + 0.704352i \(0.751238\pi\)
\(644\) 53.6656 2.11472
\(645\) 0 0
\(646\) −44.7214 −1.75954
\(647\) 12.0000 0.471769 0.235884 0.971781i \(-0.424201\pi\)
0.235884 + 0.971781i \(0.424201\pi\)
\(648\) −2.23607 −0.0878410
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) −12.0000 −0.469956
\(653\) −46.0000 −1.80012 −0.900060 0.435767i \(-0.856477\pi\)
−0.900060 + 0.435767i \(0.856477\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 4.47214 0.174608
\(657\) 8.94427 0.348949
\(658\) 80.0000 3.11872
\(659\) 17.8885 0.696839 0.348419 0.937339i \(-0.386719\pi\)
0.348419 + 0.937339i \(0.386719\pi\)
\(660\) 0 0
\(661\) −22.0000 −0.855701 −0.427850 0.903850i \(-0.640729\pi\)
−0.427850 + 0.903850i \(0.640729\pi\)
\(662\) 44.7214 1.73814
\(663\) 0 0
\(664\) −20.0000 −0.776151
\(665\) 0 0
\(666\) 4.47214 0.173292
\(667\) 17.8885 0.692647
\(668\) −26.8328 −1.03819
\(669\) −16.0000 −0.618596
\(670\) 0 0
\(671\) 0 0
\(672\) −30.0000 −1.15728
\(673\) 17.8885 0.689553 0.344776 0.938685i \(-0.387955\pi\)
0.344776 + 0.938685i \(0.387955\pi\)
\(674\) 20.0000 0.770371
\(675\) 0 0
\(676\) −39.0000 −1.50000
\(677\) 31.3050 1.20315 0.601574 0.798817i \(-0.294541\pi\)
0.601574 + 0.798817i \(0.294541\pi\)
\(678\) −13.4164 −0.515254
\(679\) −8.94427 −0.343250
\(680\) 0 0
\(681\) 8.94427 0.342745
\(682\) 0 0
\(683\) −44.0000 −1.68361 −0.841807 0.539779i \(-0.818508\pi\)
−0.841807 + 0.539779i \(0.818508\pi\)
\(684\) −13.4164 −0.512989
\(685\) 0 0
\(686\) −60.0000 −2.29081
\(687\) −10.0000 −0.381524
\(688\) 4.47214 0.170499
\(689\) 0 0
\(690\) 0 0
\(691\) 12.0000 0.456502 0.228251 0.973602i \(-0.426699\pi\)
0.228251 + 0.973602i \(0.426699\pi\)
\(692\) 40.2492 1.53005
\(693\) 0 0
\(694\) 20.0000 0.759190
\(695\) 0 0
\(696\) 10.0000 0.379049
\(697\) 20.0000 0.757554
\(698\) 60.0000 2.27103
\(699\) −4.47214 −0.169152
\(700\) 0 0
\(701\) −22.3607 −0.844551 −0.422276 0.906467i \(-0.638769\pi\)
−0.422276 + 0.906467i \(0.638769\pi\)
\(702\) 0 0
\(703\) 8.94427 0.337340
\(704\) 0 0
\(705\) 0 0
\(706\) −31.3050 −1.17818
\(707\) 20.0000 0.752177
\(708\) 0 0
\(709\) −6.00000 −0.225335 −0.112667 0.993633i \(-0.535939\pi\)
−0.112667 + 0.993633i \(0.535939\pi\)
\(710\) 0 0
\(711\) 13.4164 0.503155
\(712\) 31.3050 1.17320
\(713\) 0 0
\(714\) −44.7214 −1.67365
\(715\) 0 0
\(716\) −12.0000 −0.448461
\(717\) −8.94427 −0.334030
\(718\) 0 0
\(719\) −24.0000 −0.895049 −0.447524 0.894272i \(-0.647694\pi\)
−0.447524 + 0.894272i \(0.647694\pi\)
\(720\) 0 0
\(721\) −71.5542 −2.66482
\(722\) −2.23607 −0.0832178
\(723\) −8.94427 −0.332641
\(724\) −30.0000 −1.11494
\(725\) 0 0
\(726\) 0 0
\(727\) 8.00000 0.296704 0.148352 0.988935i \(-0.452603\pi\)
0.148352 + 0.988935i \(0.452603\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 20.0000 0.739727
\(732\) −26.8328 −0.991769
\(733\) 17.8885 0.660728 0.330364 0.943854i \(-0.392828\pi\)
0.330364 + 0.943854i \(0.392828\pi\)
\(734\) 17.8885 0.660278
\(735\) 0 0
\(736\) 26.8328 0.989071
\(737\) 0 0
\(738\) 10.0000 0.368105
\(739\) 4.47214 0.164510 0.0822551 0.996611i \(-0.473788\pi\)
