Properties

Label 9072.2.a.bu.1.3
Level $9072$
Weight $2$
Character 9072.1
Self dual yes
Analytic conductor $72.440$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [9072,2,Mod(1,9072)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("9072.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9072, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 9072 = 2^{4} \cdot 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9072.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,0,0,-3,0,-3,0,0,0,6,0,3,0,0,0,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(72.4402847137\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.621.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 6x - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 567)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-0.523976\) of defining polynomial
Character \(\chi\) \(=\) 9072.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.20147 q^{5} -1.00000 q^{7} +5.20147 q^{11} +3.15352 q^{13} +3.24943 q^{17} -7.45090 q^{19} +4.40294 q^{23} -0.153520 q^{25} +1.15352 q^{29} -2.00000 q^{31} -2.20147 q^{35} +5.00000 q^{37} +11.4509 q^{41} -9.29738 q^{43} -1.04795 q^{47} +1.00000 q^{49} +0.249425 q^{53} +11.4509 q^{55} -8.09591 q^{59} +8.60442 q^{61} +6.94239 q^{65} +7.60442 q^{67} +9.60442 q^{71} +0.846480 q^{73} -5.20147 q^{77} +7.60442 q^{79} +11.4509 q^{83} +7.15352 q^{85} -9.24943 q^{89} -3.15352 q^{91} -16.4029 q^{95} -3.45090 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 3 q^{5} - 3 q^{7} + 6 q^{11} + 3 q^{13} - 3 q^{17} - 6 q^{23} + 6 q^{25} - 3 q^{29} - 6 q^{31} + 3 q^{35} + 15 q^{37} + 12 q^{41} - 12 q^{43} + 3 q^{49} - 12 q^{53} + 12 q^{55} - 18 q^{59} - 3 q^{61}+ \cdots + 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 2.20147 0.984528 0.492264 0.870446i \(-0.336169\pi\)
0.492264 + 0.870446i \(0.336169\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 5.20147 1.56830 0.784151 0.620569i \(-0.213099\pi\)
0.784151 + 0.620569i \(0.213099\pi\)
\(12\) 0 0
\(13\) 3.15352 0.874629 0.437314 0.899309i \(-0.355930\pi\)
0.437314 + 0.899309i \(0.355930\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 3.24943 0.788101 0.394051 0.919089i \(-0.371073\pi\)
0.394051 + 0.919089i \(0.371073\pi\)
\(18\) 0 0
\(19\) −7.45090 −1.70935 −0.854677 0.519161i \(-0.826245\pi\)
−0.854677 + 0.519161i \(0.826245\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 4.40294 0.918077 0.459039 0.888416i \(-0.348194\pi\)
0.459039 + 0.888416i \(0.348194\pi\)
\(24\) 0 0
\(25\) −0.153520 −0.0307039
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 1.15352 0.214203 0.107102 0.994248i \(-0.465843\pi\)
0.107102 + 0.994248i \(0.465843\pi\)
\(30\) 0 0
\(31\) −2.00000 −0.359211 −0.179605 0.983739i \(-0.557482\pi\)
−0.179605 + 0.983739i \(0.557482\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −2.20147 −0.372117
\(36\) 0 0
\(37\) 5.00000 0.821995 0.410997 0.911636i \(-0.365181\pi\)
0.410997 + 0.911636i \(0.365181\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 11.4509 1.78833 0.894165 0.447738i \(-0.147770\pi\)
0.894165 + 0.447738i \(0.147770\pi\)
\(42\) 0 0
\(43\) −9.29738 −1.41784 −0.708918 0.705290i \(-0.750817\pi\)
−0.708918 + 0.705290i \(0.750817\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −1.04795 −0.152860 −0.0764298 0.997075i \(-0.524352\pi\)
−0.0764298 + 0.997075i \(0.524352\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 0.249425 0.0342612 0.0171306 0.999853i \(-0.494547\pi\)
0.0171306 + 0.999853i \(0.494547\pi\)
\(54\) 0 0
\(55\) 11.4509 1.54404
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −8.09591 −1.05400 −0.526999 0.849866i \(-0.676683\pi\)
−0.526999 + 0.849866i \(0.676683\pi\)
\(60\) 0 0
\(61\) 8.60442 1.10168 0.550841 0.834610i \(-0.314307\pi\)
0.550841 + 0.834610i \(0.314307\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 6.94239 0.861097
\(66\) 0 0
\(67\) 7.60442 0.929027 0.464514 0.885566i \(-0.346229\pi\)
0.464514 + 0.885566i \(0.346229\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 9.60442 1.13983 0.569917 0.821702i \(-0.306975\pi\)
