Properties

Label 9025.2.a.y.1.2
Level $9025$
Weight $2$
Character 9025.1
Self dual yes
Analytic conductor $72.065$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9025,2,Mod(1,9025)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9025, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9025.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 9025 = 5^{2} \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9025.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(72.0649878242\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.169.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 4x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 475)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-0.273891\) of defining polynomial
Character \(\chi\) \(=\) 9025.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.27389 q^{2} +1.65109 q^{3} -0.377203 q^{4} -2.10331 q^{6} +3.65109 q^{7} +3.02830 q^{8} -0.273891 q^{9} +2.65109 q^{11} -0.622797 q^{12} -6.13161 q^{13} -4.65109 q^{14} -3.10331 q^{16} +2.34891 q^{17} +0.348907 q^{18} +6.02830 q^{21} -3.37720 q^{22} +5.48052 q^{23} +5.00000 q^{24} +7.81100 q^{26} -5.40550 q^{27} -1.37720 q^{28} -0.651093 q^{29} +6.67939 q^{31} -2.10331 q^{32} +4.37720 q^{33} -2.99225 q^{34} +0.103312 q^{36} +8.70769 q^{37} -10.1239 q^{39} -1.93273 q^{41} -7.67939 q^{42} -2.65884 q^{43} -1.00000 q^{44} -6.98158 q^{46} +3.71836 q^{47} -5.12386 q^{48} +6.33048 q^{49} +3.87826 q^{51} +2.31286 q^{52} -13.7544 q^{53} +6.88601 q^{54} +11.0566 q^{56} +0.829422 q^{58} +7.84997 q^{59} -1.92498 q^{61} -8.50881 q^{62} -1.00000 q^{63} +8.88601 q^{64} -5.57608 q^{66} +4.44447 q^{67} -0.886014 q^{68} +9.04884 q^{69} -3.54778 q^{71} -0.829422 q^{72} -2.48052 q^{73} -11.0926 q^{74} +9.67939 q^{77} +12.8967 q^{78} +15.1599 q^{79} -8.10331 q^{81} +2.46209 q^{82} -14.7282 q^{83} -2.27389 q^{84} +3.38708 q^{86} -1.07502 q^{87} +8.02830 q^{88} +5.06727 q^{89} -22.3871 q^{91} -2.06727 q^{92} +11.0283 q^{93} -4.73678 q^{94} -3.47277 q^{96} -3.22717 q^{97} -8.06434 q^{98} -0.726109 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 2 q^{2} - 2 q^{3} + 4 q^{4} - 3 q^{6} + 4 q^{7} - 3 q^{8} + q^{9} + q^{11} - 7 q^{12} - 3 q^{13} - 7 q^{14} - 6 q^{16} + 14 q^{17} + 8 q^{18} + 6 q^{21} - 5 q^{22} + 8 q^{23} + 15 q^{24} - 11 q^{26}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.27389 −0.900777 −0.450388 0.892833i \(-0.648714\pi\)
−0.450388 + 0.892833i \(0.648714\pi\)
\(3\) 1.65109 0.953259 0.476630 0.879104i \(-0.341858\pi\)
0.476630 + 0.879104i \(0.341858\pi\)
\(4\) −0.377203 −0.188601
\(5\) 0 0
\(6\) −2.10331 −0.858674
\(7\) 3.65109 1.37998 0.689992 0.723817i \(-0.257614\pi\)
0.689992 + 0.723817i \(0.257614\pi\)
\(8\) 3.02830 1.07066
\(9\) −0.273891 −0.0912969
\(10\) 0 0
\(11\) 2.65109 0.799335 0.399667 0.916660i \(-0.369126\pi\)
0.399667 + 0.916660i \(0.369126\pi\)
\(12\) −0.622797 −0.179786
\(13\) −6.13161 −1.70060 −0.850301 0.526297i \(-0.823580\pi\)
−0.850301 + 0.526297i \(0.823580\pi\)
\(14\) −4.65109 −1.24306
\(15\) 0 0
\(16\) −3.10331 −0.775828
\(17\) 2.34891 0.569694 0.284847 0.958573i \(-0.408057\pi\)
0.284847 + 0.958573i \(0.408057\pi\)
\(18\) 0.348907 0.0822381
\(19\) 0 0
\(20\) 0 0
\(21\) 6.02830 1.31548
\(22\) −3.37720 −0.720022
\(23\) 5.48052 1.14277 0.571383 0.820683i \(-0.306407\pi\)
0.571383 + 0.820683i \(0.306407\pi\)
\(24\) 5.00000 1.02062
\(25\) 0 0
\(26\) 7.81100 1.53186
\(27\) −5.40550 −1.04029
\(28\) −1.37720 −0.260267
\(29\) −0.651093 −0.120905 −0.0604525 0.998171i \(-0.519254\pi\)
−0.0604525 + 0.998171i \(0.519254\pi\)
\(30\) 0 0
\(31\) 6.67939 1.19965 0.599827 0.800130i \(-0.295236\pi\)
0.599827 + 0.800130i \(0.295236\pi\)
\(32\) −2.10331 −0.371817
\(33\) 4.37720 0.761973
\(34\) −2.99225 −0.513167
\(35\) 0 0
\(36\) 0.103312 0.0172187
\(37\) 8.70769 1.43153 0.715767 0.698339i \(-0.246077\pi\)
0.715767 + 0.698339i \(0.246077\pi\)
\(38\) 0 0
\(39\) −10.1239 −1.62111
\(40\) 0 0
\(41\) −1.93273 −0.301842 −0.150921 0.988546i \(-0.548224\pi\)
−0.150921 + 0.988546i \(0.548224\pi\)
\(42\) −7.67939 −1.18496
\(43\) −2.65884 −0.405470 −0.202735 0.979234i \(-0.564983\pi\)
−0.202735 + 0.979234i \(0.564983\pi\)
\(44\) −1.00000 −0.150756
\(45\) 0 0
\(46\) −6.98158 −1.02938
\(47\) 3.71836 0.542378 0.271189 0.962526i \(-0.412583\pi\)
0.271189 + 0.962526i \(0.412583\pi\)
\(48\) −5.12386 −0.739565
\(49\) 6.33048 0.904355
\(50\) 0 0
\(51\) 3.87826 0.543066
\(52\) 2.31286 0.320736
\(53\) −13.7544 −1.88931 −0.944656 0.328061i \(-0.893605\pi\)
−0.944656 + 0.328061i \(0.893605\pi\)
\(54\) 6.88601 0.937068
\(55\) 0 0
\(56\) 11.0566 1.47750
\(57\) 0 0
\(58\) 0.829422 0.108908
\(59\) 7.84997 1.02198 0.510989 0.859587i \(-0.329279\pi\)
0.510989 + 0.859587i \(0.329279\pi\)
\(60\) 0 0
\(61\) −1.92498 −0.246469 −0.123234 0.992378i \(-0.539327\pi\)