0.0822551 + 0.996611i \(0.473788\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 60.0000 2.20267
\(743\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −60.0000 −2.19676
\(747\) 8.94427 0.327254
\(748\) 0 0
\(749\) −40.0000 −1.46157
\(750\) 0 0
\(751\) 32.0000 1.16770 0.583848 0.811863i \(-0.301546\pi\)
0.583848 + 0.811863i \(0.301546\pi\)
\(752\) 8.00000 0.291730
\(753\) 12.0000 0.437304
\(754\) 0 0
\(755\) 0 0
\(756\) −13.4164 −0.487950
\(757\) −42.0000 −1.52652 −0.763258 0.646094i \(-0.776401\pi\)
−0.763258 + 0.646094i \(0.776401\pi\)
\(758\) 44.7214 1.62435
\(759\) 0 0
\(760\) 0 0
\(761\) −31.3050 −1.13480 −0.567402 0.823441i \(-0.692051\pi\)
−0.567402 + 0.823441i \(0.692051\pi\)
\(762\) −30.0000 −1.08679
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) −80.4984 −2.90853
\(767\) 0 0
\(768\) 9.00000 0.324760
\(769\) 35.7771 1.29015 0.645077 0.764117i \(-0.276825\pi\)
0.645077 + 0.764117i \(0.276825\pi\)
\(770\) 0 0
\(771\) −22.0000 −0.792311
\(772\) 53.6656 1.93147
\(773\) −14.0000 −0.503545 −0.251773 0.967786i \(-0.581013\pi\)
−0.251773 + 0.967786i \(0.581013\pi\)
\(774\) 10.0000 0.359443
\(775\) 0 0
\(776\) 4.47214 0.160540
\(777\) 8.94427 0.320874
\(778\) −22.3607 −0.801669
\(779\) 20.0000 0.716574
\(780\) 0 0
\(781\) 0 0
\(782\) 40.0000 1.43040
\(783\) −4.47214 −0.159821
\(784\) −13.0000 −0.464286
\(785\) 0 0
\(786\) −40.0000 −1.42675
\(787\) −40.2492 −1.43473 −0.717365 0.696698i \(-0.754652\pi\)
−0.717365 + 0.696698i \(0.754652\pi\)
\(788\) −67.0820 −2.38970
\(789\) 8.94427 0.318425
\(790\) 0 0
\(791\) −26.8328 −0.954065
\(792\) 0 0
\(793\) 0 0
\(794\) 49.1935 1.74581
\(795\) 0 0
\(796\) 0 0
\(797\) −42.0000 −1.48772 −0.743858 0.668338i \(-0.767006\pi\)
−0.743858 + 0.668338i \(0.767006\pi\)
\(798\) −44.7214 −1.58312
\(799\) 35.7771 1.26570
\(800\) 0 0
\(801\) −14.0000 −0.494666
\(802\) −67.0820 −2.36875
\(803\) 0 0
\(804\) −36.0000 −1.26962
\(805\) 0 0
\(806\) 0 0
\(807\) 10.0000 0.352017
\(808\) −10.0000 −0.351799
\(809\) −13.4164 −0.471696 −0.235848 0.971790i \(-0.575787\pi\)
−0.235848 + 0.971790i \(0.575787\pi\)
\(810\) 0 0
\(811\) −4.47214 −0.157038 −0.0785190 0.996913i \(-0.525019\pi\)
−0.0785190 + 0.996913i \(0.525019\pi\)
\(812\) 60.0000 2.10559
\(813\) 13.4164 0.470534
\(814\) 0 0
\(815\) 0 0
\(816\) −4.47214 −0.156556
\(817\) 20.0000 0.699711
\(818\) 60.0000 2.09785
\(819\) 0 0
\(820\) 0 0
\(821\) 22.3607 0.780393 0.390197 0.920732i \(-0.372407\pi\)
0.390197 + 0.920732i \(0.372407\pi\)
\(822\) −49.1935 −1.71582
\(823\) −16.0000 −0.557725 −0.278862 0.960331i \(-0.589957\pi\)
−0.278862 + 0.960331i \(0.589957\pi\)
\(824\) 35.7771 1.24635
\(825\) 0 0
\(826\) 0 0
\(827\) −44.7214 −1.55511 −0.777557 0.628812i \(-0.783541\pi\)
−0.777557 + 0.628812i \(0.783541\pi\)
\(828\) 12.0000 0.417029
\(829\) 14.0000 0.486240 0.243120 0.969996i \(-0.421829\pi\)
0.243120 + 0.969996i \(0.421829\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −58.1378 −2.01435
\(834\) 30.0000 1.03882
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) −8.94427 −0.308975