0.569917 + 0.821702i \(0.306975\pi\)
\(72\) 0 0
\(73\) 0.846480 0.0990730 0.0495365 0.998772i \(-0.484226\pi\)
0.0495365 + 0.998772i \(0.484226\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −5.20147 −0.592763
\(78\) 0 0
\(79\) 7.60442 0.855564 0.427782 0.903882i \(-0.359295\pi\)
0.427782 + 0.903882i \(0.359295\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 11.4509 1.25690 0.628450 0.777850i \(-0.283690\pi\)
0.628450 + 0.777850i \(0.283690\pi\)
\(84\) 0 0
\(85\) 7.15352 0.775908
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −9.24943 −0.980437 −0.490219 0.871600i \(-0.663083\pi\)
−0.490219 + 0.871600i \(0.663083\pi\)
\(90\) 0 0
\(91\) −3.15352 −0.330579
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −16.4029 −1.68291
\(96\) 0 0
\(97\) −3.45090 −0.350386 −0.175193 0.984534i \(-0.556055\pi\)
−0.175193 + 0.984534i \(0.556055\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 16.4029 1.63215 0.816077 0.577943i \(-0.196144\pi\)
0.816077 + 0.577943i \(0.196144\pi\)
\(102\) 0 0
\(103\) 1.14386 0.112708 0.0563539 0.998411i \(-0.482053\pi\)
0.0563539 + 0.998411i \(0.482053\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 9.10557 0.880268 0.440134 0.897932i \(-0.354931\pi\)
0.440134 + 0.897932i \(0.354931\pi\)
\(108\) 0 0
\(109\) −13.7483 −1.31685 −0.658423 0.752648i \(-0.728776\pi\)
−0.658423 + 0.752648i \(0.728776\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −19.9018 −1.87220 −0.936102 0.351729i \(-0.885594\pi\)
−0.936102 + 0.351729i \(0.885594\pi\)
\(114\) 0 0
\(115\) 9.69296 0.903873
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −3.24943 −0.297874
\(120\) 0 0
\(121\) 16.0553 1.45957
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −11.3453 −1.01476
\(126\) 0 0
\(127\) −9.29738 −0.825009 −0.412504 0.910956i \(-0.635346\pi\)
−0.412504 + 0.910956i \(0.635346\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 7.54680 0.659367 0.329684 0.944091i \(-0.393058\pi\)
0.329684 + 0.944091i \(0.393058\pi\)
\(132\) 0 0
\(133\) 7.45090 0.646075
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 1.40294 0.119862 0.0599308 0.998203i \(-0.480912\pi\)
0.0599308 + 0.998203i \(0.480912\pi\)
\(138\) 0 0
\(139\) 15.4509 1.31053 0.655264 0.755400i \(-0.272557\pi\)
0.655264 + 0.755400i \(0.272557\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 16.4029 1.37168
\(144\) 0 0
\(145\) 2.53944 0.210889
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −13.4029 −1.09801 −0.549006 0.835818i \(-0.684994\pi\)
−0.549006 + 0.835818i \(0.684994\pi\)
\(150\) 0 0
\(151\) −11.6044 −0.944354 −0.472177 0.881504i \(-0.656532\pi\)
−0.472177 + 0.881504i \(0.656532\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −4.40294 −0.353653
\(156\) 0 0
\(157\) −24.3624 −1.94433 −0.972164 0.234302i \(-0.924719\pi\)
−0.972164 + 0.234302i \(0.924719\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −4.40294 −0.347001
\(162\) 0 0
\(163\) −5.60442 −0.438972 −0.219486 0.975616i \(-0.570438\pi\)
−0.219486 + 0.975616i \(0.570438\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −23.4509 −1.81468 −0.907342 0.420392i \(-0.861892\pi\)
−0.907342 + 0.420392i \(0.861892\pi\)
\(168\) 0 0
\(169\) −3.05531 −0.235024
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 22.5085 1.71129 0.855645 0.517563i \(-0.173161\pi\)
0.855645 + 0.517563i \(0.173161\pi\)
\(174\) 0 0
\(175\) 0.153520 0.0116050
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 6.49885 0.485747 0.242873 0.970058i \(-0.421910\pi\)
0.242873 + 0.970058i \(0.421910\pi\)
\(180\) 0 0
\(181\) 2.00000 0.148659 0.0743294 0.997234i \(-0.476318\pi\)
0.0743294 + 0.997234i \(0.476318\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 11.0074 0.809277
\(186\) 0 0
\(187\) 16.9018 1.23598
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −13.5085 −0.977442 −0.488721 0.872440i \(-0.662536\pi\)
−0.488721 + 0.872440i \(0.662536\pi\)
\(192\) 0 0
\(193\) 17.7483 1.27755 0.638774 0.769394i \(-0.279442\pi\)
0.638774 + 0.769394i \(0.279442\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 16.2088 1.15483 0.577416 0.816450i \(-0.304061\pi\)