−0.123234 + 0.992378i \(0.539327\pi\)
\(62\) −8.50881 −1.08062
\(63\) −1.00000 −0.125988
\(64\) 8.88601 1.11075
\(65\) 0 0
\(66\) −5.57608 −0.686368
\(67\) 4.44447 0.542978 0.271489 0.962442i \(-0.412484\pi\)
0.271489 + 0.962442i \(0.412484\pi\)
\(68\) −0.886014 −0.107445
\(69\) 9.04884 1.08935
\(70\) 0 0
\(71\) −3.54778 −0.421044 −0.210522 0.977589i \(-0.567516\pi\)
−0.210522 + 0.977589i \(0.567516\pi\)
\(72\) −0.829422 −0.0977483
\(73\) −2.48052 −0.290322 −0.145161 0.989408i \(-0.546370\pi\)
−0.145161 + 0.989408i \(0.546370\pi\)
\(74\) −11.0926 −1.28949
\(75\) 0 0
\(76\) 0 0
\(77\) 9.67939 1.10307
\(78\) 12.8967 1.46026
\(79\) 15.1599 1.70562 0.852811 0.522219i \(-0.174896\pi\)
0.852811 + 0.522219i \(0.174896\pi\)
\(80\) 0 0
\(81\) −8.10331 −0.900368
\(82\) 2.46209 0.271893
\(83\) −14.7282 −1.61663 −0.808317 0.588748i \(-0.799621\pi\)
−0.808317 + 0.588748i \(0.799621\pi\)
\(84\) −2.27389 −0.248102
\(85\) 0 0
\(86\) 3.38708 0.365238
\(87\) −1.07502 −0.115254
\(88\) 8.02830 0.855819
\(89\) 5.06727 0.537129 0.268565 0.963262i \(-0.413451\pi\)
0.268565 + 0.963262i \(0.413451\pi\)
\(90\) 0 0
\(91\) −22.3871 −2.34680
\(92\) −2.06727 −0.215527
\(93\) 11.0283 1.14358
\(94\) −4.73678 −0.488562
\(95\) 0 0
\(96\) −3.47277 −0.354438
\(97\) −3.22717 −0.327670 −0.163835 0.986488i \(-0.552386\pi\)
−0.163835 + 0.986488i \(0.552386\pi\)
\(98\) −8.06434 −0.814622
\(99\) −0.726109 −0.0729767
\(100\) 0 0
\(101\) 16.8032 1.67199 0.835993 0.548740i \(-0.184892\pi\)
0.835993 + 0.548740i \(0.184892\pi\)
\(102\) −4.94048 −0.489181
\(103\) 9.85772 0.971310 0.485655 0.874151i \(-0.338581\pi\)
0.485655 + 0.874151i \(0.338581\pi\)
\(104\) −18.5683 −1.82077
\(105\) 0 0
\(106\) 17.5216 1.70185
\(107\) 5.13936 0.496841 0.248420 0.968652i \(-0.420089\pi\)
0.248420 + 0.968652i \(0.420089\pi\)
\(108\) 2.03897 0.196200
\(109\) −13.9738 −1.33845 −0.669225 0.743060i \(-0.733374\pi\)
−0.669225 + 0.743060i \(0.733374\pi\)
\(110\) 0 0
\(111\) 14.3772 1.36462
\(112\) −11.3305 −1.07063
\(113\) 0.527235 0.0495981 0.0247990 0.999692i \(-0.492105\pi\)
0.0247990 + 0.999692i \(0.492105\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0.245594 0.0228029
\(117\) 1.67939 0.155260
\(118\) −10.0000 −0.920575
\(119\) 8.57608 0.786168
\(120\) 0 0
\(121\) −3.97170 −0.361064
\(122\) 2.45222 0.222013
\(123\) −3.19112 −0.287734
\(124\) −2.51948 −0.226256
\(125\) 0 0
\(126\) 1.27389 0.113487
\(127\) 11.8217 1.04900 0.524502 0.851409i \(-0.324252\pi\)
0.524502 + 0.851409i \(0.324252\pi\)
\(128\) −7.11319 −0.628723
\(129\) −4.39000 −0.386518
\(130\) 0 0
\(131\) 8.12386 0.709785 0.354892 0.934907i \(-0.384517\pi\)
0.354892 + 0.934907i \(0.384517\pi\)
\(132\) −1.65109 −0.143709
\(133\) 0 0
\(134\) −5.66177 −0.489102
\(135\) 0 0
\(136\) 7.11319 0.609951
\(137\) 17.5761 1.50163 0.750813 0.660515i \(-0.229662\pi\)
0.750813 + 0.660515i \(0.229662\pi\)
\(138\) −11.5272 −0.981263
\(139\) 18.4154 1.56197 0.780986 0.624549i \(-0.214717\pi\)
0.780986 + 0.624549i \(0.214717\pi\)
\(140\) 0 0
\(141\) 6.13936 0.517027
\(142\) 4.51948 0.379267
\(143\) −16.2555 −1.35935
\(144\) 0.849968 0.0708307
\(145\) 0 0
\(146\) 3.15990 0.261516
\(147\) 10.4522 0.862084
\(148\) −3.28456 −0.269989
\(149\) −17.2915 −1.41658 −0.708288 0.705924i \(-0.750532\pi\)
−0.708288 + 0.705924i \(0.750532\pi\)
\(150\) 0 0
\(151\) −2.58383 −0.210269 −0.105134 0.994458i \(-0.533527\pi\)
−0.105134 + 0.994458i \(0.533527\pi\)
\(152\) 0 0
\(153\) −0.643343 −0.0520112
\(154\) −12.3305 −0.993619
\(155\) 0 0
\(156\) 3.81875 0.305745
\(157\) −10.9738 −0.875807 −0.437903 0.899022i \(-0.644279\pi\)
−0.437903 + 0.899022i \(0.644279\pi\)
\(158\) −19.3121 −1.53638
\(159\) −22.7098 −1.80100
\(160\) 0 0
\(161\) 20.0099 1.57700
\(162\) 10.3227 0.811031
\(163\) 22.6794 1.77639 0.888193 0.459470i \(-0.151961\pi\)
0.888193 + 0.459470i \(0.151961\pi\)
\(164\) 0.729033 0.0569279
\(165\) 0 0
\(166\) 18.7622 1.45623
\(167\) 5.16283 0.399512 0.199756 0.979846i \(-0.435985\pi\)
0.199756 + 0.979846i \(0.435985\pi\)
\(168\) 18.2555 1.40844
\(169\) 24.5966 1.89205
\(170\) 0 0
\(171\) 0 0
\(172\) 1.00292 0.0764722
\(173\) 17.2165 1.30895 0.654473 0.756085i \(-0.272891\pi\)
0.654473 + 0.756085i \(0.272891\pi\)
\(174\) 1.36945 0.103818
\(175\) 0 0
\(176\) −8.22717 −0.620146
\(177\) 12.9610 0.974211
\(178\) −6.45514 −0.483833
\(179\) −10.6999 −0.799751 −0.399875 0.916570i \(-0.630947\pi\)
−0.399875 + 0.916570i \(0.630947\pi\)
\(180\) 0 0
\(181\) 16.7720 1.24666 0.623328 0.781961i \(-0.285780\pi\)
0.623328 + 0.781961i \(0.285780\pi\)
\(182\) 28.5187 2.11395
\(183\) −3.17833 −0.234949
\(184\) 16.5966 1.22352
\(185\) 0 0
\(186\) −14.0488 −1.03011
\(187\) 6.22717 0.455376
\(188\) −1.40258 −0.102293
\(189\) −19.7360 −1.43558
\(190\) 0 0
