Properties

Label 9036.2.a.i.1.7
Level 9036
Weight 2
Character 9036.1
Self dual yes
Analytic conductor 72.153
Analytic rank 1
Dimension 7
CM no
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 9036 = 2^{2} \cdot 3^{2} \cdot 251 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 9036.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(72.1528232664\)
Analytic rank: \(1\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1004)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Root \(-0.844838\)
Character \(\chi\) = 9036.1

$q$-expansion

\(f(q)\) \(=\) \(q+2.47034 q^{5} -0.972158 q^{7} +O(q^{10})\) \(q+2.47034 q^{5} -0.972158 q^{7} -3.50942 q^{11} +2.87894 q^{13} +2.27070 q^{17} -6.78729 q^{19} -3.58090 q^{23} +1.10259 q^{25} +7.60769 q^{29} -0.279626 q^{31} -2.40156 q^{35} -9.37051 q^{37} +10.4728 q^{41} -5.70457 q^{43} +8.12711 q^{47} -6.05491 q^{49} -1.01555 q^{53} -8.66946 q^{55} -12.3081 q^{59} +9.95423 q^{61} +7.11196 q^{65} -4.50345 q^{67} -9.82624 q^{71} +6.37302 q^{73} +3.41171 q^{77} +1.13734 q^{79} +1.53106 q^{83} +5.60940 q^{85} -15.3254 q^{89} -2.79878 q^{91} -16.7669 q^{95} -0.254712 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7q + 2q^{5} - 6q^{7} + O(q^{10}) \) \( 7q + 2q^{5} - 6q^{7} + 5q^{11} - q^{13} + 8q^{17} - 15q^{19} + 5q^{23} - 9q^{25} - 21q^{31} + 7q^{35} - q^{37} + 10q^{41} - 23q^{43} + 10q^{47} - 13q^{49} + q^{53} - 23q^{55} + 4q^{59} + 3q^{61} - 4q^{65} - 28q^{67} + 18q^{71} - 7q^{73} - 6q^{77} - 30q^{79} - 13q^{83} + q^{85} - 18q^{91} - 2q^{97} + O(q^{100}) \)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 2.47034 1.10477 0.552385 0.833589i \(-0.313718\pi\)
0.552385 + 0.833589i \(0.313718\pi\)
\(6\) 0 0
\(7\) −0.972158 −0.367441 −0.183721 0.982979i \(-0.558814\pi\)
−0.183721 + 0.982979i \(0.558814\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −3.50942 −1.05813 −0.529064 0.848582i \(-0.677457\pi\)
−0.529064 + 0.848582i \(0.677457\pi\)
\(12\) 0 0
\(13\) 2.87894 0.798473 0.399237 0.916848i \(-0.369275\pi\)
0.399237 + 0.916848i \(0.369275\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 2.27070 0.550725 0.275362 0.961340i \(-0.411202\pi\)
0.275362 + 0.961340i \(0.411202\pi\)
\(18\) 0 0
\(19\) −6.78729 −1.55711 −0.778556 0.627576i \(-0.784047\pi\)
−0.778556 + 0.627576i \(0.784047\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −3.58090 −0.746670 −0.373335 0.927697i \(-0.621786\pi\)
−0.373335 + 0.927697i \(0.621786\pi\)
\(24\) 0 0
\(25\) 1.10259 0.220518
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 7.60769 1.41271 0.706356 0.707857i \(-0.250338\pi\)
0.706356 + 0.707857i \(0.250338\pi\)
\(30\) 0 0
\(31\) −0.279626 −0.0502224 −0.0251112 0.999685i \(-0.507994\pi\)
−0.0251112 + 0.999685i \(0.507994\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −2.40156 −0.405938
\(36\) 0 0
\(37\) −9.37051 −1.54050 −0.770251 0.637741i \(-0.779869\pi\)
−0.770251 + 0.637741i \(0.779869\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 10.4728 1.63558 0.817791 0.575516i \(-0.195199\pi\)
0.817791 + 0.575516i \(0.195199\pi\)
\(42\) 0 0
\(43\) −5.70457 −0.869939 −0.434970 0.900445i \(-0.643241\pi\)
−0.434970 + 0.900445i \(0.643241\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 8.12711 1.18546 0.592730 0.805401i \(-0.298050\pi\)
0.592730 + 0.805401i \(0.298050\pi\)
\(48\) 0 0
\(49\) −6.05491 −0.864987
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −1.01555 −0.139497 −0.0697484 0.997565i \(-0.522220\pi\)
−0.0697484 + 0.997565i \(0.522220\pi\)
\(54\) 0 0
\(55\) −8.66946 −1.16899
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −12.3081 −1.60238 −0.801188 0.598413i \(-0.795798\pi\)
−0.801188 + 0.598413i \(0.795798\pi\)
\(60\) 0 0
\(61\) 9.95423 1.27451 0.637255 0.770653i \(-0.280070\pi\)
0.637255 + 0.770653i \(0.280070\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 7.11196 0.882130
\(66\) 0 0
\(67\) −4.50345 −0.550184 −0.275092 0.961418i \(-0.588708\pi\)