0.577416 + 0.816450i \(0.304061\pi\)
\(198\) 0 0
\(199\) 7.14386 0.506415 0.253207 0.967412i \(-0.418515\pi\)
0.253207 + 0.967412i \(0.418515\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −1.15352 −0.0809612
\(204\) 0 0
\(205\) 25.2088 1.76066
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −38.7556 −2.68078
\(210\) 0 0
\(211\) −3.29738 −0.227001 −0.113500 0.993538i \(-0.536206\pi\)
−0.113500 + 0.993538i \(0.536206\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −20.4679 −1.39590
\(216\) 0 0
\(217\) 2.00000 0.135769
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 10.2471 0.689296
\(222\) 0 0
\(223\) 23.2088 1.55418 0.777089 0.629390i \(-0.216695\pi\)
0.777089 + 0.629390i \(0.216695\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 11.6620 0.774036 0.387018 0.922072i \(-0.373505\pi\)
0.387018 + 0.922072i \(0.373505\pi\)
\(228\) 0 0
\(229\) 1.39558 0.0922227 0.0461114 0.998936i \(-0.485317\pi\)
0.0461114 + 0.998936i \(0.485317\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 8.75057 0.573269 0.286635 0.958040i \(-0.407463\pi\)
0.286635 + 0.958040i \(0.407463\pi\)
\(234\) 0 0
\(235\) −2.30704 −0.150495
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −4.70262 −0.304187 −0.152094 0.988366i \(-0.548602\pi\)
−0.152094 + 0.988366i \(0.548602\pi\)
\(240\) 0 0
\(241\) −4.60442 −0.296597 −0.148298 0.988943i \(-0.547380\pi\)
−0.148298 + 0.988943i \(0.547380\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 2.20147 0.140647
\(246\) 0 0
\(247\) −23.4966 −1.49505
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −3.14386 −0.198439 −0.0992193 0.995066i \(-0.531635\pi\)
−0.0992193 + 0.995066i \(0.531635\pi\)
\(252\) 0 0
\(253\) 22.9018 1.43982
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −20.1512 −1.25700 −0.628499 0.777810i \(-0.716330\pi\)
−0.628499 + 0.777810i \(0.716330\pi\)
\(258\) 0 0
\(259\) −5.00000 −0.310685
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 17.2015 1.06069 0.530344 0.847782i \(-0.322063\pi\)
0.530344 + 0.847782i \(0.322063\pi\)
\(264\) 0 0
\(265\) 0.549103 0.0337311
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −2.75057 −0.167706 −0.0838528 0.996478i \(-0.526723\pi\)
−0.0838528 + 0.996478i \(0.526723\pi\)
\(270\) 0 0
\(271\) 12.8561 0.780955 0.390477 0.920612i \(-0.372310\pi\)
0.390477 + 0.920612i \(0.372310\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −0.798528 −0.0481530
\(276\) 0 0
\(277\) −16.7483 −1.00631 −0.503153 0.864197i \(-0.667827\pi\)
−0.503153 + 0.864197i \(0.667827\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −5.30704 −0.316591 −0.158296 0.987392i \(-0.550600\pi\)
−0.158296 + 0.987392i \(0.550600\pi\)
\(282\) 0 0
\(283\) −12.3527 −0.734291 −0.367146 0.930163i \(-0.619665\pi\)
−0.367146 + 0.930163i \(0.619665\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −11.4509 −0.675925
\(288\) 0 0
\(289\) −6.44124 −0.378896
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −10.2974 −0.601579 −0.300790 0.953691i \(-0.597250\pi\)
−0.300790 + 0.953691i \(0.597250\pi\)
\(294\) 0 0
\(295\) −17.8229 −1.03769
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 13.8848 0.802977
\(300\) 0 0
\(301\) 9.29738 0.535892
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 18.9424 1.08464
\(306\) 0 0
\(307\) 0.307039 0.0175236 0.00876182 0.999962i \(-0.497211\pi\)
0.00876182 + 0.999962i \(0.497211\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 1.04795 0.0594240 0.0297120 0.999559i \(-0.490541\pi\)
0.0297120 + 0.999559i \(0.490541\pi\)
\(312\) 0 0
\(313\) 32.0553 1.81187 0.905937 0.423413i \(-0.139168\pi\)
0.905937 + 0.423413i \(0.139168\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 6.44354 0.361905 0.180953 0.983492i \(-0.442082\pi\)
0.180953 + 0.983492i \(0.442082\pi\)
\(318\) 0 0
\(319\) 6.00000 0.335936
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −24.2111 −1.34714
\(324\) 0 0
\(325\) −0.484127 −0.0268545
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 1.04795 0.0577755
\(330\) 0 0