\(191\) −13.8598 −1.00286 −0.501431 0.865197i \(-0.667193\pi\)
−0.501431 + 0.865197i \(0.667193\pi\)
\(192\) 14.6716 1.05883
\(193\) −21.0694 −1.51661 −0.758304 0.651901i \(-0.773972\pi\)
−0.758304 + 0.651901i \(0.773972\pi\)
\(194\) 4.11106 0.295157
\(195\) 0 0
\(196\) −2.38788 −0.170563
\(197\) 21.2555 1.51439 0.757195 0.653189i \(-0.226569\pi\)
0.757195 + 0.653189i \(0.226569\pi\)
\(198\) 0.924984 0.0657357
\(199\) −7.69006 −0.545134 −0.272567 0.962137i \(-0.587873\pi\)
−0.272567 + 0.962137i \(0.587873\pi\)
\(200\) 0 0
\(201\) 7.33823 0.517599
\(202\) −21.4055 −1.50609
\(203\) −2.37720 −0.166847
\(204\) −1.46289 −0.102423
\(205\) 0 0
\(206\) −12.5577 −0.874933
\(207\) −1.50106 −0.104331
\(208\) 19.0283 1.31937
\(209\) 0 0
\(210\) 0 0
\(211\) 1.69781 0.116882 0.0584411 0.998291i \(-0.481387\pi\)
0.0584411 + 0.998291i \(0.481387\pi\)
\(212\) 5.18820 0.356327
\(213\) −5.85772 −0.401364
\(214\) −6.54698 −0.447542
\(215\) 0 0
\(216\) −16.3695 −1.11380
\(217\) 24.3871 1.65550
\(218\) 17.8011 1.20564
\(219\) −4.09556 −0.276752
\(220\) 0 0
\(221\) −14.4026 −0.968822
\(222\) −18.3150 −1.22922
\(223\) 25.2632 1.69175 0.845875 0.533381i \(-0.179079\pi\)
0.845875 + 0.533381i \(0.179079\pi\)
\(224\) −7.67939 −0.513101
\(225\) 0 0
\(226\) −0.671640 −0.0446768
\(227\) 16.8217 1.11649 0.558247 0.829675i \(-0.311474\pi\)
0.558247 + 0.829675i \(0.311474\pi\)
\(228\) 0 0
\(229\) −14.6249 −0.966442 −0.483221 0.875498i \(-0.660533\pi\)
−0.483221 + 0.875498i \(0.660533\pi\)
\(230\) 0 0
\(231\) 15.9816 1.05151
\(232\) −1.97170 −0.129449
\(233\) 8.91431 0.583996 0.291998 0.956419i \(-0.405680\pi\)
0.291998 + 0.956419i \(0.405680\pi\)
\(234\) −2.13936 −0.139854
\(235\) 0 0
\(236\) −2.96103 −0.192747
\(237\) 25.0304 1.62590
\(238\) −10.9250 −0.708162
\(239\) −24.6015 −1.59134 −0.795668 0.605733i \(-0.792880\pi\)
−0.795668 + 0.605733i \(0.792880\pi\)
\(240\) 0 0
\(241\) 14.6150 0.941438 0.470719 0.882283i \(-0.343995\pi\)
0.470719 + 0.882283i \(0.343995\pi\)
\(242\) 5.05952 0.325238
\(243\) 2.83717 0.182005
\(244\) 0.726109 0.0464844
\(245\) 0 0
\(246\) 4.06514 0.259184
\(247\) 0 0
\(248\) 20.2272 1.28443
\(249\) −24.3177 −1.54107
\(250\) 0 0
\(251\) −13.3382 −0.841902 −0.420951 0.907083i \(-0.638304\pi\)
−0.420951 + 0.907083i \(0.638304\pi\)
\(252\) 0.377203 0.0237615
\(253\) 14.5294 0.913453
\(254\) −15.0595 −0.944918
\(255\) 0 0
\(256\) −8.71061 −0.544413
\(257\) 3.35103 0.209031 0.104516 0.994523i \(-0.466671\pi\)
0.104516 + 0.994523i \(0.466671\pi\)
\(258\) 5.59238 0.348166
\(259\) 31.7926 1.97549
\(260\) 0 0
\(261\) 0.178328 0.0110382
\(262\) −10.3489 −0.639358
\(263\) 10.8860 0.671260 0.335630 0.941994i \(-0.391051\pi\)
0.335630 + 0.941994i \(0.391051\pi\)
\(264\) 13.2555 0.815818
\(265\) 0 0
\(266\) 0 0
\(267\) 8.36653 0.512023
\(268\) −1.67647 −0.102406
\(269\) −18.4338 −1.12393 −0.561964 0.827162i \(-0.689954\pi\)
−0.561964 + 0.827162i \(0.689954\pi\)
\(270\) 0 0
\(271\) −20.4076 −1.23967 −0.619837 0.784730i \(-0.712801\pi\)
−0.619837 + 0.784730i \(0.712801\pi\)
\(272\) −7.28939 −0.441984
\(273\) −36.9632 −2.23711
\(274\) −22.3900 −1.35263
\(275\) 0 0
\(276\) −3.41325 −0.205453
\(277\) −2.69994 −0.162223 −0.0811117 0.996705i \(-0.525847\pi\)
−0.0811117 + 0.996705i \(0.525847\pi\)
\(278\) −23.4592 −1.40699
\(279\) −1.82942 −0.109525
\(280\) 0 0
\(281\) 15.2242 0.908202 0.454101 0.890950i \(-0.349960\pi\)
0.454101 + 0.890950i \(0.349960\pi\)
\(282\) −7.82087 −0.465726
\(283\) 6.18045 0.367390 0.183695 0.982983i \(-0.441194\pi\)
0.183695 + 0.982983i \(0.441194\pi\)
\(284\) 1.33823 0.0794095
\(285\) 0 0
\(286\) 20.7077 1.22447
\(287\) −7.05659 −0.416537
\(288\) 0.576077 0.0339457
\(289\) −11.4826 −0.675449
\(290\) 0 0
\(291\) −5.32836 −0.312354
\(292\) 0.935657 0.0547552
\(293\) −30.6893 −1.79289 −0.896443 0.443159i \(-0.853858\pi\)
−0.896443 + 0.443159i \(0.853858\pi\)
\(294\) −13.3150 −0.776546
\(295\) 0 0
\(296\) 26.3695 1.53269
\(297\) −14.3305 −0.831539
\(298\) 22.0275 1.27602
\(299\) −33.6044 −1.94339
\(300\) 0 0
\(301\) −9.70769 −0.559542
\(302\) 3.29151 0.189405
\(303\) 27.7437 1.59384
\(304\) 0 0
\(305\) 0 0
\(306\) 0.819549 0.0468505
\(307\) 14.7827 0.843693 0.421847 0.906667i \(-0.361382\pi\)
0.421847 + 0.906667i \(0.361382\pi\)
\(308\) −3.65109 −0.208040
\(309\) 16.2760 0.925910
\(310\) 0 0
\(311\) −26.9992 −1.53098 −0.765492 0.643445i \(-0.777504\pi\)
−0.765492 + 0.643445i \(0.777504\pi\)
\(312\) −30.6580 −1.73567
\(313\) −9.74666 −0.550914 −0.275457 0.961313i \(-0.588829\pi\)
−0.275457 + 0.961313i \(0.588829\pi\)
\(314\) 13.9795 0.788906
\(315\) 0 0
\(316\) −5.71836 −0.321683
\(317\) −19.7261 −1.10793 −0.553964 0.832540i \(-0.686886\pi\)
−0.553964 + 0.832540i \(0.686886\pi\)
\(318\) 28.9298 1.62230
\(319\) −1.72611 −0.0966436
\(320\) 0 0
\(321\) 8.48556 0.473618