\(839\) −20.0000 −0.690477 −0.345238 0.938515i \(-0.612202\pi\)
−0.345238 + 0.938515i \(0.612202\pi\)
\(840\) 0 0
\(841\) −9.00000 −0.310345
\(842\) −22.3607 −0.770600
\(843\) −31.3050 −1.07820
\(844\) −13.4164 −0.461812
\(845\) 0 0
\(846\) 17.8885 0.615021
\(847\) 0 0
\(848\) 6.00000 0.206041
\(849\) −13.4164 −0.460450
\(850\) 0 0
\(851\) −8.00000 −0.274236
\(852\) 24.0000 0.822226
\(853\) −8.94427 −0.306246 −0.153123 0.988207i \(-0.548933\pi\)
−0.153123 + 0.988207i \(0.548933\pi\)
\(854\) −89.4427 −3.06067
\(855\) 0 0
\(856\) 20.0000 0.683586
\(857\) −40.2492 −1.37489 −0.687444 0.726238i \(-0.741267\pi\)
−0.687444 + 0.726238i \(0.741267\pi\)
\(858\) 0 0
\(859\) 4.00000 0.136478 0.0682391 0.997669i \(-0.478262\pi\)
0.0682391 + 0.997669i \(0.478262\pi\)
\(860\) 0 0
\(861\) 20.0000 0.681598
\(862\) 20.0000 0.681203
\(863\) −4.00000 −0.136162 −0.0680808 0.997680i \(-0.521688\pi\)
−0.0680808 + 0.997680i \(0.521688\pi\)
\(864\) −6.70820 −0.228218
\(865\) 0 0
\(866\) −13.4164 −0.455908
\(867\) −3.00000 −0.101885
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) −2.00000 −0.0676897
\(874\) 40.0000 1.35302
\(875\) 0 0
\(876\) −26.8328 −0.906597
\(877\) 8.94427 0.302027 0.151013 0.988532i \(-0.451746\pi\)
0.151013 + 0.988532i \(0.451746\pi\)
\(878\) 30.0000 1.01245
\(879\) −22.3607 −0.754207
\(880\) 0 0
\(881\) −18.0000 −0.606435 −0.303218 0.952921i \(-0.598061\pi\)
−0.303218 + 0.952921i \(0.598061\pi\)
\(882\) −29.0689 −0.978800
\(883\) −44.0000 −1.48072 −0.740359 0.672212i \(-0.765344\pi\)
−0.740359 + 0.672212i \(0.765344\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −53.6656 −1.80293
\(887\) 53.6656 1.80192 0.900958 0.433907i \(-0.142865\pi\)
0.900958 + 0.433907i \(0.142865\pi\)
\(888\) −4.47214 −0.150075
\(889\) −60.0000 −2.01234
\(890\) 0 0
\(891\) 0 0
\(892\) 48.0000 1.60716
\(893\) 35.7771 1.19723
\(894\) −50.0000 −1.67225
\(895\) 0 0
\(896\) 70.0000 2.33854
\(897\) 0 0
\(898\) 13.4164 0.447711
\(899\) 0 0
\(900\) 0 0
\(901\) 26.8328 0.893931
\(902\) 0 0
\(903\) 20.0000 0.665558
\(904\) 13.4164 0.446223
\(905\) 0 0
\(906\) 30.0000 0.996683
\(907\) 12.0000 0.398453 0.199227 0.979953i \(-0.436157\pi\)
0.199227 + 0.979953i \(0.436157\pi\)
\(908\) −26.8328 −0.890478
\(909\) 4.47214 0.148331
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) −4.47214 −0.148087
\(913\) 0 0
\(914\) 60.0000 1.98462
\(915\) 0 0
\(916\) 30.0000 0.991228
\(917\) −80.0000 −2.64183
\(918\) −10.0000 −0.330049
\(919\) 22.3607 0.737611 0.368805 0.929507i \(-0.379767\pi\)
0.368805 + 0.929507i \(0.379767\pi\)
\(920\) 0 0
\(921\) −4.47214 −0.147362
\(922\) −30.0000 −0.987997
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 53.6656 1.76356
\(927\) −16.0000 −0.525509
\(928\) 30.0000 0.984798
\(929\) 30.0000 0.984268 0.492134 0.870519i \(-0.336217\pi\)
0.492134 + 0.870519i \(0.336217\pi\)
\(930\) 0 0
\(931\) −58.1378 −1.90539
\(932\) 13.4164 0.439469
\(933\) 12.0000 0.392862
\(934\) −17.8885 −0.585331
\(935\) 0 0
\(936\) 0 0
\(937\) −53.6656 −1.75318 −0.876590 0.481238i \(-0.840187\pi\)
−0.876590 + 0.481238i \(0.840187\pi\)