\(331\) 20.6141 1.13305 0.566526 0.824044i \(-0.308287\pi\)
0.566526 + 0.824044i \(0.308287\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 16.7409 0.914654
\(336\) 0 0
\(337\) 26.4606 1.44140 0.720699 0.693248i \(-0.243821\pi\)
0.720699 + 0.693248i \(0.243821\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −10.4029 −0.563351
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −4.49149 −0.241116 −0.120558 0.992706i \(-0.538468\pi\)
−0.120558 + 0.992706i \(0.538468\pi\)
\(348\) 0 0
\(349\) 3.75794 0.201158 0.100579 0.994929i \(-0.467931\pi\)
0.100579 + 0.994929i \(0.467931\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 19.2591 1.02506 0.512529 0.858670i \(-0.328709\pi\)
0.512529 + 0.858670i \(0.328709\pi\)
\(354\) 0 0
\(355\) 21.1439 1.12220
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 9.10557 0.480573 0.240287 0.970702i \(-0.422759\pi\)
0.240287 + 0.970702i \(0.422759\pi\)
\(360\) 0 0
\(361\) 36.5159 1.92189
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 1.86350 0.0975402
\(366\) 0 0
\(367\) −4.59476 −0.239844 −0.119922 0.992783i \(-0.538264\pi\)
−0.119922 + 0.992783i \(0.538264\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −0.249425 −0.0129495
\(372\) 0 0
\(373\) −21.3624 −1.10610 −0.553050 0.833148i \(-0.686536\pi\)
−0.553050 + 0.833148i \(0.686536\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 3.63765 0.187348
\(378\) 0 0
\(379\) 35.1203 1.80401 0.902004 0.431728i \(-0.142096\pi\)
0.902004 + 0.431728i \(0.142096\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 3.19411 0.163211 0.0816057 0.996665i \(-0.473995\pi\)
0.0816057 + 0.996665i \(0.473995\pi\)
\(384\) 0 0
\(385\) −11.4509 −0.583592
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −14.8059 −0.750688 −0.375344 0.926886i \(-0.622475\pi\)
−0.375344 + 0.926886i \(0.622475\pi\)
\(390\) 0 0
\(391\) 14.3070 0.723538
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 16.7409 0.842327
\(396\) 0 0
\(397\) 26.8921 1.34968 0.674839 0.737965i \(-0.264213\pi\)
0.674839 + 0.737965i \(0.264213\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −19.4029 −0.968937 −0.484468 0.874809i \(-0.660987\pi\)
−0.484468 + 0.874809i \(0.660987\pi\)
\(402\) 0 0
\(403\) −6.30704 −0.314176
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 26.0074 1.28914
\(408\) 0 0
\(409\) −9.39558 −0.464582 −0.232291 0.972646i \(-0.574622\pi\)
−0.232291 + 0.972646i \(0.574622\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 8.09591 0.398373
\(414\) 0 0
\(415\) 25.2088 1.23745
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −24.6597 −1.20471 −0.602353 0.798230i \(-0.705770\pi\)
−0.602353 + 0.798230i \(0.705770\pi\)
\(420\) 0 0
\(421\) −14.2088 −0.692496 −0.346248 0.938143i \(-0.612544\pi\)
−0.346248 + 0.938143i \(0.612544\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −0.498850 −0.0241978
\(426\) 0 0
\(427\) −8.60442 −0.416397
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −12.9977 −0.626077 −0.313039 0.949740i \(-0.601347\pi\)
−0.313039 + 0.949740i \(0.601347\pi\)
\(432\) 0 0
\(433\) −0.911456 −0.0438018 −0.0219009 0.999760i \(-0.506972\pi\)
−0.0219009 + 0.999760i \(0.506972\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −32.8059 −1.56932
\(438\) 0 0
\(439\) 10.5491 0.503481 0.251741 0.967795i \(-0.418997\pi\)
0.251741 + 0.967795i \(0.418997\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −17.4006 −0.826730 −0.413365 0.910566i \(-0.635647\pi\)
−0.413365 + 0.910566i \(0.635647\pi\)
\(444\) 0 0
\(445\) −20.3624 −0.965268
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −0.748275 −0.0353133 −0.0176566 0.999844i \(-0.505621\pi\)
−0.0176566 + 0.999844i \(0.505621\pi\)
\(450\) 0 0
\(451\) 59.5615 2.80464
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −6.94239 −0.325464
\(456\) 0 0
\(457\) −1.00000 −0.0467780 −0.0233890 0.999726i \(-0.507446\pi\)
−0.0233890 + 0.999726i \(0.507446\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 38.0457 1.77196 0.885981 0.463721i \(-0.153486\pi\)
0.885981 + 0.463721i \(0.153486\pi\)
\(462\) 0 0