\(322\) −25.4904 −1.42052
\(323\) 0 0
\(324\) 3.05659 0.169811
\(325\) 0 0
\(326\) −28.8911 −1.60013
\(327\) −23.0721 −1.27589
\(328\) −5.85289 −0.323172
\(329\) 13.5761 0.748473
\(330\) 0 0
\(331\) −19.9426 −1.09614 −0.548072 0.836431i \(-0.684638\pi\)
−0.548072 + 0.836431i \(0.684638\pi\)
\(332\) 5.55553 0.304899
\(333\) −2.38495 −0.130695
\(334\) −6.57688 −0.359871
\(335\) 0 0
\(336\) −18.7077 −1.02059
\(337\) −2.05952 −0.112189 −0.0560945 0.998425i \(-0.517865\pi\)
−0.0560945 + 0.998425i \(0.517865\pi\)
\(338\) −31.3334 −1.70431
\(339\) 0.870514 0.0472798
\(340\) 0 0
\(341\) 17.7077 0.958925
\(342\) 0 0
\(343\) −2.44447 −0.131989
\(344\) −8.05177 −0.434122
\(345\) 0 0
\(346\) −21.9319 −1.17907
\(347\) −10.5011 −0.563727 −0.281863 0.959455i \(-0.590952\pi\)
−0.281863 + 0.959455i \(0.590952\pi\)
\(348\) 0.405499 0.0217370
\(349\) 16.5059 0.883540 0.441770 0.897128i \(-0.354351\pi\)
0.441770 + 0.897128i \(0.354351\pi\)
\(350\) 0 0
\(351\) 33.1444 1.76912
\(352\) −5.57608 −0.297206
\(353\) 15.8860 0.845527 0.422764 0.906240i \(-0.361060\pi\)
0.422764 + 0.906240i \(0.361060\pi\)
\(354\) −16.5109 −0.877546
\(355\) 0 0
\(356\) −1.91139 −0.101303
\(357\) 14.1599 0.749422
\(358\) 13.6305 0.720397
\(359\) 1.28376 0.0677544 0.0338772 0.999426i \(-0.489214\pi\)
0.0338772 + 0.999426i \(0.489214\pi\)
\(360\) 0 0
\(361\) 0 0
\(362\) −21.3657 −1.12296
\(363\) −6.55765 −0.344188
\(364\) 8.44447 0.442610
\(365\) 0 0
\(366\) 4.04884 0.211636
\(367\) −19.8804 −1.03775 −0.518874 0.854851i \(-0.673649\pi\)
−0.518874 + 0.854851i \(0.673649\pi\)
\(368\) −17.0078 −0.886590
\(369\) 0.529358 0.0275573
\(370\) 0 0
\(371\) −50.2186 −2.60722
\(372\) −4.15990 −0.215681
\(373\) 16.4359 0.851020 0.425510 0.904954i \(-0.360095\pi\)
0.425510 + 0.904954i \(0.360095\pi\)
\(374\) −7.93273 −0.410192
\(375\) 0 0
\(376\) 11.2603 0.580705
\(377\) 3.99225 0.205611
\(378\) 25.1415 1.29314
\(379\) −0.338233 −0.0173739 −0.00868694 0.999962i \(-0.502765\pi\)
−0.00868694 + 0.999962i \(0.502765\pi\)
\(380\) 0 0
\(381\) 19.5187 0.999972
\(382\) 17.6559 0.903355
\(383\) 13.7339 0.701767 0.350884 0.936419i \(-0.385881\pi\)
0.350884 + 0.936419i \(0.385881\pi\)
\(384\) −11.7445 −0.599336
\(385\) 0 0
\(386\) 26.8401 1.36612
\(387\) 0.728232 0.0370181
\(388\) 1.21730 0.0617989
\(389\) −2.26109 −0.114642 −0.0573210 0.998356i \(-0.518256\pi\)
−0.0573210 + 0.998356i \(0.518256\pi\)
\(390\) 0 0
\(391\) 12.8732 0.651027
\(392\) 19.1706 0.968260
\(393\) 13.4132 0.676609
\(394\) −27.0771 −1.36413
\(395\) 0 0
\(396\) 0.273891 0.0137635
\(397\) −7.82942 −0.392947 −0.196474 0.980509i \(-0.562949\pi\)
−0.196474 + 0.980509i \(0.562949\pi\)
\(398\) 9.79630 0.491044
\(399\) 0 0
\(400\) 0 0
\(401\) 35.0510 1.75036 0.875181 0.483796i \(-0.160742\pi\)
0.875181 + 0.483796i \(0.160742\pi\)
\(402\) −9.34811 −0.466241
\(403\) −40.9554 −2.04013
\(404\) −6.33823 −0.315339
\(405\) 0 0
\(406\) 3.02830 0.150292
\(407\) 23.0849 1.14428
\(408\) 11.7445 0.581441
\(409\) 8.34811 0.412787 0.206394 0.978469i \(-0.433827\pi\)
0.206394 + 0.978469i \(0.433827\pi\)
\(410\) 0 0
\(411\) 29.0197 1.43144
\(412\) −3.71836 −0.183190
\(413\) 28.6610 1.41031
\(414\) 1.91219 0.0939789
\(415\) 0 0
\(416\) 12.8967 0.632312
\(417\) 30.4055 1.48896
\(418\) 0 0
\(419\) −19.8705 −0.970738 −0.485369 0.874309i \(-0.661315\pi\)
−0.485369 + 0.874309i \(0.661315\pi\)
\(420\) 0 0
\(421\) 0.400672 0.0195276 0.00976379 0.999952i \(-0.496892\pi\)
0.00976379 + 0.999952i \(0.496892\pi\)
\(422\) −2.16283 −0.105285
\(423\) −1.01842 −0.0495174
\(424\) −41.6524 −2.02282
\(425\) 0 0
\(426\) 7.46209 0.361540
\(427\) −7.02830 −0.340123
\(428\) −1.93858 −0.0937048
\(429\) −26.8393 −1.29581
\(430\) 0 0
\(431\) 14.2533 0.686559 0.343280 0.939233i \(-0.388462\pi\)
0.343280 + 0.939233i \(0.388462\pi\)
\(432\) 16.7750 0.807085
\(433\) −12.8393 −0.617017 −0.308509 0.951222i \(-0.599830\pi\)
−0.308509 + 0.951222i \(0.599830\pi\)
\(434\) −31.0665 −1.49124
\(435\) 0 0
\(436\) 5.27097 0.252434
\(437\) 0 0
\(438\) 5.21730 0.249292
\(439\) 13.2555 0.632649 0.316324 0.948651i \(-0.397551\pi\)
0.316324 + 0.948651i \(0.397551\pi\)
\(440\) 0 0
\(441\) −1.73386 −0.0825647
\(442\) 18.3473 0.872692
\(443\) 5.72611 0.272056 0.136028 0.990705i \(-0.456566\pi\)
0.136028 + 0.990705i \(0.456566\pi\)
\(444\) −5.42312 −0.257370
\(445\) 0 0
\(446\) −32.1826 −1.52389
\(447\) −28.5499 −1.35036
\(448\) 32.4437 1.53282
\(449\) −3.11399 −0.146958 −0.0734790 0.997297i \(-0.523410\pi\)
−0.0734790 + 0.997297i \(0.523410\pi\)
\(450\) 0 0
\(451\) −5.12386 −0.241273
\(452\) −0.198875 −0.00935427
\(453\) −4.26614 −0.200441
\(454\) −21.4290 −1.00571
\(455\) 0 0
\(456\) 0 0
\(457\) 27.4535 1.28422 0.642111 0.766611i \(-0.278059\pi\)
0.642111 + 0.766611i \(0.278059\pi\)
\(458\) 18.6305 0.870548