−0.275092 + 0.961418i \(0.588708\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −9.82624 −1.16616 −0.583080 0.812415i \(-0.698153\pi\)
−0.583080 + 0.812415i \(0.698153\pi\)
\(72\) 0 0
\(73\) 6.37302 0.745906 0.372953 0.927850i \(-0.378345\pi\)
0.372953 + 0.927850i \(0.378345\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 3.41171 0.388800
\(78\) 0 0
\(79\) 1.13734 0.127961 0.0639806 0.997951i \(-0.479620\pi\)
0.0639806 + 0.997951i \(0.479620\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 1.53106 0.168055 0.0840277 0.996463i \(-0.473222\pi\)
0.0840277 + 0.996463i \(0.473222\pi\)
\(84\) 0 0
\(85\) 5.60940 0.608425
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −15.3254 −1.62449 −0.812243 0.583320i \(-0.801754\pi\)
−0.812243 + 0.583320i \(0.801754\pi\)
\(90\) 0 0
\(91\) −2.79878 −0.293392
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −16.7669 −1.72025
\(96\) 0 0
\(97\) −0.254712 −0.0258621 −0.0129310 0.999916i \(-0.504116\pi\)
−0.0129310 + 0.999916i \(0.504116\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −10.7612 −1.07078 −0.535391 0.844604i \(-0.679836\pi\)
−0.535391 + 0.844604i \(0.679836\pi\)
\(102\) 0 0
\(103\) −4.73867 −0.466915 −0.233458 0.972367i \(-0.575004\pi\)
−0.233458 + 0.972367i \(0.575004\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 5.02191 0.485486 0.242743 0.970091i \(-0.421953\pi\)
0.242743 + 0.970091i \(0.421953\pi\)
\(108\) 0 0
\(109\) 0.0232276 0.00222480 0.00111240 0.999999i \(-0.499646\pi\)
0.00111240 + 0.999999i \(0.499646\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −9.83680 −0.925369 −0.462684 0.886523i \(-0.653114\pi\)
−0.462684 + 0.886523i \(0.653114\pi\)
\(114\) 0 0
\(115\) −8.84605 −0.824899
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −2.20748 −0.202359
\(120\) 0 0
\(121\) 1.31600 0.119637
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −9.62794 −0.861149
\(126\) 0 0
\(127\) −6.24438 −0.554099 −0.277049 0.960856i \(-0.589357\pi\)
−0.277049 + 0.960856i \(0.589357\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 21.8403 1.90820 0.954100 0.299489i \(-0.0968161\pi\)
0.954100 + 0.299489i \(0.0968161\pi\)
\(132\) 0 0
\(133\) 6.59832 0.572147
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 8.61906 0.736376 0.368188 0.929751i \(-0.379978\pi\)
0.368188 + 0.929751i \(0.379978\pi\)
\(138\) 0 0
\(139\) −5.86187 −0.497197 −0.248599 0.968607i \(-0.579970\pi\)
−0.248599 + 0.968607i \(0.579970\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −10.1034 −0.844888
\(144\) 0 0
\(145\) 18.7936 1.56072
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 4.20332 0.344349 0.172175 0.985066i \(-0.444921\pi\)
0.172175 + 0.985066i \(0.444921\pi\)
\(150\) 0 0
\(151\) −11.9027 −0.968631 −0.484316 0.874893i \(-0.660931\pi\)
−0.484316 + 0.874893i \(0.660931\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −0.690773 −0.0554842
\(156\) 0 0
\(157\) 14.3438 1.14476 0.572378 0.819990i \(-0.306021\pi\)
0.572378 + 0.819990i \(0.306021\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 3.48120 0.274357
\(162\) 0 0
\(163\) 6.38647 0.500227 0.250114 0.968217i \(-0.419532\pi\)
0.250114 + 0.968217i \(0.419532\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −20.7849 −1.60838 −0.804191 0.594371i \(-0.797401\pi\)
−0.804191 + 0.594371i \(0.797401\pi\)
\(168\) 0 0
\(169\) −4.71172 −0.362440
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −22.3065 −1.69593 −0.847964 0.530054i \(-0.822172\pi\)
−0.847964 + 0.530054i \(0.822172\pi\)
\(174\) 0 0
\(175\) −1.07189 −0.0810274
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 4.57389 0.341869 0.170934 0.985282i \(-0.445321\pi\)
0.170934 + 0.985282i \(0.445321\pi\)
\(180\) 0 0
\(181\) −23.4328 −1.74175 −0.870874 0.491507i \(-0.836446\pi\)
−0.870874 + 0.491507i \(0.836446\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −23.1484 −1.70190
\(186\) 0 0
\(187\) −7.96882 −0.582738
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −9.68497 −0.700780 −0.350390 0.936604i \(-0.613951\pi\)
−0.350390 + 0.936604i \(0.613951\pi\)
\(192\) 0 0