\(463\) 25.8921 1.20331 0.601655 0.798756i \(-0.294508\pi\)
0.601655 + 0.798756i \(0.294508\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 17.0627 0.789566 0.394783 0.918774i \(-0.370820\pi\)
0.394783 + 0.918774i \(0.370820\pi\)
\(468\) 0 0
\(469\) −7.60442 −0.351139
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −48.3601 −2.22360
\(474\) 0 0
\(475\) 1.14386 0.0524838
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 2.80589 0.128204 0.0641022 0.997943i \(-0.479582\pi\)
0.0641022 + 0.997943i \(0.479582\pi\)
\(480\) 0 0
\(481\) 15.7676 0.718941
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −7.59706 −0.344965
\(486\) 0 0
\(487\) 6.50621 0.294825 0.147412 0.989075i \(-0.452906\pi\)
0.147412 + 0.989075i \(0.452906\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 4.61408 0.208230 0.104115 0.994565i \(-0.466799\pi\)
0.104115 + 0.994565i \(0.466799\pi\)
\(492\) 0 0
\(493\) 3.74828 0.168814
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −9.60442 −0.430817
\(498\) 0 0
\(499\) 35.4966 1.58904 0.794522 0.607235i \(-0.207722\pi\)
0.794522 + 0.607235i \(0.207722\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −18.9211 −0.843651 −0.421825 0.906677i \(-0.638611\pi\)
−0.421825 + 0.906677i \(0.638611\pi\)
\(504\) 0 0
\(505\) 36.1106 1.60690
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 14.8059 0.656260 0.328130 0.944633i \(-0.393582\pi\)
0.328130 + 0.944633i \(0.393582\pi\)
\(510\) 0 0
\(511\) −0.846480 −0.0374461
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 2.51817 0.110964
\(516\) 0 0
\(517\) −5.45090 −0.239730
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 12.7100 0.556834 0.278417 0.960460i \(-0.410190\pi\)
0.278417 + 0.960460i \(0.410190\pi\)
\(522\) 0 0
\(523\) −0.352692 −0.0154222 −0.00771108 0.999970i \(-0.502455\pi\)
−0.00771108 + 0.999970i \(0.502455\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −6.49885 −0.283094
\(528\) 0 0
\(529\) −3.61408 −0.157134
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 36.1106 1.56412
\(534\) 0 0
\(535\) 20.0457 0.866649
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 5.20147 0.224043
\(540\) 0 0
\(541\) −22.6930 −0.975647 −0.487823 0.872942i \(-0.662209\pi\)
−0.487823 + 0.872942i \(0.662209\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −30.2664 −1.29647
\(546\) 0 0
\(547\) 1.49379 0.0638698 0.0319349 0.999490i \(-0.489833\pi\)
0.0319349 + 0.999490i \(0.489833\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −8.59476 −0.366149
\(552\) 0 0
\(553\) −7.60442 −0.323373
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 8.50115 0.360205 0.180103 0.983648i \(-0.442357\pi\)
0.180103 + 0.983648i \(0.442357\pi\)
\(558\) 0 0
\(559\) −29.3195 −1.24008
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 23.4006 0.986220 0.493110 0.869967i \(-0.335860\pi\)
0.493110 + 0.869967i \(0.335860\pi\)
\(564\) 0 0
\(565\) −43.8133 −1.84324
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 8.11293 0.340112 0.170056 0.985434i \(-0.445605\pi\)
0.170056 + 0.985434i \(0.445605\pi\)
\(570\) 0 0
\(571\) −16.5948 −0.694469 −0.347234 0.937778i \(-0.612879\pi\)
−0.347234 + 0.937778i \(0.612879\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −0.675938 −0.0281886
\(576\) 0 0
\(577\) −10.8921 −0.453445 −0.226723 0.973959i \(-0.572801\pi\)
−0.226723 + 0.973959i \(0.572801\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −11.4509 −0.475063
\(582\) 0 0
\(583\) 1.29738 0.0537319
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −43.3195 −1.78799 −0.893993 0.448081i \(-0.852107\pi\)
−0.893993 + 0.448081i \(0.852107\pi\)
\(588\) 0 0
\(589\) 14.9018 0.614018
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −28.4583 −1.16864 −0.584320 0.811523i \(-0.698639\pi\)
−0.584320 + 0.811523i \(0.698639\pi\)
\(594\) 0 0
\(595\) −7.15352 −0.293266
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −29.7003 −1.21352 −0.606761 0.794884i \(-0.707532\pi\)
−0.606761 + 0.794884i \(0.707532\pi\)
\(600\) 0 0
\(601\) 37.5062 1.52991 0.764955 0.644084i \(-0.222761\pi\)
