Properties

Label 9072.2.a.bs
Level 9072
Weight 2
Character orbit 9072.a
Self dual yes
Analytic conductor 72.440
Analytic rank 1
Dimension 3
CM no
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 9072 = 2^{4} \cdot 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9072.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(72.4402847137\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: \(\Q(\zeta_{18})^+\)
Defining polynomial: \(x^{3} - 3 x - 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 63)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( -1 + \beta ) q^{5} - q^{7} +O(q^{10})\) \( q + ( -1 + \beta ) q^{5} - q^{7} + ( 2 + \beta ) q^{11} + ( -5 - 4 \beta + 2 \beta^{2} ) q^{13} + ( \beta - \beta^{2} ) q^{17} + ( 3 - \beta - \beta^{2} ) q^{19} + ( 10 + 2 \beta - 3 \beta^{2} ) q^{23} + ( -4 - 2 \beta + \beta^{2} ) q^{25} + ( -5 + 4 \beta + \beta^{2} ) q^{29} + ( -11 - 3 \beta + 6 \beta^{2} ) q^{31} + ( 1 - \beta ) q^{35} + ( 11 + 3 \beta - 6 \beta^{2} ) q^{37} + ( -4 - \beta + 2 \beta^{2} ) q^{41} + ( 5 + \beta - 2 \beta^{2} ) q^{43} + ( 11 + 3 \beta - 5 \beta^{2} ) q^{47} + q^{49} + ( -2 \beta - \beta^{2} ) q^{53} + ( -2 + \beta + \beta^{2} ) q^{55} + ( -11 + 5 \beta^{2} ) q^{59} + ( 8 - 3 \beta^{2} ) q^{61} + ( 7 + 5 \beta - 6 \beta^{2} ) q^{65} + ( -2 - 3 \beta + 3 \beta^{2} ) q^{67} + ( -3 - 6 \beta + 3 \beta^{2} ) q^{71} + ( 3 + \beta - 5 \beta^{2} ) q^{73} + ( -2 - \beta ) q^{77} + ( 1 - 3 \beta + 3 \beta^{2} ) q^{79} + ( -16 - \beta + 5 \beta^{2} ) q^{83} + ( -1 - 4 \beta + 2 \beta^{2} ) q^{85} + ( -12 - 7 \beta + 4 \beta^{2} ) q^{89} + ( 5 + 4 \beta - 2 \beta^{2} ) q^{91} + ( -4 + \beta ) q^{95} + ( 1 + 8 \beta - \beta^{2} ) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3q - 3q^{5} - 3q^{7} + O(q^{10}) \) \( 3q - 3q^{5} - 3q^{7} + 6q^{11} - 3q^{13} - 6q^{17} + 3q^{19} + 12q^{23} - 6q^{25} - 9q^{29} + 3q^{31} + 3q^{35} - 3q^{37} + 3q^{43} + 3q^{47} + 3q^{49} - 6q^{53} - 3q^{59} + 6q^{61} - 15q^{65} + 12q^{67} + 9q^{71} - 21q^{73} - 6q^{77} + 21q^{79} - 18q^{83} + 9q^{85} - 12q^{89} + 3q^{91} - 12q^{95} - 3q^{97} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.53209
−0.347296
1.87939
0 0 0 −2.53209 0 −1.00000 0 0 0
1.2 0 0 0 −1.34730 0 −1.00000 0 0 0
1.3 0 0 0 0.879385 0 −1.00000 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(3\) \(-1\)
\(7\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 9072.2.a.bs 3
3.b odd 2 1 9072.2.a.ca 3
4.b odd 2 1 567.2.a.c 3
9.c even 3 2 3024.2.r.k 6
9.d odd 6 2 1008.2.r.h 6
12.b even 2 1 567.2.a.h 3
28.d even 2 1 3969.2.a.l 3
36.f odd 6 2 189.2.f.b 6
36.h even 6 2 63.2.f.a 6
84.h odd 2 1 3969.2.a.q 3
252.n even 6 2 1323.2.g.e 6
252.o even 6 2 441.2.g.c 6
252.r odd 6 2 441.2.h.e 6
252.s odd 6 2 441.2.f.c 6
252.u odd 6 2 1323.2.h.c 6
252.bb even 6 2 441.2.h.d 6