\(193\) −21.2162 −1.52718 −0.763588 0.645703i \(-0.776564\pi\)
−0.763588 + 0.645703i \(0.776564\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −10.2301 −0.728866 −0.364433 0.931230i \(-0.618737\pi\)
−0.364433 + 0.931230i \(0.618737\pi\)
\(198\) 0 0
\(199\) −2.03987 −0.144602 −0.0723011 0.997383i \(-0.523034\pi\)
−0.0723011 + 0.997383i \(0.523034\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −7.39587 −0.519088
\(204\) 0 0
\(205\) 25.8715 1.80694
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 23.8194 1.64762
\(210\) 0 0
\(211\) −12.1422 −0.835901 −0.417951 0.908470i \(-0.637251\pi\)
−0.417951 + 0.908470i \(0.637251\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −14.0922 −0.961083
\(216\) 0 0
\(217\) 0.271841 0.0184538
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 6.53719 0.439739
\(222\) 0 0
\(223\) −28.5639 −1.91278 −0.956389 0.292096i \(-0.905647\pi\)
−0.956389 + 0.292096i \(0.905647\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 28.4032 1.88519 0.942593 0.333944i \(-0.108380\pi\)
0.942593 + 0.333944i \(0.108380\pi\)
\(228\) 0 0
\(229\) 19.7016 1.30192 0.650958 0.759114i \(-0.274367\pi\)
0.650958 + 0.759114i \(0.274367\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 24.3686 1.59644 0.798221 0.602365i \(-0.205775\pi\)
0.798221 + 0.602365i \(0.205775\pi\)
\(234\) 0 0
\(235\) 20.0767 1.30966
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 9.67986 0.626138 0.313069 0.949730i \(-0.398643\pi\)
0.313069 + 0.949730i \(0.398643\pi\)
\(240\) 0 0
\(241\) 7.49541 0.482822 0.241411 0.970423i \(-0.422390\pi\)
0.241411 + 0.970423i \(0.422390\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −14.9577 −0.955612
\(246\) 0 0
\(247\) −19.5402 −1.24331
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −1.00000 −0.0631194
\(252\) 0 0
\(253\) 12.5669 0.790073
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −22.0330 −1.37438 −0.687189 0.726479i \(-0.741156\pi\)
−0.687189 + 0.726479i \(0.741156\pi\)
\(258\) 0 0
\(259\) 9.10961 0.566044
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0.437637 0.0269858 0.0134929 0.999909i \(-0.495705\pi\)
0.0134929 + 0.999909i \(0.495705\pi\)
\(264\) 0 0
\(265\) −2.50876 −0.154112
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −0.166462 −0.0101494 −0.00507468 0.999987i \(-0.501615\pi\)
−0.00507468 + 0.999987i \(0.501615\pi\)
\(270\) 0 0
\(271\) 27.1750 1.65076 0.825382 0.564574i \(-0.190960\pi\)
0.825382 + 0.564574i \(0.190960\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −3.86945 −0.233336
\(276\) 0 0
\(277\) 26.0074 1.56263 0.781315 0.624137i \(-0.214549\pi\)
0.781315 + 0.624137i \(0.214549\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 14.1033 0.841335 0.420668 0.907215i \(-0.361796\pi\)
0.420668 + 0.907215i \(0.361796\pi\)
\(282\) 0 0
\(283\) −14.4293 −0.857734 −0.428867 0.903368i \(-0.641087\pi\)
−0.428867 + 0.903368i \(0.641087\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −10.1812 −0.600980
\(288\) 0 0
\(289\) −11.8439 −0.696702
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −28.0623 −1.63942 −0.819710 0.572779i \(-0.805865\pi\)
−0.819710 + 0.572779i \(0.805865\pi\)
\(294\) 0 0
\(295\) −30.4052 −1.77026
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −10.3092 −0.596196
\(300\) 0 0
\(301\) 5.54574 0.319651
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 24.5904 1.40804
\(306\) 0 0
\(307\) 22.0019 1.25571 0.627857 0.778329i \(-0.283932\pi\)
0.627857 + 0.778329i \(0.283932\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 6.83660 0.387668 0.193834 0.981034i \(-0.437908\pi\)
0.193834 + 0.981034i \(0.437908\pi\)
\(312\) 0 0
\(313\) −22.1934 −1.25445 −0.627223 0.778839i \(-0.715809\pi\)
−0.627223 + 0.778839i \(0.715809\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −14.4529 −0.811755 −0.405878 0.913927i \(-0.633034\pi\)
−0.405878 + 0.913927i \(0.633034\pi\)
\(318\) 0 0
\(319\) −26.6985 −1.49483
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −15.4119 −0.857540
\(324\) 0 0