\(459\) −12.6970 −0.592646
\(460\) 0 0
\(461\) 13.9837 0.651286 0.325643 0.945493i \(-0.394419\pi\)
0.325643 + 0.945493i \(0.394419\pi\)
\(462\) −20.3588 −0.947176
\(463\) 17.9992 0.836494 0.418247 0.908333i \(-0.362645\pi\)
0.418247 + 0.908333i \(0.362645\pi\)
\(464\) 2.02055 0.0938015
\(465\) 0 0
\(466\) −11.3559 −0.526050
\(467\) 12.6871 0.587091 0.293545 0.955945i \(-0.405165\pi\)
0.293545 + 0.955945i \(0.405165\pi\)
\(468\) −0.633471 −0.0292822
\(469\) 16.2272 0.749301
\(470\) 0 0
\(471\) −18.1188 −0.834871
\(472\) 23.7720 1.09420
\(473\) −7.04884 −0.324106
\(474\) −31.8860 −1.46457
\(475\) 0 0
\(476\) −3.23492 −0.148272
\(477\) 3.76720 0.172488
\(478\) 31.3396 1.43344
\(479\) 24.7544 1.13106 0.565529 0.824729i \(-0.308672\pi\)
0.565529 + 0.824729i \(0.308672\pi\)
\(480\) 0 0
\(481\) −53.3921 −2.43447
\(482\) −18.6180 −0.848025
\(483\) 33.0382 1.50329
\(484\) 1.49814 0.0680972
\(485\) 0 0
\(486\) −3.61425 −0.163946
\(487\) 4.08277 0.185008 0.0925039 0.995712i \(-0.470513\pi\)
0.0925039 + 0.995712i \(0.470513\pi\)
\(488\) −5.82942 −0.263886
\(489\) 37.4458 1.69336
\(490\) 0 0
\(491\) 29.2547 1.32024 0.660122 0.751158i \(-0.270504\pi\)
0.660122 + 0.751158i \(0.270504\pi\)
\(492\) 1.20370 0.0542670
\(493\) −1.52936 −0.0688788
\(494\) 0 0
\(495\) 0 0
\(496\) −20.7282 −0.930725
\(497\) −12.9533 −0.581034
\(498\) 30.9781 1.38816
\(499\) 1.57315 0.0704240 0.0352120 0.999380i \(-0.488789\pi\)
0.0352120 + 0.999380i \(0.488789\pi\)
\(500\) 0 0
\(501\) 8.52431 0.380838
\(502\) 16.9914 0.758365
\(503\) 20.7819 0.926619 0.463310 0.886196i \(-0.346662\pi\)
0.463310 + 0.886196i \(0.346662\pi\)
\(504\) −3.02830 −0.134891
\(505\) 0 0
\(506\) −18.5088 −0.822817
\(507\) 40.6113 1.80361
\(508\) −4.45917 −0.197844
\(509\) 31.8238 1.41056 0.705282 0.708926i \(-0.250820\pi\)
0.705282 + 0.708926i \(0.250820\pi\)
\(510\) 0 0
\(511\) −9.05659 −0.400640
\(512\) 25.3227 1.11912
\(513\) 0 0
\(514\) −4.26884 −0.188291
\(515\) 0 0
\(516\) 1.65592 0.0728978
\(517\) 9.85772 0.433542
\(518\) −40.5003 −1.77948
\(519\) 28.4260 1.24776
\(520\) 0 0
\(521\) 27.4720 1.20357 0.601784 0.798659i \(-0.294457\pi\)
0.601784 + 0.798659i \(0.294457\pi\)
\(522\) −0.227171 −0.00994300
\(523\) 10.4466 0.456798 0.228399 0.973568i \(-0.426651\pi\)
0.228399 + 0.973568i \(0.426651\pi\)
\(524\) −3.06434 −0.133866
\(525\) 0 0
\(526\) −13.8676 −0.604656
\(527\) 15.6893 0.683435
\(528\) −13.5838 −0.591160
\(529\) 7.03605 0.305915
\(530\) 0 0
\(531\) −2.15003 −0.0933034
\(532\) 0 0
\(533\) 11.8508 0.513314
\(534\) −10.6580 −0.461219
\(535\) 0 0
\(536\) 13.4592 0.581348
\(537\) −17.6666 −0.762370
\(538\) 23.4826 1.01241
\(539\) 16.7827 0.722882
\(540\) 0 0
\(541\) 13.4989 0.580365 0.290182 0.956971i \(-0.406284\pi\)
0.290182 + 0.956971i \(0.406284\pi\)
\(542\) 25.9971 1.11667
\(543\) 27.6922 1.18839
\(544\) −4.94048 −0.211822
\(545\) 0 0
\(546\) 47.0870 2.01514
\(547\) −8.54698 −0.365442 −0.182721 0.983165i \(-0.558491\pi\)
−0.182721 + 0.983165i \(0.558491\pi\)
\(548\) −6.62975 −0.283209
\(549\) 0.527235 0.0225018
\(550\) 0 0
\(551\) 0 0
\(552\) 27.4026 1.16633
\(553\) 55.3502 2.35373
\(554\) 3.43942 0.146127
\(555\) 0 0
\(556\) −6.94633 −0.294590
\(557\) 27.2378 1.15410 0.577052 0.816707i \(-0.304203\pi\)
0.577052 + 0.816707i \(0.304203\pi\)
\(558\) 2.33048 0.0986572
\(559\) 16.3030 0.689543
\(560\) 0 0
\(561\) 10.2816 0.434091
\(562\) −19.3940 −0.818088
\(563\) 1.44235 0.0607876 0.0303938 0.999538i \(-0.490324\pi\)
0.0303938 + 0.999538i \(0.490324\pi\)
\(564\) −2.31578 −0.0975121
\(565\) 0 0
\(566\) −7.87322 −0.330936
\(567\) −29.5860 −1.24249
\(568\) −10.7437 −0.450797
\(569\) 14.2632 0.597945 0.298973 0.954262i \(-0.403356\pi\)
0.298973 + 0.954262i \(0.403356\pi\)
\(570\) 0 0
\(571\) 9.91723 0.415023 0.207512 0.978233i \(-0.433464\pi\)
0.207512 + 0.978233i \(0.433464\pi\)
\(572\) 6.13161 0.256375
\(573\) −22.8839 −0.955988
\(574\) 8.98933 0.375207
\(575\) 0 0
\(576\) −2.43380 −0.101408
\(577\) −8.23997 −0.343034 −0.171517 0.985181i \(-0.554867\pi\)
−0.171517 + 0.985181i \(0.554867\pi\)
\(578\) 14.6276 0.608429
\(579\) −34.7875 −1.44572
\(580\) 0 0
\(581\) −53.7742 −2.23093
\(582\) 6.78775 0.281361
\(583\) −36.4642 −1.51019
\(584\) −7.51173 −0.310838
\(585\) 0 0
\(586\) 39.0948 1.61499
\(587\) 36.9554 1.52531 0.762656 0.646804i \(-0.223895\pi\)
0.762656 + 0.646804i \(0.223895\pi\)
\(588\) −3.94261 −0.162590
\(589\) 0 0
\(590\) 0 0
\(591\) 35.0948 1.44361
\(592\) −27.0227 −1.11062
\(593\) −1.36170 −0.0559184 −0.0279592 0.999609i \(-0.508901\pi\)
−0.0279592 + 0.999609i \(0.508901\pi\)
\(594\) 18.2555 0.749031
\(595\) 0 0
\(596\) 6.52241 0.267168
\(597\) −12.6970 −0.519654
\(598\) 42.8083 1.75056
\(599\) −33.5753 −1.37185 −0.685924 0.727673i \(-0.740602\pi\)
−0.685924 + 0.727673i \(0.740602\pi\)
