Properties

Label 9075.2.a.bi
Level $9075$
Weight $2$
Character orbit 9075.a
Self dual yes
Analytic conductor $72.464$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 9075 = 3 \cdot 5^{2} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9075.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(72.4642398343\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{5}) \)
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 363)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{5}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta q^{2} - q^{3} + 3 q^{4} + \beta q^{6} + 2 \beta q^{7} - \beta q^{8} + q^{9} +O(q^{10}) \) Copy content Toggle raw display \( q - \beta q^{2} - q^{3} + 3 q^{4} + \beta q^{6} + 2 \beta q^{7} - \beta q^{8} + q^{9} - 3 q^{12} - 10 q^{14} - q^{16} - 2 \beta q^{17} - \beta q^{18} - 2 \beta q^{19} - 2 \beta q^{21} + 4 q^{23} + \beta q^{24} - q^{27} + 6 \beta q^{28} + 2 \beta q^{29} + 3 \beta q^{32} + 10 q^{34} + 3 q^{36} - 2 q^{37} + 10 q^{38} - 2 \beta q^{41} + 10 q^{42} - 2 \beta q^{43} - 4 \beta q^{46} - 8 q^{47} + q^{48} + 13 q^{49} + 2 \beta q^{51} - 6 q^{53} + \beta q^{54} - 10 q^{56} + 2 \beta q^{57} - 10 q^{58} + 4 \beta q^{61} + 2 \beta q^{63} - 13 q^{64} + 12 q^{67} - 6 \beta q^{68} - 4 q^{69} - 8 q^{71} - \beta q^{72} + 4 \beta q^{73} + 2 \beta q^{74} - 6 \beta q^{76} + 6 \beta q^{79} + q^{81} + 10 q^{82} + 4 \beta q^{83} - 6 \beta q^{84} + 10 q^{86} - 2 \beta q^{87} - 14 q^{89} + 12 q^{92} + 8 \beta q^{94} - 3 \beta q^{96} - 2 q^{97} - 13 \beta q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{3} + 6 q^{4} + 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{3} + 6 q^{4} + 2 q^{9} - 6 q^{12} - 20 q^{14} - 2 q^{16} + 8 q^{23} - 2 q^{27} + 20 q^{34} + 6 q^{36} - 4 q^{37} + 20 q^{38} + 20 q^{42} - 16 q^{47} + 2 q^{48} + 26 q^{49} - 12 q^{53} - 20 q^{56} - 20 q^{58} - 26 q^{64} + 24 q^{67} - 8 q^{69} - 16 q^{71} + 2 q^{81} + 20 q^{82} + 20 q^{86} - 28 q^{89} + 24 q^{92} - 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
1.61803
−0.618034
−2.23607 −1.00000 3.00000 0 2.23607 4.47214 −2.23607 1.00000 0
1.2 2.23607 −1.00000 3.00000 0 −2.23607 −4.47214 2.23607 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \(1\)
\(5\) \(1\)
\(11\) \(1\)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
11.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 9075.2.a.bi 2
5.b even 2 1 363.2.a.g 2
11.b odd 2 1 inner 9075.2.a.bi 2
15.d odd 2 1 1089.2.a.p 2
20.d odd 2 1 5808.2.a.bx 2
55.d odd 2 1 363.2.a.g 2
55.h odd 10 2 363.2.e.a 4
55.h odd 10 2 363.2.e.l 4
55.j even 10 2 363.2.e.a 4
55.j even 10 2 363.2.e.l 4
165.d even 2 1 1089.2.a.p 2
220.g even 2 1 5808.2.a.bx 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
363.2.a.g 2 5.b even 2 1
363.2.a.g 2 55.d odd 2 1
363.2.e.a 4 55.h odd 10 2
363.2.e.a 4 55.j even 10 2
363.2.e.l 4 55.h odd 10 2
363.2.e.l 4 55.j even 10 2
1089.2.a.p 2 15.d odd 2 1
1089.2.a.p 2 165.d even 2 1
5808.2.a.bx 2 20.d odd 2 1
5808.2.a.bx 2 220.g even 2 1
9075.2.a.bi 2 1.a even 1 1 trivial
9075.2.a.bi 2 11.b odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(9075))\):

\( T_{2}^{2} - 5 \) Copy content Toggle raw display
\( T_{7}^{2} - 20 \) Copy content Toggle raw display
\( T_{13} \) Copy content Toggle raw display
\( T_{17}^{2} - 20 \) Copy content Toggle raw display
\( T_{19}^{2} - 20 \) Copy content Toggle raw display
\( T_{23} - 4 \) Copy content Toggle raw display
\( T_{37} + 2 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - 5 \) Copy content Toggle raw display
$3$ \( (T + 1)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} - 20 \) Copy content Toggle raw display
$11$ \( T^{2} \) Copy content Toggle raw display
$13$ \( T^{2} \) Copy content Toggle raw display
$17$ \( T^{2} - 20 \) Copy content Toggle raw display
$19$ \( T^{2} - 20 \) Copy content Toggle raw display
$23$ \( (T - 4)^{2} \) Copy content Toggle raw display
$29$ \( T^{2} - 20 \) Copy content Toggle raw display
$31$ \( T^{2} \) Copy content Toggle raw display
$37$ \( (T + 2)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} - 20 \) Copy content Toggle raw display
$43$ \( T^{2} - 20 \) Copy content Toggle raw display
$47$ \( (T + 8)^{2} \) Copy content Toggle raw display
$53$ \( (T + 6)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} \) Copy content Toggle raw display
$61$ \( T^{2} - 80 \) Copy content Toggle raw display
$67$ \( (T - 12)^{2} \) Copy content Toggle raw display
$71$ \( (T + 8)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} - 80 \) Copy content Toggle raw display
$79$ \( T^{2} - 180 \) Copy content Toggle raw display
$83$ \( T^{2} - 80 \) Copy content Toggle raw display
$89$ \( (T + 14)^{2} \) Copy content Toggle raw display
$97$ \( (T + 2)^{2} \) Copy content Toggle raw display
show more
show less