\(325\) 3.17429 0.176078
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −7.90083 −0.435587
\(330\) 0 0
\(331\) 8.27651 0.454918 0.227459 0.973788i \(-0.426958\pi\)
0.227459 + 0.973788i \(0.426958\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −11.1251 −0.607827
\(336\) 0 0
\(337\) 6.45813 0.351797 0.175898 0.984408i \(-0.443717\pi\)
0.175898 + 0.984408i \(0.443717\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0.981326 0.0531418
\(342\) 0 0
\(343\) 12.6914 0.685273
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −15.2559 −0.818979 −0.409490 0.912315i \(-0.634293\pi\)
−0.409490 + 0.912315i \(0.634293\pi\)
\(348\) 0 0
\(349\) 1.41721 0.0758616 0.0379308 0.999280i \(-0.487923\pi\)
0.0379308 + 0.999280i \(0.487923\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −13.5027 −0.718674 −0.359337 0.933208i \(-0.616997\pi\)
−0.359337 + 0.933208i \(0.616997\pi\)
\(354\) 0 0
\(355\) −24.2742 −1.28834
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 5.44741 0.287503 0.143752 0.989614i \(-0.454083\pi\)
0.143752 + 0.989614i \(0.454083\pi\)
\(360\) 0 0
\(361\) 27.0673 1.42460
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 15.7435 0.824055
\(366\) 0 0
\(367\) 6.36536 0.332269 0.166135 0.986103i \(-0.446871\pi\)
0.166135 + 0.986103i \(0.446871\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0.987277 0.0512569
\(372\) 0 0
\(373\) −10.0940 −0.522646 −0.261323 0.965251i \(-0.584159\pi\)
−0.261323 + 0.965251i \(0.584159\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 21.9020 1.12801
\(378\) 0 0
\(379\) −23.6557 −1.21511 −0.607557 0.794276i \(-0.707850\pi\)
−0.607557 + 0.794276i \(0.707850\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 29.3212 1.49825 0.749123 0.662431i \(-0.230475\pi\)
0.749123 + 0.662431i \(0.230475\pi\)
\(384\) 0 0
\(385\) 8.42808 0.429535
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −24.2891 −1.23151 −0.615753 0.787940i \(-0.711148\pi\)
−0.615753 + 0.787940i \(0.711148\pi\)
\(390\) 0 0
\(391\) −8.13114 −0.411210
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 2.80963 0.141368
\(396\) 0 0
\(397\) −10.4398 −0.523961 −0.261980 0.965073i \(-0.584376\pi\)
−0.261980 + 0.965073i \(0.584376\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −27.6476 −1.38066 −0.690328 0.723496i \(-0.742534\pi\)
−0.690328 + 0.723496i \(0.742534\pi\)
\(402\) 0 0
\(403\) −0.805027 −0.0401012
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 32.8850 1.63005
\(408\) 0 0
\(409\) −20.0738 −0.992587 −0.496294 0.868155i \(-0.665306\pi\)
−0.496294 + 0.868155i \(0.665306\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 11.9654 0.588779
\(414\) 0 0
\(415\) 3.78224 0.185663
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −5.41538 −0.264558 −0.132279 0.991212i \(-0.542230\pi\)
−0.132279 + 0.991212i \(0.542230\pi\)
\(420\) 0 0
\(421\) −23.1966 −1.13053 −0.565266 0.824909i \(-0.691226\pi\)
−0.565266 + 0.824909i \(0.691226\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 2.50365 0.121445
\(426\) 0 0
\(427\) −9.67709 −0.468307
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 31.4498 1.51488 0.757441 0.652904i \(-0.226449\pi\)
0.757441 + 0.652904i \(0.226449\pi\)
\(432\) 0 0
\(433\) −9.30587 −0.447211 −0.223606 0.974680i \(-0.571783\pi\)
−0.223606 + 0.974680i \(0.571783\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 24.3046 1.16265
\(438\) 0 0
\(439\) −31.9914 −1.52687 −0.763434 0.645886i \(-0.776488\pi\)
−0.763434 + 0.645886i \(0.776488\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 9.46628 0.449757 0.224878 0.974387i \(-0.427802\pi\)
0.224878 + 0.974387i \(0.427802\pi\)
\(444\) 0 0
\(445\) −37.8589 −1.79468
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 20.4021 0.962835 0.481418 0.876491i \(-0.340122\pi\)
0.481418 + 0.876491i \(0.340122\pi\)
\(450\) 0 0
\(451\) −36.7535 −1.73066
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −6.91395 −0.324131
\(456\) 0 0
\(457\) 5.97184 0.279351 0.139675 0.990197i \(-0.455394\pi\)