\(600\) 0 0
\(601\) −12.6561 −0.516255 −0.258127 0.966111i \(-0.583105\pi\)
−0.258127 + 0.966111i \(0.583105\pi\)
\(602\) 12.3665 0.504022
\(603\) −1.21730 −0.0495722
\(604\) 0.974627 0.0396570
\(605\) 0 0
\(606\) −35.3425 −1.43569
\(607\) −17.4047 −0.706435 −0.353217 0.935541i \(-0.614912\pi\)
−0.353217 + 0.935541i \(0.614912\pi\)
\(608\) 0 0
\(609\) −3.92498 −0.159048
\(610\) 0 0
\(611\) −22.7995 −0.922370
\(612\) 0.242671 0.00980939
\(613\) −37.2603 −1.50493 −0.752465 0.658633i \(-0.771135\pi\)
−0.752465 + 0.658633i \(0.771135\pi\)
\(614\) −18.8315 −0.759979
\(615\) 0 0
\(616\) 29.3121 1.18102
\(617\) −18.3764 −0.739806 −0.369903 0.929070i \(-0.620609\pi\)
−0.369903 + 0.929070i \(0.620609\pi\)
\(618\) −20.7339 −0.834038
\(619\) 14.5526 0.584919 0.292459 0.956278i \(-0.405526\pi\)
0.292459 + 0.956278i \(0.405526\pi\)
\(620\) 0 0
\(621\) −29.6249 −1.18881
\(622\) 34.3940 1.37907
\(623\) 18.5011 0.741229
\(624\) 31.4175 1.25771
\(625\) 0 0
\(626\) 12.4162 0.496250
\(627\) 0 0
\(628\) 4.13936 0.165178
\(629\) 20.4535 0.815536
\(630\) 0 0
\(631\) 22.0304 0.877017 0.438509 0.898727i \(-0.355507\pi\)
0.438509 + 0.898727i \(0.355507\pi\)
\(632\) 45.9087 1.82615
\(633\) 2.80325 0.111419
\(634\) 25.1289 0.997996
\(635\) 0 0
\(636\) 8.56620 0.339672
\(637\) −38.8160 −1.53795
\(638\) 2.19887 0.0870543
\(639\) 0.971704 0.0384400
\(640\) 0 0
\(641\) 43.6765 1.72512 0.862558 0.505958i \(-0.168861\pi\)
0.862558 + 0.505958i \(0.168861\pi\)
\(642\) −10.8097 −0.426624
\(643\) −25.9263 −1.02243 −0.511217 0.859452i \(-0.670805\pi\)
−0.511217 + 0.859452i \(0.670805\pi\)
\(644\) −7.54778 −0.297424
\(645\) 0 0
\(646\) 0 0
\(647\) −42.1046 −1.65530 −0.827652 0.561242i \(-0.810324\pi\)
−0.827652 + 0.561242i \(0.810324\pi\)
\(648\) −24.5392 −0.963992
\(649\) 20.8110 0.816903
\(650\) 0 0
\(651\) 40.2653 1.57812
\(652\) −8.55473 −0.335029
\(653\) 40.4671 1.58360 0.791801 0.610779i \(-0.209144\pi\)
0.791801 + 0.610779i \(0.209144\pi\)
\(654\) 29.3913 1.14929
\(655\) 0 0
\(656\) 5.99788 0.234178
\(657\) 0.679390 0.0265055
\(658\) −17.2944 −0.674207
\(659\) −33.4204 −1.30187 −0.650937 0.759131i \(-0.725624\pi\)
−0.650937 + 0.759131i \(0.725624\pi\)
\(660\) 0 0
\(661\) −19.4883 −0.758006 −0.379003 0.925396i \(-0.623733\pi\)
−0.379003 + 0.925396i \(0.623733\pi\)
\(662\) 25.4047 0.987382
\(663\) −23.7800 −0.923539
\(664\) −44.6015 −1.73087
\(665\) 0 0
\(666\) 3.03817 0.117727
\(667\) −3.56833 −0.138166
\(668\) −1.94743 −0.0753485
\(669\) 41.7119 1.61268
\(670\) 0 0
\(671\) −5.10331 −0.197011
\(672\) −12.6794 −0.489118
\(673\) 0.747456 0.0288123 0.0144062 0.999896i \(-0.495414\pi\)
0.0144062 + 0.999896i \(0.495414\pi\)
\(674\) 2.62360 0.101057
\(675\) 0 0
\(676\) −9.27792 −0.356843
\(677\) −25.0275 −0.961885 −0.480942 0.876752i \(-0.659705\pi\)
−0.480942 + 0.876752i \(0.659705\pi\)
\(678\) −1.10894 −0.0425886
\(679\) −11.7827 −0.452179
\(680\) 0 0
\(681\) 27.7742 1.06431
\(682\) −22.5577 −0.863777
\(683\) 36.7253 1.40525 0.702627 0.711558i \(-0.252010\pi\)
0.702627 + 0.711558i \(0.252010\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 3.11399 0.118893
\(687\) −24.1471 −0.921270
\(688\) 8.25122 0.314575
\(689\) 84.3366 3.21297
\(690\) 0 0
\(691\) −21.3177 −0.810963 −0.405482 0.914103i \(-0.632896\pi\)
−0.405482 + 0.914103i \(0.632896\pi\)
\(692\) −6.49411 −0.246869
\(693\) −2.65109 −0.100707
\(694\) 13.3772 0.507792
\(695\) 0 0
\(696\) −3.25547 −0.123398
\(697\) −4.53981 −0.171958
\(698\) −21.0267 −0.795872
\(699\) 14.7184 0.556699
\(700\) 0 0
\(701\) 27.1161 1.02416 0.512081 0.858937i \(-0.328875\pi\)
0.512081 + 0.858937i \(0.328875\pi\)
\(702\) −42.2223 −1.59358
\(703\) 0 0
\(704\) 23.5577 0.887862
\(705\) 0 0
\(706\) −20.2370 −0.761631
\(707\) 61.3502 2.30731
\(708\) −4.88894 −0.183738
\(709\) −10.1161 −0.379918 −0.189959 0.981792i \(-0.560836\pi\)
−0.189959 + 0.981792i \(0.560836\pi\)
\(710\) 0 0
\(711\) −4.15215 −0.155718
\(712\) 15.3452 0.575085
\(713\) 36.6065 1.37092
\(714\) −18.0382 −0.675062
\(715\) 0 0
\(716\) 4.03605 0.150834
\(717\) −40.6193 −1.51696
\(718\) −1.63537 −0.0610316
\(719\) 24.1471 0.900535 0.450268 0.892894i \(-0.351329\pi\)
0.450268 + 0.892894i \(0.351329\pi\)
\(720\) 0 0
\(721\) 35.9914 1.34039
\(722\) 0 0
\(723\) 24.1308 0.897434
\(724\) −6.32646 −0.235121
\(725\) 0 0
\(726\) 8.35373 0.310036
\(727\) −19.8988 −0.738006 −0.369003 0.929428i \(-0.620301\pi\)
−0.369003 + 0.929428i \(0.620301\pi\)
\(728\) −67.7947 −2.51264
\(729\) 28.9944 1.07387
\(730\) 0 0
\(731\) −6.24537 −0.230994
\(732\) 1.19887 0.0443117
\(733\) 19.9455 0.736705 0.368352 0.929686i \(-0.379922\pi\)
0.368352 + 0.929686i \(0.379922\pi\)
\(734\) 25.3254 0.934779
\(735\) 0 0
\(736\) −11.5272 −0.424900
\(737\) 11.7827 0.434021
\(738\) −0.674344 −0.0248229