0.764955 + 0.644084i \(0.222761\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 35.3453 1.43699
\(606\) 0 0
\(607\) −2.65973 −0.107955 −0.0539776 0.998542i \(-0.517190\pi\)
−0.0539776 + 0.998542i \(0.517190\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −3.30474 −0.133695
\(612\) 0 0
\(613\) −41.6694 −1.68301 −0.841505 0.540249i \(-0.818330\pi\)
−0.841505 + 0.540249i \(0.818330\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 43.5519 1.75333 0.876666 0.481099i \(-0.159762\pi\)
0.876666 + 0.481099i \(0.159762\pi\)
\(618\) 0 0
\(619\) 14.0650 0.565319 0.282660 0.959220i \(-0.408783\pi\)
0.282660 + 0.959220i \(0.408783\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 9.24943 0.370570
\(624\) 0 0
\(625\) −24.2088 −0.968353
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 16.2471 0.647815
\(630\) 0 0
\(631\) 0.594756 0.0236769 0.0118384 0.999930i \(-0.496232\pi\)
0.0118384 + 0.999930i \(0.496232\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −20.4679 −0.812245
\(636\) 0 0
\(637\) 3.15352 0.124947
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 7.69066 0.303763 0.151881 0.988399i \(-0.451467\pi\)
0.151881 + 0.988399i \(0.451467\pi\)
\(642\) 0 0
\(643\) −49.8229 −1.96482 −0.982412 0.186727i \(-0.940212\pi\)
−0.982412 + 0.186727i \(0.940212\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 28.2761 1.11165 0.555824 0.831300i \(-0.312403\pi\)
0.555824 + 0.831300i \(0.312403\pi\)
\(648\) 0 0
\(649\) −42.1106 −1.65299
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 9.55416 0.373883 0.186942 0.982371i \(-0.440142\pi\)
0.186942 + 0.982371i \(0.440142\pi\)
\(654\) 0 0
\(655\) 16.6141 0.649166
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 48.1992 1.87757 0.938787 0.344499i \(-0.111951\pi\)
0.938787 + 0.344499i \(0.111951\pi\)
\(660\) 0 0
\(661\) 2.05531 0.0799425 0.0399712 0.999201i \(-0.487273\pi\)
0.0399712 + 0.999201i \(0.487273\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 16.4029 0.636079
\(666\) 0 0
\(667\) 5.07888 0.196655
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 44.7556 1.72777
\(672\) 0 0
\(673\) 3.79117 0.146139 0.0730694 0.997327i \(-0.476721\pi\)
0.0730694 + 0.997327i \(0.476721\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −22.5136 −0.865267 −0.432633 0.901570i \(-0.642416\pi\)
−0.432633 + 0.901570i \(0.642416\pi\)
\(678\) 0 0
\(679\) 3.45090 0.132433
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −15.3933 −0.589008 −0.294504 0.955650i \(-0.595154\pi\)
−0.294504 + 0.955650i \(0.595154\pi\)
\(684\) 0 0
\(685\) 3.08854 0.118007
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0.786567 0.0299658
\(690\) 0 0
\(691\) 23.2088 0.882906 0.441453 0.897284i \(-0.354463\pi\)
0.441453 + 0.897284i \(0.354463\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 34.0147 1.29025
\(696\) 0 0
\(697\) 37.2088 1.40939
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −15.0000 −0.566542 −0.283271 0.959040i \(-0.591420\pi\)
−0.283271 + 0.959040i \(0.591420\pi\)
\(702\) 0 0
\(703\) −37.2545 −1.40508
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −16.4029 −0.616896
\(708\) 0 0
\(709\) −31.0000 −1.16423 −0.582115 0.813107i \(-0.697775\pi\)
−0.582115 + 0.813107i \(0.697775\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −8.80589 −0.329783
\(714\) 0 0
\(715\) 36.1106 1.35046
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −18.2111 −0.679161 −0.339580 0.940577i \(-0.610285\pi\)
−0.339580 + 0.940577i \(0.610285\pi\)
\(720\) 0 0
\(721\) −1.14386 −0.0425995
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −0.177088 −0.00657688
\(726\) 0 0
\(727\) −8.83682 −0.327739 −0.163870 0.986482i \(-0.552398\pi\)
−0.163870 + 0.986482i \(0.552398\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −30.2111 −1.11740
\(732\) 0 0
\(733\) −44.6404 −1.64883 −0.824416 0.565985i \(-0.808496\pi\)
−0.824416 + 0.565985i \(0.808496\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 39.5542 1.45700
\(738\) 0 0
\(739\) −11.6044 −0.426875 −0.213438 0.976957i \(-0.568466\pi\)