0.139675 + 0.990197i \(0.455394\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −6.01449 −0.280123 −0.140061 0.990143i \(-0.544730\pi\)
−0.140061 + 0.990143i \(0.544730\pi\)
\(462\) 0 0
\(463\) 11.4730 0.533197 0.266598 0.963808i \(-0.414100\pi\)
0.266598 + 0.963808i \(0.414100\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 26.1886 1.21187 0.605933 0.795516i \(-0.292800\pi\)
0.605933 + 0.795516i \(0.292800\pi\)
\(468\) 0 0
\(469\) 4.37806 0.202160
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 20.0197 0.920508
\(474\) 0 0
\(475\) −7.48360 −0.343371
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 5.68587 0.259794 0.129897 0.991527i \(-0.458535\pi\)
0.129897 + 0.991527i \(0.458535\pi\)
\(480\) 0 0
\(481\) −26.9771 −1.23005
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −0.629226 −0.0285717
\(486\) 0 0
\(487\) 16.9258 0.766983 0.383491 0.923544i \(-0.374722\pi\)
0.383491 + 0.923544i \(0.374722\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −0.457098 −0.0206285 −0.0103143 0.999947i \(-0.503283\pi\)
−0.0103143 + 0.999947i \(0.503283\pi\)
\(492\) 0 0
\(493\) 17.2748 0.778016
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 9.55266 0.428495
\(498\) 0 0
\(499\) 20.9818 0.939274 0.469637 0.882860i \(-0.344385\pi\)
0.469637 + 0.882860i \(0.344385\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −7.22680 −0.322227 −0.161113 0.986936i \(-0.551509\pi\)
−0.161113 + 0.986936i \(0.551509\pi\)
\(504\) 0 0
\(505\) −26.5839 −1.18297
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 27.1215 1.20214 0.601069 0.799197i \(-0.294742\pi\)
0.601069 + 0.799197i \(0.294742\pi\)
\(510\) 0 0
\(511\) −6.19558 −0.274077
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −11.7061 −0.515834
\(516\) 0 0
\(517\) −28.5214 −1.25437
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −8.03645 −0.352083 −0.176042 0.984383i \(-0.556329\pi\)
−0.176042 + 0.984383i \(0.556329\pi\)
\(522\) 0 0
\(523\) 35.6907 1.56064 0.780322 0.625378i \(-0.215055\pi\)
0.780322 + 0.625378i \(0.215055\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −0.634947 −0.0276587
\(528\) 0 0
\(529\) −10.1771 −0.442484
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 30.1506 1.30597
\(534\) 0 0
\(535\) 12.4058 0.536351
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 21.2492 0.915268
\(540\) 0 0
\(541\) −23.7224 −1.01991 −0.509953 0.860202i \(-0.670337\pi\)
−0.509953 + 0.860202i \(0.670337\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0.0573801 0.00245789
\(546\) 0 0
\(547\) 0.652965 0.0279188 0.0139594 0.999903i \(-0.495556\pi\)
0.0139594 + 0.999903i \(0.495556\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −51.6356 −2.19975
\(552\) 0 0
\(553\) −1.10568 −0.0470182
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −10.7803 −0.456776 −0.228388 0.973570i \(-0.573345\pi\)
−0.228388 + 0.973570i \(0.573345\pi\)
\(558\) 0 0
\(559\) −16.4231 −0.694623
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 17.4873 0.737000 0.368500 0.929628i \(-0.379871\pi\)
0.368500 + 0.929628i \(0.379871\pi\)
\(564\) 0 0
\(565\) −24.3003 −1.02232
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −3.99957 −0.167671 −0.0838353 0.996480i \(-0.526717\pi\)
−0.0838353 + 0.996480i \(0.526717\pi\)
\(570\) 0 0
\(571\) 39.9033 1.66990 0.834950 0.550325i \(-0.185496\pi\)
0.834950 + 0.550325i \(0.185496\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −3.94827 −0.164654
\(576\) 0 0
\(577\) −8.27664 −0.344561 −0.172280 0.985048i \(-0.555114\pi\)
−0.172280 + 0.985048i \(0.555114\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −1.48843 −0.0617505
\(582\) 0 0
\(583\) 3.56400 0.147606
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −39.2614 −1.62049 −0.810246 0.586090i \(-0.800667\pi\)
−0.810246 + 0.586090i \(0.800667\pi\)
\(588\) 0 0
\(589\) 1.89791 0.0782018
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −24.9457 −1.02440 −0.512198 0.858868i \(-0.671169\pi\)
−0.512198 + 0.858868i \(0.671169\pi\)
\(594\) 0 0
