Defining parameters
Level: | \( N \) | \(=\) | \( 9072 = 2^{4} \cdot 3^{4} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 9072.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 66 \) | ||
Sturm bound: | \(3456\) | ||
Trace bound: | \(17\) | ||
Distinguishing \(T_p\): | \(5\), \(11\), \(13\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(9072))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1800 | 144 | 1656 |
Cusp forms | 1657 | 144 | 1513 |
Eisenstein series | 143 | 0 | 143 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(3\) | \(7\) | Fricke | Dim. |
---|---|---|---|---|
\(+\) | \(+\) | \(+\) | \(+\) | \(19\) |
\(+\) | \(+\) | \(-\) | \(-\) | \(19\) |
\(+\) | \(-\) | \(+\) | \(-\) | \(17\) |
\(+\) | \(-\) | \(-\) | \(+\) | \(17\) |
\(-\) | \(+\) | \(+\) | \(-\) | \(19\) |
\(-\) | \(+\) | \(-\) | \(+\) | \(15\) |
\(-\) | \(-\) | \(+\) | \(+\) | \(17\) |
\(-\) | \(-\) | \(-\) | \(-\) | \(21\) |
Plus space | \(+\) | \(68\) | ||
Minus space | \(-\) | \(76\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(9072))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(9072))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(9072)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 20}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 20}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(24))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(27))\)\(^{\oplus 20}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(36))\)\(^{\oplus 18}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(42))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(48))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(54))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(56))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(63))\)\(^{\oplus 15}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(72))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(81))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(84))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(108))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(112))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(126))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(144))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(162))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(168))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(189))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(216))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(252))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(324))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(336))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(378))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(432))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(504))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(567))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(648))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(756))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1008))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1134))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1296))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1512))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2268))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(3024))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(4536))\)\(^{\oplus 2}\)