\(739\) −38.2624 −1.40751 −0.703753 0.710445i \(-0.748494\pi\)
−0.703753 + 0.710445i \(0.748494\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 63.9730 2.34852
\(743\) 12.5547 0.460588 0.230294 0.973121i \(-0.426031\pi\)
0.230294 + 0.973121i \(0.426031\pi\)
\(744\) 33.3969 1.22439
\(745\) 0 0
\(746\) −20.9376 −0.766579
\(747\) 4.03392 0.147594
\(748\) −2.34891 −0.0858845
\(749\) 18.7643 0.685632
\(750\) 0 0
\(751\) −23.2215 −0.847366 −0.423683 0.905810i \(-0.639263\pi\)
−0.423683 + 0.905810i \(0.639263\pi\)
\(752\) −11.5392 −0.420792
\(753\) −22.0227 −0.802551
\(754\) −5.08569 −0.185210
\(755\) 0 0
\(756\) 7.44447 0.270753
\(757\) 18.4105 0.669143 0.334571 0.942370i \(-0.391408\pi\)
0.334571 + 0.942370i \(0.391408\pi\)
\(758\) 0.430872 0.0156500
\(759\) 23.9893 0.870757
\(760\) 0 0
\(761\) 11.7982 0.427684 0.213842 0.976868i \(-0.431402\pi\)
0.213842 + 0.976868i \(0.431402\pi\)
\(762\) −24.8647 −0.900752
\(763\) −51.0197 −1.84704
\(764\) 5.22797 0.189141
\(765\) 0 0
\(766\) −17.4954 −0.632136
\(767\) −48.1329 −1.73798
\(768\) −14.3820 −0.518967
\(769\) 41.2653 1.48807 0.744033 0.668143i \(-0.232910\pi\)
0.744033 + 0.668143i \(0.232910\pi\)
\(770\) 0 0
\(771\) 5.53286 0.199261
\(772\) 7.94743 0.286034
\(773\) −5.51736 −0.198446 −0.0992229 0.995065i \(-0.531636\pi\)
−0.0992229 + 0.995065i \(0.531636\pi\)
\(774\) −0.927688 −0.0333451
\(775\) 0 0
\(776\) −9.77283 −0.350824
\(777\) 52.4925 1.88316
\(778\) 2.88039 0.103267
\(779\) 0 0
\(780\) 0 0
\(781\) −9.40550 −0.336555
\(782\) −16.3991 −0.586430
\(783\) 3.51948 0.125776
\(784\) −19.6455 −0.701624
\(785\) 0 0
\(786\) −17.0870 −0.609474
\(787\) −16.7771 −0.598038 −0.299019 0.954247i \(-0.596659\pi\)
−0.299019 + 0.954247i \(0.596659\pi\)
\(788\) −8.01762 −0.285616
\(789\) 17.9738 0.639885
\(790\) 0 0
\(791\) 1.92498 0.0684446
\(792\) −2.19887 −0.0781336
\(793\) 11.8032 0.419146
\(794\) 9.97383 0.353958
\(795\) 0 0
\(796\) 2.90071 0.102813
\(797\) 29.4260 1.04232 0.521162 0.853458i \(-0.325499\pi\)
0.521162 + 0.853458i \(0.325499\pi\)
\(798\) 0 0
\(799\) 8.73408 0.308989
\(800\) 0 0
\(801\) −1.38788 −0.0490382
\(802\) −44.6511 −1.57668
\(803\) −6.57608 −0.232065
\(804\) −2.76800 −0.0976199
\(805\) 0 0
\(806\) 52.1727 1.83771
\(807\) −30.4359 −1.07140
\(808\) 50.8852 1.79014
\(809\) 5.48614 0.192883 0.0964413 0.995339i \(-0.469254\pi\)
0.0964413 + 0.995339i \(0.469254\pi\)
\(810\) 0 0
\(811\) −16.3927 −0.575626 −0.287813 0.957687i \(-0.592928\pi\)
−0.287813 + 0.957687i \(0.592928\pi\)
\(812\) 0.896688 0.0314676
\(813\) −33.6949 −1.18173
\(814\) −29.4076 −1.03074
\(815\) 0 0
\(816\) −12.0355 −0.421326
\(817\) 0 0
\(818\) −10.6346 −0.371829
\(819\) 6.13161 0.214256
\(820\) 0 0
\(821\) 15.1628 0.529186 0.264593 0.964360i \(-0.414762\pi\)
0.264593 + 0.964360i \(0.414762\pi\)
\(822\) −36.9680 −1.28941
\(823\) 16.6094 0.578968 0.289484 0.957183i \(-0.406516\pi\)
0.289484 + 0.957183i \(0.406516\pi\)
\(824\) 29.8521 1.03995
\(825\) 0 0
\(826\) −36.5109 −1.27038
\(827\) −15.2293 −0.529574 −0.264787 0.964307i \(-0.585302\pi\)
−0.264787 + 0.964307i \(0.585302\pi\)
\(828\) 0.566205 0.0196770
\(829\) −47.4565 −1.64823 −0.824116 0.566422i \(-0.808327\pi\)
−0.824116 + 0.566422i \(0.808327\pi\)
\(830\) 0 0
\(831\) −4.45785 −0.154641
\(832\) −54.4856 −1.88895
\(833\) 14.8697 0.515205
\(834\) −38.7333 −1.34122
\(835\) 0 0
\(836\) 0 0
\(837\) −36.1054 −1.24799
\(838\) 25.3129 0.874418
\(839\) −2.26614 −0.0782359 −0.0391179 0.999235i \(-0.512455\pi\)
−0.0391179 + 0.999235i \(0.512455\pi\)
\(840\) 0 0
\(841\) −28.5761 −0.985382
\(842\) −0.510413 −0.0175900
\(843\) 25.1367 0.865752
\(844\) −0.640420 −0.0220442
\(845\) 0 0
\(846\) 1.29736 0.0446042
\(847\) −14.5011 −0.498262
\(848\) 42.6842 1.46578
\(849\) 10.2045 0.350218
\(850\) 0 0
\(851\) 47.7226 1.63591
\(852\) 2.20955 0.0756979
\(853\) 51.8753 1.77618 0.888089 0.459672i \(-0.152033\pi\)
0.888089 + 0.459672i \(0.152033\pi\)
\(854\) 8.95328 0.306375
\(855\) 0 0
\(856\) 15.5635 0.531949
\(857\) 6.17058 0.210783 0.105391 0.994431i \(-0.466390\pi\)
0.105391 + 0.994431i \(0.466390\pi\)
\(858\) 34.1903 1.16724
\(859\) −31.0635 −1.05987 −0.529937 0.848037i \(-0.677785\pi\)
−0.529937 + 0.848037i \(0.677785\pi\)
\(860\) 0 0
\(861\) −11.6511 −0.397068
\(862\) −18.1572 −0.618437
\(863\) 3.24772 0.110554 0.0552768 0.998471i \(-0.482396\pi\)
0.0552768 + 0.998471i \(0.482396\pi\)
\(864\) 11.3695 0.386797
\(865\) 0 0
\(866\) 16.3559 0.555795
\(867\) −18.9589 −0.643878
\(868\) −9.19887 −0.312230
\(869\) 40.1903 1.36336
\(870\) 0 0
\(871\) −27.2517 −0.923390
\(872\) −42.3169 −1.43303
\(873\) 0.883892 0.0299152
\(874\) 0 0
\(875\) 0 0
\(876\) 1.54486 0.0521959
\(877\) 41.7042 1.40825 0.704125 0.710076i \(-0.251339\pi\)
0.704125 + 0.710076i \(0.251339\pi\)
\(878\) −16.8860 −0.569875
