Properties

Label 9072.2.a.bm
Level $9072$
Weight $2$
Character orbit 9072.a
Self dual yes
Analytic conductor $72.440$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 9072 = 2^{4} \cdot 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9072.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(72.4402847137\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{33}) \)
Defining polynomial: \(x^{2} - x - 8\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 126)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{33})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( 1 + \beta ) q^{5} - q^{7} +O(q^{10})\) \( q + ( 1 + \beta ) q^{5} - q^{7} + ( -2 + \beta ) q^{11} + 2 q^{13} + ( -2 + \beta ) q^{17} -5 q^{19} + ( 5 - \beta ) q^{23} + ( 4 + 3 \beta ) q^{25} + ( -2 - 2 \beta ) q^{29} -2 q^{31} + ( -1 - \beta ) q^{35} + 2 q^{37} + ( 8 - \beta ) q^{41} + ( -2 + 3 \beta ) q^{43} + q^{49} + ( -2 - 2 \beta ) q^{53} + 6 q^{55} + 3 \beta q^{59} + ( -7 + 3 \beta ) q^{61} + ( 2 + 2 \beta ) q^{65} + ( -8 + 3 \beta ) q^{67} + ( -3 + 3 \beta ) q^{71} + ( 2 + 3 \beta ) q^{73} + ( 2 - \beta ) q^{77} + ( -5 + 3 \beta ) q^{79} + ( -4 - 4 \beta ) q^{83} + 6 q^{85} + ( 8 + 2 \beta ) q^{89} -2 q^{91} + ( -5 - 5 \beta ) q^{95} + ( 2 - 3 \beta ) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q + 3q^{5} - 2q^{7} + O(q^{10}) \) \( 2q + 3q^{5} - 2q^{7} - 3q^{11} + 4q^{13} - 3q^{17} - 10q^{19} + 9q^{23} + 11q^{25} - 6q^{29} - 4q^{31} - 3q^{35} + 4q^{37} + 15q^{41} - q^{43} + 2q^{49} - 6q^{53} + 12q^{55} + 3q^{59} - 11q^{61} + 6q^{65} - 13q^{67} - 3q^{71} + 7q^{73} + 3q^{77} - 7q^{79} - 12q^{83} + 12q^{85} + 18q^{89} - 4q^{91} - 15q^{95} + q^{97} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.37228
3.37228
0 0 0 −1.37228 0 −1.00000 0 0 0
1.2 0 0 0 4.37228 0 −1.00000 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(3\) \(1\)
\(7\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 9072.2.a.bm 2
3.b odd 2 1 9072.2.a.bb 2
4.b odd 2 1 1134.2.a.k 2
9.c even 3 2 1008.2.r.f 4
9.d odd 6 2 3024.2.r.f 4
12.b even 2 1 1134.2.a.n 2
28.d even 2 1 7938.2.a.bh 2
36.f odd 6 2 126.2.f.d 4
36.h even 6 2 378.2.f.c 4
84.h odd 2 1 7938.2.a.bs 2
252.n even 6 2 882.2.h.n 4
252.o even 6 2 2646.2.h.k 4
252.r odd 6 2 2646.2.e.m 4
252.s odd 6 2 2646.2.f.j 4
252.u odd 6 2 882.2.e.l 4
252.bb even 6 2 2646.2.e.n 4
252.bi even 6 2 882.2.f.k 4
252.bj even 6 2 882.2.e.k 4
252.bl odd 6 2 882.2.h.m 4
252.bn odd 6 2 2646.2.h.l 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
126.2.f.d 4 36.f odd 6 2
378.2.f.c 4 36.h even 6 2
882.2.e.k 4 252.bj even 6 2
882.2.e.l 4 252.u odd 6 2
882.2.f.k 4 252.bi even 6 2
882.2.h.m 4 252.bl odd 6 2
882.2.h.n 4 252.n even 6 2
1008.2.r.f 4 9.c even 3 2
1134.2.a.k 2 4.b odd 2 1
1134.2.a.n 2 12.b even 2 1
2646.2.e.m 4 252.r odd 6 2
2646.2.e.n 4 252.bb even 6 2
2646.2.f.j 4 252.s odd 6 2
2646.2.h.k 4 252.o even 6 2
2646.2.h.l 4 252.bn odd 6 2
3024.2.r.f 4 9.d odd 6 2
7938.2.a.bh 2 28.d even 2 1
7938.2.a.bs 2 84.h odd 2 1
9072.2.a.bb 2 3.b odd 2 1
9072.2.a.bm 2 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(9072))\):

\( T_{5}^{2} - 3 T_{5} - 6 \)
\( T_{11}^{2} + 3 T_{11} - 6 \)
\( T_{13} - 2 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \)
$3$ \( T^{2} \)
$5$ \( -6 - 3 T + T^{2} \)
$7$ \( ( 1 + T )^{2} \)
$11$ \( -6 + 3 T + T^{2} \)
$13$ \( ( -2 + T )^{2} \)
$17$ \( -6 + 3 T + T^{2} \)
$19$ \( ( 5 + T )^{2} \)
$23$ \( 12 - 9 T + T^{2} \)
$29$ \( -24 + 6 T + T^{2} \)
$31$ \( ( 2 + T )^{2} \)
$37$ \( ( -2 + T )^{2} \)
$41$ \( 48 - 15 T + T^{2} \)
$43$ \( -74 + T + T^{2} \)
$47$ \( T^{2} \)
$53$ \( -24 + 6 T + T^{2} \)
$59$ \( -72 - 3 T + T^{2} \)
$61$ \( -44 + 11 T + T^{2} \)
$67$ \( -32 + 13 T + T^{2} \)
$71$ \( -72 + 3 T + T^{2} \)
$73$ \( -62 - 7 T + T^{2} \)
$79$ \( -62 + 7 T + T^{2} \)
$83$ \( -96 + 12 T + T^{2} \)
$89$ \( 48 - 18 T + T^{2} \)
$97$ \( -74 - T + T^{2} \)
show more
show less