−0.213438 + 0.976957i \(0.568466\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 26.7939 0.982974 0.491487 0.870885i \(-0.336454\pi\)
0.491487 + 0.870885i \(0.336454\pi\)
\(744\) 0 0
\(745\) −29.5062 −1.08102
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −9.10557 −0.332710
\(750\) 0 0
\(751\) 18.2185 0.664802 0.332401 0.943138i \(-0.392141\pi\)
0.332401 + 0.943138i \(0.392141\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −25.5468 −0.929743
\(756\) 0 0
\(757\) 12.9018 0.468924 0.234462 0.972125i \(-0.424667\pi\)
0.234462 + 0.972125i \(0.424667\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −18.2162 −0.660337 −0.330168 0.943922i \(-0.607106\pi\)
−0.330168 + 0.943922i \(0.607106\pi\)
\(762\) 0 0
\(763\) 13.7483 0.497721
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −25.5306 −0.921856
\(768\) 0 0
\(769\) 38.6044 1.39211 0.696055 0.717988i \(-0.254937\pi\)
0.696055 + 0.717988i \(0.254937\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −33.9594 −1.22144 −0.610718 0.791849i \(-0.709119\pi\)
−0.610718 + 0.791849i \(0.709119\pi\)
\(774\) 0 0
\(775\) 0.307039 0.0110292
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −85.3195 −3.05689
\(780\) 0 0
\(781\) 49.9571 1.78761
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −53.6330 −1.91425
\(786\) 0 0
\(787\) 6.85614 0.244395 0.122198 0.992506i \(-0.461006\pi\)
0.122198 + 0.992506i \(0.461006\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 19.9018 0.707626
\(792\) 0 0
\(793\) 27.1342 0.963564
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −26.6501 −0.943994 −0.471997 0.881600i \(-0.656467\pi\)
−0.471997 + 0.881600i \(0.656467\pi\)
\(798\) 0 0
\(799\) −3.40524 −0.120469
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 4.40294 0.155377
\(804\) 0 0
\(805\) −9.69296 −0.341632
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 45.7100 1.60708 0.803539 0.595252i \(-0.202948\pi\)
0.803539 + 0.595252i \(0.202948\pi\)
\(810\) 0 0
\(811\) −33.2088 −1.16612 −0.583060 0.812429i \(-0.698145\pi\)
−0.583060 + 0.812429i \(0.698145\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −12.3380 −0.432180
\(816\) 0 0
\(817\) 69.2738 2.42358
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −0.304740 −0.0106355 −0.00531774 0.999986i \(-0.501693\pi\)
−0.00531774 + 0.999986i \(0.501693\pi\)
\(822\) 0 0
\(823\) −46.4177 −1.61802 −0.809009 0.587796i \(-0.799996\pi\)
−0.809009 + 0.587796i \(0.799996\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −40.8133 −1.41922 −0.709608 0.704597i \(-0.751128\pi\)
−0.709608 + 0.704597i \(0.751128\pi\)
\(828\) 0 0
\(829\) −7.40524 −0.257195 −0.128597 0.991697i \(-0.541047\pi\)
−0.128597 + 0.991697i \(0.541047\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 3.24943 0.112586
\(834\) 0 0
\(835\) −51.6265 −1.78661
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 18.3720 0.634272 0.317136 0.948380i \(-0.397279\pi\)
0.317136 + 0.948380i \(0.397279\pi\)
\(840\) 0 0
\(841\) −27.6694 −0.954117
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −6.72619 −0.231388
\(846\) 0 0
\(847\) −16.0553 −0.551667
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 22.0147 0.754655
\(852\) 0 0
\(853\) 37.5615 1.28608 0.643041 0.765832i \(-0.277672\pi\)
0.643041 + 0.765832i \(0.277672\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 2.15122 0.0734843 0.0367421 0.999325i \(-0.488302\pi\)
0.0367421 + 0.999325i \(0.488302\pi\)
\(858\) 0 0
\(859\) −14.2877 −0.487491 −0.243745 0.969839i \(-0.578376\pi\)
−0.243745 + 0.969839i \(0.578376\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 27.6810 0.942272 0.471136 0.882061i \(-0.343844\pi\)
0.471136 + 0.882061i \(0.343844\pi\)
\(864\) 0 0
\(865\) 49.5519 1.68481
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 39.5542 1.34178
\(870\) 0 0
\(871\) 23.9807 0.812554
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 11.3453 0.383542
\(876\) 0 0
\(877\) −19.0000 −0.641584 −0.320792 0.947150i \(-0.603949\pi\)
−0.320792 + 0.947150i \(0.603949\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 4.06498 0.136953 0.0684763 0.997653i \(-0.478186\pi\)