252.bi even 6 2 1323.2.f.d 6
252.bj even 6 2 1323.2.h.b 6
252.bl odd 6 2 1323.2.g.d 6
252.bn odd 6 2 441.2.g.b 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
63.2.f.a 6 36.h even 6 2
189.2.f.b 6 36.f odd 6 2
441.2.f.c 6 252.s odd 6 2
441.2.g.b 6 252.bn odd 6 2
441.2.g.c 6 252.o even 6 2
441.2.h.d 6 252.bb even 6 2
441.2.h.e 6 252.r odd 6 2
567.2.a.c 3 4.b odd 2 1
567.2.a.h 3 12.b even 2 1
1008.2.r.h 6 9.d odd 6 2
1323.2.f.d 6 252.bi even 6 2
1323.2.g.d 6 252.bl odd 6 2
1323.2.g.e 6 252.n even 6 2
1323.2.h.b 6 252.bj even 6 2
1323.2.h.c 6 252.u odd 6 2
3024.2.r.k 6 9.c even 3 2
3969.2.a.l 3 28.d even 2 1
3969.2.a.q 3 84.h odd 2 1
9072.2.a.bs 3 1.a even 1 1 trivial
9072.2.a.ca 3 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(9072))\):

\( T_{5}^{3} + 3 T_{5}^{2} - 3 \)
\( T_{11}^{3} - 6 T_{11}^{2} + 9 T_{11} - 3 \)
\( T_{13}^{3} + 3 T_{13}^{2} - 33 T_{13} - 107 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ 1
$3$ 1
$5$ \( 1 + 3 T + 15 T^{2} + 27 T^{3} + 75 T^{4} + 75 T^{5} + 125 T^{6} \)
$7$ \( ( 1 + T )^{3} \)
$11$ \( 1 - 6 T + 42 T^{2} - 135 T^{3} + 462 T^{4} - 726 T^{5} + 1331 T^{6} \)
$13$ \( 1 + 3 T + 6 T^{2} - 29 T^{3} + 78 T^{4} + 507 T^{5} + 2197 T^{6} \)
$17$ \( 1 + 6 T + 60 T^{2} + 207 T^{3} + 1020 T^{4} + 1734 T^{5} + 4913 T^{6} \)
$19$ \( 1 - 3 T + 51 T^{2} - 97 T^{3} + 969 T^{4} - 1083 T^{5} + 6859 T^{6} \)
$23$ \( 1 - 12 T + 96 T^{2} - 549 T^{3} + 2208 T^{4} - 6348 T^{5} + 12167 T^{6} \)
$29$ \( 1 + 9 T + 51 T^{2} + 189 T^{3} + 1479 T^{4} + 7569 T^{5} + 24389 T^{6} \)
$31$ \( 1 - 3 T + 15 T^{2} + 137 T^{3} + 465 T^{4} - 2883 T^{5} + 29791 T^{6} \)
$37$ \( 1 + 3 T + 33 T^{2} - 101 T^{3} + 1221 T^{4} + 4107 T^{5} + 50653 T^{6} \)
$41$ \( 1 + 114 T^{2} + 9 T^{3} + 4674 T^{4} + 68921 T^{6} \)
$43$ \( 1 - 3 T + 123 T^{2} - 259 T^{3} + 5289 T^{4} - 5547 T^{5} + 79507 T^{6} \)
$47$ \( 1 - 3 T + 87 T^{2} - 333 T^{3} + 4089 T^{4} - 6627 T^{5} + 103823 T^{6} \)
$53$ \( 1 + 6 T + 150 T^{2} + 639 T^{3} + 7950 T^{4} + 16854 T^{5} + 148877 T^{6} \)
$59$ \( 1 + 3 T + 105 T^{2} + 405 T^{3} + 6195 T^{4} + 10443 T^{5} + 205379 T^{6} \)
$61$ \( 1 - 6 T + 168 T^{2} - 713 T^{3} + 10248 T^{4} - 22326 T^{5} + 226981 T^{6} \)
$67$ \( 1 - 12 T + 222 T^{2} - 1591 T^{3} + 14874 T^{4} - 53868 T^{5} + 300763 T^{6} \)
$71$ \( 1 - 9 T + 159 T^{2} - 1305 T^{3} + 11289 T^{4} - 45369 T^{5} + 357911 T^{6} \)
$73$ \( 1 + 21 T + 303 T^{2} + 2797 T^{3} + 22119 T^{4} + 111909 T^{5} + 389017 T^{6} \)
$79$ \( 1 - 21 T + 357 T^{2} - 3499 T^{3} + 28203 T^{4} - 131061 T^{5} + 493039 T^{6} \)
$83$ \( 1 + 18 T + 294 T^{2} + 2997 T^{3} + 24402 T^{4} + 124002 T^{5} + 571787 T^{6} \)
$89$ \( 1 + 12 T + 204 T^{2} + 1323 T^{3} + 18156 T^{4} + 95052 T^{5} + 704969 T^{6} \)
$97$ \( 1 + 3 T + 123 T^{2} + 259 T^{3} + 11931 T^{4} + 28227 T^{5} + 912673 T^{6} \)
show more
show less