\(595\) −5.45322 −0.223560
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 12.0175 0.491020 0.245510 0.969394i \(-0.421045\pi\)
0.245510 + 0.969394i \(0.421045\pi\)
\(600\) 0 0
\(601\) −11.9326 −0.486742 −0.243371 0.969933i \(-0.578253\pi\)
−0.243371 + 0.969933i \(0.578253\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 3.25098 0.132171
\(606\) 0 0
\(607\) −38.2623 −1.55302 −0.776509 0.630106i \(-0.783011\pi\)
−0.776509 + 0.630106i \(0.783011\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 23.3974 0.946558
\(612\) 0 0
\(613\) 32.5152 1.31328 0.656639 0.754205i \(-0.271977\pi\)
0.656639 + 0.754205i \(0.271977\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 16.0903 0.647770 0.323885 0.946096i \(-0.395011\pi\)
0.323885 + 0.946096i \(0.395011\pi\)
\(618\) 0 0
\(619\) 44.4841 1.78797 0.893984 0.448099i \(-0.147899\pi\)
0.893984 + 0.448099i \(0.147899\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 14.8987 0.596903
\(624\) 0 0
\(625\) −29.2972 −1.17189
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −21.2776 −0.848393
\(630\) 0 0
\(631\) −42.6044 −1.69606 −0.848028 0.529952i \(-0.822210\pi\)
−0.848028 + 0.529952i \(0.822210\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −15.4257 −0.612152
\(636\) 0 0
\(637\) −17.4317 −0.690669
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 26.8680 1.06122 0.530612 0.847615i \(-0.321962\pi\)
0.530612 + 0.847615i \(0.321962\pi\)
\(642\) 0 0
\(643\) 4.23302 0.166934 0.0834670 0.996511i \(-0.473401\pi\)
0.0834670 + 0.996511i \(0.473401\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 6.04546 0.237672 0.118836 0.992914i \(-0.462084\pi\)
0.118836 + 0.992914i \(0.462084\pi\)
\(648\) 0 0
\(649\) 43.1942 1.69552
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 1.66383 0.0651106 0.0325553 0.999470i \(-0.489635\pi\)
0.0325553 + 0.999470i \(0.489635\pi\)
\(654\) 0 0
\(655\) 53.9531 2.10812
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 7.82120 0.304671 0.152335 0.988329i \(-0.451321\pi\)
0.152335 + 0.988329i \(0.451321\pi\)
\(660\) 0 0
\(661\) 22.4534 0.873336 0.436668 0.899623i \(-0.356159\pi\)
0.436668 + 0.899623i \(0.356159\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 16.3001 0.632091
\(666\) 0 0
\(667\) −27.2424 −1.05483
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −34.9336 −1.34859
\(672\) 0 0
\(673\) −24.6777 −0.951256 −0.475628 0.879647i \(-0.657779\pi\)
−0.475628 + 0.879647i \(0.657779\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −38.6413 −1.48510 −0.742552 0.669788i \(-0.766385\pi\)
−0.742552 + 0.669788i \(0.766385\pi\)
\(678\) 0 0
\(679\) 0.247620 0.00950279
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −13.3316 −0.510120 −0.255060 0.966925i \(-0.582095\pi\)
−0.255060 + 0.966925i \(0.582095\pi\)
\(684\) 0 0
\(685\) 21.2920 0.813526
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −2.92371 −0.111385
\(690\) 0 0
\(691\) −21.1199 −0.803439 −0.401720 0.915763i \(-0.631587\pi\)
−0.401720 + 0.915763i \(0.631587\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −14.4808 −0.549289
\(696\) 0 0
\(697\) 23.7806 0.900755
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 20.8009 0.785638 0.392819 0.919616i \(-0.371500\pi\)
0.392819 + 0.919616i \(0.371500\pi\)
\(702\) 0 0
\(703\) 63.6003 2.39873
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 10.4616 0.393449
\(708\) 0 0
\(709\) 28.0183 1.05225 0.526125 0.850407i \(-0.323645\pi\)
0.526125 + 0.850407i \(0.323645\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 1.00131 0.0374995
\(714\) 0 0
\(715\) −24.9588 −0.933407
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 23.5265 0.877391 0.438695 0.898636i \(-0.355441\pi\)
0.438695 + 0.898636i \(0.355441\pi\)
\(720\) 0 0
\(721\) 4.60674 0.171564
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 8.38816 0.311528
\(726\) 0 0
\(727\) 13.6375 0.505786 0.252893 0.967494i \(-0.418618\pi\)
0.252893 + 0.967494i \(0.418618\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −12.9534 −0.479097