0.0684763 + 0.997653i \(0.478186\pi\)
\(882\) 0 0
\(883\) 20.5255 0.690739 0.345370 0.938467i \(-0.387754\pi\)
0.345370 + 0.938467i \(0.387754\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 10.1152 0.339636 0.169818 0.985475i \(-0.445682\pi\)
0.169818 + 0.985475i \(0.445682\pi\)
\(888\) 0 0
\(889\) 9.29738 0.311824
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 7.80819 0.261291
\(894\) 0 0
\(895\) 14.3070 0.478232
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −2.30704 −0.0769441
\(900\) 0 0
\(901\) 0.810488 0.0270013
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 4.40294 0.146359
\(906\) 0 0
\(907\) −22.3956 −0.743633 −0.371817 0.928306i \(-0.621265\pi\)
−0.371817 + 0.928306i \(0.621265\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 33.8036 1.11996 0.559981 0.828505i \(-0.310808\pi\)
0.559981 + 0.828505i \(0.310808\pi\)
\(912\) 0 0
\(913\) 59.5615 1.97120
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −7.54680 −0.249217
\(918\) 0 0
\(919\) −35.6044 −1.17448 −0.587241 0.809412i \(-0.699786\pi\)
−0.587241 + 0.809412i \(0.699786\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 30.2877 0.996932
\(924\) 0 0
\(925\) −0.767598 −0.0252385
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −32.4126 −1.06342 −0.531712 0.846926i \(-0.678451\pi\)
−0.531712 + 0.846926i \(0.678451\pi\)
\(930\) 0 0
\(931\) −7.45090 −0.244193
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 37.2088 1.21686
\(936\) 0 0
\(937\) −4.34303 −0.141881 −0.0709403 0.997481i \(-0.522600\pi\)
−0.0709403 + 0.997481i \(0.522600\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −31.9401 −1.04122 −0.520609 0.853796i \(-0.674295\pi\)
−0.520609 + 0.853796i \(0.674295\pi\)
\(942\) 0 0
\(943\) 50.4177 1.64183
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 40.5136 1.31651 0.658257 0.752793i \(-0.271294\pi\)
0.658257 + 0.752793i \(0.271294\pi\)
\(948\) 0 0
\(949\) 2.66939 0.0866522
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 9.74828 0.315778 0.157889 0.987457i \(-0.449531\pi\)
0.157889 + 0.987457i \(0.449531\pi\)
\(954\) 0 0
\(955\) −29.7386 −0.962319
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −1.40294 −0.0453034
\(960\) 0 0
\(961\) −27.0000 −0.870968
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 39.0723 1.25778
\(966\) 0 0
\(967\) −29.6930 −0.954861 −0.477431 0.878669i \(-0.658432\pi\)
−0.477431 + 0.878669i \(0.658432\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −31.9954 −1.02678 −0.513391 0.858155i \(-0.671611\pi\)
−0.513391 + 0.858155i \(0.671611\pi\)
\(972\) 0 0
\(973\) −15.4509 −0.495333
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 1.80819 0.0578491 0.0289245 0.999582i \(-0.490792\pi\)
0.0289245 + 0.999582i \(0.490792\pi\)
\(978\) 0 0
\(979\) −48.1106 −1.53762
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −43.5468 −1.38893 −0.694464 0.719528i \(-0.744358\pi\)
−0.694464 + 0.719528i \(0.744358\pi\)
\(984\) 0 0
\(985\) 35.6833 1.13696
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −40.9358 −1.30168
\(990\) 0 0
\(991\) 33.1010 1.05149 0.525743 0.850643i \(-0.323787\pi\)
0.525743 + 0.850643i \(0.323787\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 15.7270 0.498580
\(996\) 0 0
\(997\) −0.539441 −0.0170843 −0.00854214 0.999964i \(-0.502719\pi\)
−0.00854214 + 0.999964i \(0.502719\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9072.2.a.bu.1.3 3
3.2 odd 2 9072.2.a.cb.1.1 3
4.3 odd 2 567.2.a.e.1.2 3
12.11 even 2 567.2.a.f.1.2 yes 3
28.27 even 2 3969.2.a.o.1.2 3
36.7 odd 6 567.2.f.m.190.2 6
36.11 even 6 567.2.f.l.190.2 6
36.23 even 6 567.2.f.l.379.2 6
36.31 odd 6 567.2.f.m.379.2 6
84.83 odd 2 3969.2.a.n.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
567.2.a.e.1.2 3 4.3 odd 2
567.2.a.f.1.2 yes 3 12.11 even 2
567.2.f.l.190.2 6 36.11 even 6
567.2.f.l.379.2 6 36.23 even 6
567.2.f.m.190.2 6 36.7 odd 6
567.2.f.m.379.2 6 36.31 odd 6
3969.2.a.n.1.2 3 84.83 odd 2
3969.2.a.o.1.2 3 28.27 even 2
9072.2.a.bu.1.3 3 1.1 even 1 trivial
9072.2.a.cb.1.1 3 3.2 odd 2