\(879\) −50.6708 −1.70908
\(880\) 0 0
\(881\) 7.42392 0.250118 0.125059 0.992149i \(-0.460088\pi\)
0.125059 + 0.992149i \(0.460088\pi\)
\(882\) 2.20875 0.0743724
\(883\) 32.0333 1.07801 0.539004 0.842303i \(-0.318801\pi\)
0.539004 + 0.842303i \(0.318801\pi\)
\(884\) 5.43269 0.182721
\(885\) 0 0
\(886\) −7.29444 −0.245061
\(887\) −20.0275 −0.672457 −0.336229 0.941780i \(-0.609152\pi\)
−0.336229 + 0.941780i \(0.609152\pi\)
\(888\) 43.5384 1.46105
\(889\) 43.1620 1.44761
\(890\) 0 0
\(891\) −21.4826 −0.719695
\(892\) −9.52936 −0.319066
\(893\) 0 0
\(894\) 36.3695 1.21638
\(895\) 0 0
\(896\) −25.9709 −0.867627
\(897\) −55.4840 −1.85256
\(898\) 3.96688 0.132376
\(899\) −4.34891 −0.145044
\(900\) 0 0
\(901\) −32.3078 −1.07633
\(902\) 6.52723 0.217333
\(903\) −16.0283 −0.533388
\(904\) 1.59662 0.0531029
\(905\) 0 0
\(906\) 5.43460 0.180552
\(907\) −4.94823 −0.164303 −0.0821517 0.996620i \(-0.526179\pi\)
−0.0821517 + 0.996620i \(0.526179\pi\)
\(908\) −6.34518 −0.210572
\(909\) −4.60225 −0.152647
\(910\) 0 0
\(911\) −32.3014 −1.07019 −0.535096 0.844791i \(-0.679725\pi\)
−0.535096 + 0.844791i \(0.679725\pi\)
\(912\) 0 0
\(913\) −39.0459 −1.29223
\(914\) −34.9728 −1.15680
\(915\) 0 0
\(916\) 5.51656 0.182272
\(917\) 29.6610 0.979491
\(918\) 16.1746 0.533841
\(919\) 21.3072 0.702861 0.351430 0.936214i \(-0.385695\pi\)
0.351430 + 0.936214i \(0.385695\pi\)
\(920\) 0 0
\(921\) 24.4076 0.804258
\(922\) −17.8137 −0.586663
\(923\) 21.7536 0.716029
\(924\) −6.02830 −0.198316
\(925\) 0 0
\(926\) −22.9290 −0.753494
\(927\) −2.69994 −0.0886775
\(928\) 1.36945 0.0449545
\(929\) 24.7848 0.813164 0.406582 0.913614i \(-0.366721\pi\)
0.406582 + 0.913614i \(0.366721\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −3.36250 −0.110142
\(933\) −44.5782 −1.45942
\(934\) −16.1620 −0.528838
\(935\) 0 0
\(936\) 5.08569 0.166231
\(937\) −32.3687 −1.05744 −0.528719 0.848797i \(-0.677327\pi\)
−0.528719 + 0.848797i \(0.677327\pi\)
\(938\) −20.6716 −0.674953
\(939\) −16.0926 −0.525163
\(940\) 0 0
\(941\) 1.48264 0.0483326 0.0241663 0.999708i \(-0.492307\pi\)
0.0241663 + 0.999708i \(0.492307\pi\)
\(942\) 23.0814 0.752032
\(943\) −10.5924 −0.344935
\(944\) −24.3609 −0.792880
\(945\) 0 0
\(946\) 8.97945 0.291947
\(947\) −8.86064 −0.287932 −0.143966 0.989583i \(-0.545986\pi\)
−0.143966 + 0.989583i \(0.545986\pi\)
\(948\) −9.44155 −0.306647
\(949\) 15.2095 0.493723
\(950\) 0 0
\(951\) −32.5696 −1.05614
\(952\) 25.9709 0.841722
\(953\) −10.1239 −0.327944 −0.163972 0.986465i \(-0.552431\pi\)
−0.163972 + 0.986465i \(0.552431\pi\)
\(954\) −4.79900 −0.155373
\(955\) 0 0
\(956\) 9.27974 0.300128
\(957\) −2.84997 −0.0921264
\(958\) −31.5344 −1.01883
\(959\) 64.1719 2.07222
\(960\) 0 0
\(961\) 13.6142 0.439169
\(962\) 68.0157 2.19291
\(963\) −1.40762 −0.0453600
\(964\) −5.51284 −0.177557
\(965\) 0 0
\(966\) −42.0870 −1.35413
\(967\) 41.8139 1.34465 0.672323 0.740258i \(-0.265297\pi\)
0.672323 + 0.740258i \(0.265297\pi\)
\(968\) −12.0275 −0.386578
\(969\) 0 0
\(970\) 0 0
\(971\) 5.53016 0.177471 0.0887356 0.996055i \(-0.471717\pi\)
0.0887356 + 0.996055i \(0.471717\pi\)
\(972\) −1.07019 −0.0343263
\(973\) 67.2362 2.15549
\(974\) −5.20100 −0.166651
\(975\) 0 0
\(976\) 5.97383 0.191218
\(977\) 31.9447 1.02200 0.511001 0.859580i \(-0.329275\pi\)
0.511001 + 0.859580i \(0.329275\pi\)
\(978\) −47.7018 −1.52534
\(979\) 13.4338 0.429346
\(980\) 0 0
\(981\) 3.82730 0.122196
\(982\) −37.2672 −1.18925
\(983\) −8.82862 −0.281589 −0.140795 0.990039i \(-0.544966\pi\)
−0.140795 + 0.990039i \(0.544966\pi\)
\(984\) −9.66367 −0.308067
\(985\) 0 0
\(986\) 1.94823 0.0620444
\(987\) 22.4154 0.713489
\(988\) 0 0
\(989\) −14.5718 −0.463357
\(990\) 0 0
\(991\) 43.7304 1.38914 0.694570 0.719425i \(-0.255595\pi\)
0.694570 + 0.719425i \(0.255595\pi\)
\(992\) −14.0488 −0.446051
\(993\) −32.9271 −1.04491
\(994\) 16.5011 0.523382
\(995\) 0 0
\(996\) 9.17270 0.290648
\(997\) −46.6738 −1.47817 −0.739086 0.673611i \(-0.764743\pi\)
−0.739086 + 0.673611i \(0.764743\pi\)
\(998\) −2.00403 −0.0634363
\(999\) −47.0694 −1.48921
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9025.2.a.y.1.2 3
5.4 even 2 9025.2.a.bc.1.2 3
19.18 odd 2 475.2.a.g.1.2 yes 3
57.56 even 2 4275.2.a.ba.1.2 3
76.75 even 2 7600.2.a.bh.1.3 3
95.18 even 4 475.2.b.b.324.3 6
95.37 even 4 475.2.b.b.324.4 6
95.94 odd 2 475.2.a.e.1.2 3
285.284 even 2 4275.2.a.bm.1.2 3
380.379 even 2 7600.2.a.cc.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
475.2.a.e.1.2 3 95.94 odd 2
475.2.a.g.1.2 yes 3 19.18 odd 2
475.2.b.b.324.3 6 95.18 even 4
475.2.b.b.324.4 6 95.37 even 4
4275.2.a.ba.1.2 3 57.56 even 2
4275.2.a.bm.1.2 3 285.284 even 2
7600.2.a.bh.1.3 3 76.75 even 2
7600.2.a.cc.1.1 3 380.379 even 2
9025.2.a.y.1.2 3 1.1 even 1 trivial
9025.2.a.bc.1.2 3 5.4 even 2