\(732\) 0 0
\(733\) −45.2947 −1.67300 −0.836498 0.547970i \(-0.815401\pi\)
−0.836498 + 0.547970i \(0.815401\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 15.8045 0.582165
\(738\) 0 0
\(739\) −38.2582 −1.40735 −0.703676 0.710521i \(-0.748459\pi\)
−0.703676 + 0.710521i \(0.748459\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 21.5410 0.790264 0.395132 0.918624i \(-0.370699\pi\)
0.395132 + 0.918624i \(0.370699\pi\)
\(744\) 0 0
\(745\) 10.3836 0.380427
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −4.88209 −0.178388
\(750\) 0 0
\(751\) −2.05259 −0.0748999 −0.0374500 0.999299i \(-0.511923\pi\)
−0.0374500 + 0.999299i \(0.511923\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −29.4038 −1.07012
\(756\) 0 0
\(757\) −24.1139 −0.876434 −0.438217 0.898869i \(-0.644390\pi\)
−0.438217 + 0.898869i \(0.644390\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 23.7308 0.860239 0.430120 0.902772i \(-0.358471\pi\)
0.430120 + 0.902772i \(0.358471\pi\)
\(762\) 0 0
\(763\) −0.0225809 −0.000817483 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −35.4342 −1.27945
\(768\) 0 0
\(769\) 37.2832 1.34447 0.672233 0.740340i \(-0.265335\pi\)
0.672233 + 0.740340i \(0.265335\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −0.720896 −0.0259288 −0.0129644 0.999916i \(-0.504127\pi\)
−0.0129644 + 0.999916i \(0.504127\pi\)
\(774\) 0 0
\(775\) −0.308313 −0.0110749
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −71.0821 −2.54678
\(780\) 0 0
\(781\) 34.4844 1.23395
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 35.4340 1.26469
\(786\) 0 0
\(787\) −50.8920 −1.81410 −0.907051 0.421020i \(-0.861672\pi\)
−0.907051 + 0.421020i \(0.861672\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 9.56293 0.340018
\(792\) 0 0
\(793\) 28.6576 1.01766
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 14.0627 0.498126 0.249063 0.968487i \(-0.419877\pi\)
0.249063 + 0.968487i \(0.419877\pi\)
\(798\) 0 0
\(799\) 18.4542 0.652863
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −22.3656 −0.789265
\(804\) 0 0
\(805\) 8.59976 0.303102
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 44.6840 1.57100 0.785502 0.618859i \(-0.212405\pi\)
0.785502 + 0.618859i \(0.212405\pi\)
\(810\) 0 0
\(811\) 9.73808 0.341950 0.170975 0.985275i \(-0.445308\pi\)
0.170975 + 0.985275i \(0.445308\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 15.7768 0.552636
\(816\) 0 0
\(817\) 38.7186 1.35459
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −37.0650 −1.29358 −0.646788 0.762670i \(-0.723888\pi\)
−0.646788 + 0.762670i \(0.723888\pi\)
\(822\) 0 0
\(823\) −53.7145 −1.87237 −0.936185 0.351508i \(-0.885669\pi\)
−0.936185 + 0.351508i \(0.885669\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −33.6240 −1.16922 −0.584611 0.811314i \(-0.698753\pi\)
−0.584611 + 0.811314i \(0.698753\pi\)
\(828\) 0 0
\(829\) −4.34280 −0.150832 −0.0754159 0.997152i \(-0.524028\pi\)
−0.0754159 + 0.997152i \(0.524028\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −13.7489 −0.476370
\(834\) 0 0
\(835\) −51.3458 −1.77689
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −20.3087 −0.701135 −0.350567 0.936538i \(-0.614011\pi\)
−0.350567 + 0.936538i \(0.614011\pi\)
\(840\) 0 0
\(841\) 28.8769 0.995755
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −11.6396 −0.400413
\(846\) 0 0
\(847\) −1.27936 −0.0439595
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 33.5549 1.15025
\(852\) 0 0
\(853\) 4.46704 0.152948 0.0764742 0.997072i \(-0.475634\pi\)
0.0764742 + 0.997072i \(0.475634\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −28.2401 −0.964664 −0.482332 0.875989i \(-0.660210\pi\)
−0.482332 + 0.875989i \(0.660210\pi\)
\(858\) 0 0
\(859\) −44.2974 −1.51141 −0.755703 0.654914i \(-0.772705\pi\)
−0.755703 + 0.654914i \(0.772705\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 8.12320 0.276517 0.138259 0.990396i \(-0.455850\pi\)
0.138259 + 0.990396i \(0.455850\pi\)
\(864\) 0 0
\(865\) −55.1046 −1.87361