\(938\) −120.000 −3.91814
\(939\) 14.0000 0.456873
\(940\) 0 0
\(941\) 22.3607 0.728937 0.364469 0.931216i \(-0.381251\pi\)
0.364469 + 0.931216i \(0.381251\pi\)
\(942\) −4.47214 −0.145710
\(943\) −17.8885 −0.582531
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −52.0000 −1.68977 −0.844886 0.534946i \(-0.820332\pi\)
−0.844886 + 0.534946i \(0.820332\pi\)
\(948\) −40.2492 −1.30723
\(949\) 0 0
\(950\) 0 0
\(951\) 18.0000 0.583690
\(952\) 44.7214 1.44943
\(953\) −22.3607 −0.724333 −0.362167 0.932113i \(-0.617963\pi\)
−0.362167 + 0.932113i \(0.617963\pi\)
\(954\) 13.4164 0.434372
\(955\) 0 0
\(956\) 26.8328 0.867835
\(957\) 0 0
\(958\) 20.0000 0.646171
\(959\) −98.3870 −3.17708
\(960\) 0 0
\(961\) −31.0000 −1.00000
\(962\) 0 0
\(963\) −8.94427 −0.288225
\(964\) 26.8328 0.864227
\(965\) 0 0
\(966\) 40.0000 1.28698
\(967\) −13.4164 −0.431443 −0.215721 0.976455i \(-0.569210\pi\)
−0.215721 + 0.976455i \(0.569210\pi\)
\(968\) 0 0
\(969\) −20.0000 −0.642493
\(970\) 0 0
\(971\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(972\) −3.00000 −0.0962250
\(973\) 60.0000 1.92351
\(974\) 17.8885 0.573186
\(975\) 0 0
\(976\) −8.94427 −0.286299
\(977\) 42.0000 1.34370 0.671850 0.740688i \(-0.265500\pi\)
0.671850 + 0.740688i \(0.265500\pi\)
\(978\) −8.94427 −0.286006
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) 60.0000 1.91468
\(983\) −36.0000 −1.14822 −0.574111 0.818778i \(-0.694652\pi\)
−0.574111 + 0.818778i \(0.694652\pi\)
\(984\) −10.0000 −0.318788
\(985\) 0 0
\(986\) 44.7214 1.42422
\(987\) 35.7771 1.13880
\(988\) 0 0
\(989\) −17.8885 −0.568823
\(990\) 0 0
\(991\) 40.0000 1.27064 0.635321 0.772248i \(-0.280868\pi\)
0.635321 + 0.772248i \(0.280868\pi\)
\(992\) 0 0
\(993\) 20.0000 0.634681
\(994\) 80.0000 2.53745
\(995\) 0 0
\(996\) −26.8328 −0.850230
\(997\) 26.8328 0.849804 0.424902 0.905239i \(-0.360309\pi\)
0.424902 + 0.905239i \(0.360309\pi\)
\(998\) 44.7214 1.41563
\(999\) 2.00000 0.0632772
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9075.2.a.bi.1.1 2
5.4 even 2 363.2.a.g.1.2 yes 2
11.10 odd 2 inner 9075.2.a.bi.1.2 2
15.14 odd 2 1089.2.a.p.1.1 2
20.19 odd 2 5808.2.a.bx.1.2 2
55.4 even 10 363.2.e.l.148.1 4
55.9 even 10 363.2.e.a.202.1 4
55.14 even 10 363.2.e.l.130.1 4
55.19 odd 10 363.2.e.a.130.1 4
55.24 odd 10 363.2.e.l.202.1 4
55.29 odd 10 363.2.e.a.148.1 4
55.39 odd 10 363.2.e.l.124.1 4
55.49 even 10 363.2.e.a.124.1 4
55.54 odd 2 363.2.a.g.1.1 2
165.164 even 2 1089.2.a.p.1.2 2
220.219 even 2 5808.2.a.bx.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
363.2.a.g.1.1 2 55.54 odd 2
363.2.a.g.1.2 yes 2 5.4 even 2
363.2.e.a.124.1 4 55.49 even 10
363.2.e.a.130.1 4 55.19 odd 10
363.2.e.a.148.1 4 55.29 odd 10
363.2.e.a.202.1 4 55.9 even 10
363.2.e.l.124.1 4 55.39 odd 10
363.2.e.l.130.1 4 55.14 even 10
363.2.e.l.148.1 4 55.4 even 10
363.2.e.l.202.1 4 55.24 odd 10
1089.2.a.p.1.1 2 15.14 odd 2
1089.2.a.p.1.2 2 165.164 even 2
5808.2.a.bx.1.1 2 220.219 even 2
5808.2.a.bx.1.2 2 20.19 odd 2
9075.2.a.bi.1.1 2 1.1 even 1 trivial
9075.2.a.bi.1.2 2 11.10 odd 2 inner