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −3.99142 −0.135399
\(870\) 0 0
\(871\) −12.9651 −0.439307
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 9.35987 0.316421
\(876\) 0 0
\(877\) 9.21603 0.311203 0.155602 0.987820i \(-0.450268\pi\)
0.155602 + 0.987820i \(0.450268\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 27.3672 0.922025 0.461013 0.887394i \(-0.347486\pi\)
0.461013 + 0.887394i \(0.347486\pi\)
\(882\) 0 0
\(883\) 28.6386 0.963765 0.481883 0.876236i \(-0.339953\pi\)
0.481883 + 0.876236i \(0.339953\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −31.8728 −1.07018 −0.535092 0.844794i \(-0.679723\pi\)
−0.535092 + 0.844794i \(0.679723\pi\)
\(888\) 0 0
\(889\) 6.07052 0.203599
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −55.1610 −1.84589
\(894\) 0 0
\(895\) 11.2991 0.377687
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −2.12731 −0.0709498
\(900\) 0 0
\(901\) −2.30601 −0.0768244
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −57.8871 −1.92423
\(906\) 0 0
\(907\) 50.8857 1.68963 0.844816 0.535057i \(-0.179710\pi\)
0.844816 + 0.535057i \(0.179710\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −18.1844 −0.602477 −0.301239 0.953549i \(-0.597400\pi\)
−0.301239 + 0.953549i \(0.597400\pi\)
\(912\) 0 0
\(913\) −5.37312 −0.177824
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −21.2323 −0.701151
\(918\) 0 0
\(919\) 2.57600 0.0849745 0.0424872 0.999097i \(-0.486472\pi\)
0.0424872 + 0.999097i \(0.486472\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −28.2891 −0.931148
\(924\) 0 0
\(925\) −10.3318 −0.339708
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −23.1992 −0.761142 −0.380571 0.924752i \(-0.624273\pi\)
−0.380571 + 0.924752i \(0.624273\pi\)
\(930\) 0 0
\(931\) 41.0964 1.34688
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −19.6857 −0.643792
\(936\) 0 0
\(937\) −15.9033 −0.519539 −0.259769 0.965671i \(-0.583647\pi\)
−0.259769 + 0.965671i \(0.583647\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 4.26329 0.138979 0.0694896 0.997583i \(-0.477863\pi\)
0.0694896 + 0.997583i \(0.477863\pi\)
\(942\) 0 0
\(943\) −37.5022 −1.22124
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 7.78149 0.252864 0.126432 0.991975i \(-0.459647\pi\)
0.126432 + 0.991975i \(0.459647\pi\)
\(948\) 0 0
\(949\) 18.3475 0.595586
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −18.4808 −0.598650 −0.299325 0.954151i \(-0.596762\pi\)
−0.299325 + 0.954151i \(0.596762\pi\)
\(954\) 0 0
\(955\) −23.9252 −0.774201
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −8.37908 −0.270575
\(960\) 0 0
\(961\) −30.9218 −0.997478
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −52.4113 −1.68718
\(966\) 0 0
\(967\) −8.95512 −0.287977 −0.143989 0.989579i \(-0.545993\pi\)
−0.143989 + 0.989579i \(0.545993\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 2.19052 0.0702972 0.0351486 0.999382i \(-0.488810\pi\)
0.0351486 + 0.999382i \(0.488810\pi\)
\(972\) 0 0
\(973\) 5.69866 0.182691
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 25.8102 0.825741 0.412871 0.910790i \(-0.364526\pi\)
0.412871 + 0.910790i \(0.364526\pi\)
\(978\) 0 0
\(979\) 53.7831 1.71891
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −21.6394 −0.690188 −0.345094 0.938568i \(-0.612153\pi\)
−0.345094 + 0.938568i \(0.612153\pi\)
\(984\) 0 0
\(985\) −25.2719 −0.805230
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 20.4275 0.649557
\(990\) 0 0
\(991\) −46.4242 −1.47471 −0.737357 0.675503i \(-0.763927\pi\)
−0.737357 + 0.675503i \(0.763927\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −5.03916 −0.159752
\(996\) 0 0
\(997\) 7.29268 0.230961 0.115481 0.993310i \(-0.463159\pi\)
0.115481 + 0.993310i \(0.463159\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9036.2.a.i.1.7 7
3.2 odd 2 1004.2.a.a.1.6 7
12.11 even 2 4016.2.a.g.1.2 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1004.2.a.a.1.6 7 3.2 odd 2
4016.2.a.g.1.2 7 12.11 even 2
9036.2.a.i.1.7 7 1.1 even 1 trivial