# Properties

 Label 9025.2.a.p.1.2 Level $9025$ Weight $2$ Character 9025.1 Self dual yes Analytic conductor $72.065$ Analytic rank $0$ Dimension $2$ CM discriminant -19 Inner twists $4$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$9025 = 5^{2} \cdot 19^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 9025.a (trivial)

## Newform invariants

 Self dual: yes Analytic conductor: $$72.0649878242$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{19})$$ Defining polynomial: $$x^{2} - 19$$ x^2 - 19 Coefficient ring: $$\Z[a_1, \ldots, a_{7}]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 1805) Fricke sign: $$-1$$ Sato-Tate group: $N(\mathrm{U}(1))$

## Embedding invariants

 Embedding label 1.2 Root $$-4.35890$$ of defining polynomial Character $$\chi$$ $$=$$ 9025.1

## $q$-expansion

 $$f(q)$$ $$=$$ $$q-2.00000 q^{4} +4.35890 q^{7} -3.00000 q^{9} +O(q^{10})$$ $$q-2.00000 q^{4} +4.35890 q^{7} -3.00000 q^{9} +5.00000 q^{11} +4.00000 q^{16} +4.35890 q^{17} +8.71780 q^{23} -8.71780 q^{28} +6.00000 q^{36} +13.0767 q^{43} -10.0000 q^{44} +4.35890 q^{47} +12.0000 q^{49} -15.0000 q^{61} -13.0767 q^{63} -8.00000 q^{64} -8.71780 q^{68} +13.0767 q^{73} +21.7945 q^{77} +9.00000 q^{81} -8.71780 q^{83} -17.4356 q^{92} -15.0000 q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2 q - 4 q^{4} - 6 q^{9}+O(q^{10})$$ 2 * q - 4 * q^4 - 6 * q^9 $$2 q - 4 q^{4} - 6 q^{9} + 10 q^{11} + 8 q^{16} + 12 q^{36} - 20 q^{44} + 24 q^{49} - 30 q^{61} - 16 q^{64} + 18 q^{81} - 30 q^{99}+O(q^{100})$$ 2 * q - 4 * q^4 - 6 * q^9 + 10 * q^11 + 8 * q^16 + 12 * q^36 - 20 * q^44 + 24 * q^49 - 30 * q^61 - 16 * q^64 + 18 * q^81 - 30 * q^99

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$3$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$4$$ −2.00000 −1.00000
$$5$$ 0 0
$$6$$ 0 0
$$7$$ 4.35890 1.64751 0.823754 0.566947i $$-0.191875\pi$$
0.823754 + 0.566947i $$0.191875\pi$$
$$8$$ 0 0
$$9$$ −3.00000 −1.00000
$$10$$ 0 0
$$11$$ 5.00000 1.50756 0.753778 0.657129i $$-0.228229\pi$$
0.753778 + 0.657129i $$0.228229\pi$$
$$12$$ 0 0
$$13$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$14$$ 0 0
$$15$$ 0 0
$$16$$ 4.00000 1.00000
$$17$$ 4.35890 1.05719 0.528594 0.848875i $$-0.322719\pi$$
0.528594 + 0.848875i $$0.322719\pi$$
$$18$$ 0 0
$$19$$ 0 0
$$20$$ 0 0
$$21$$ 0 0
$$22$$ 0 0
$$23$$ 8.71780 1.81779 0.908893 0.417029i $$-0.136929\pi$$
0.908893 + 0.417029i $$0.136929\pi$$
$$24$$ 0 0
$$25$$ 0 0
$$26$$ 0 0
$$27$$ 0 0
$$28$$ −8.71780 −1.64751
$$29$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$30$$ 0 0
$$31$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$32$$ 0 0
$$33$$ 0 0
$$34$$ 0 0
$$35$$ 0 0
$$36$$ 6.00000 1.00000
$$37$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$38$$ 0 0
$$39$$ 0 0
$$40$$ 0 0
$$41$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$42$$ 0 0
$$43$$ 13.0767 1.99418 0.997089 0.0762493i $$-0.0242945\pi$$
0.997089 + 0.0762493i $$0.0242945\pi$$
$$44$$ −10.0000 −1.50756
$$45$$ 0 0
$$46$$ 0 0
$$47$$ 4.35890 0.635811 0.317905 0.948122i $$-0.397021\pi$$
0.317905 + 0.948122i $$0.397021\pi$$
$$48$$ 0 0
$$49$$ 12.0000 1.71429
$$50$$ 0 0
$$51$$ 0 0
$$52$$ 0 0
$$53$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$54$$ 0 0
$$55$$ 0 0
$$56$$ 0 0
$$57$$ 0 0
$$58$$ 0 0
$$59$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$60$$ 0 0
$$61$$ −15.0000 −1.92055 −0.960277 0.279050i $$-0.909981\pi$$
−0.960277 + 0.279050i $$0.909981\pi$$
$$62$$ 0 0
$$63$$ −13.0767 −1.64751
$$64$$ −8.00000 −1.00000
$$65$$ 0 0
$$66$$ 0 0
$$67$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$68$$ −8.71780 −1.05719
$$69$$ 0 0
$$70$$ 0 0
$$71$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$72$$ 0 0
$$73$$ 13.0767 1.53051 0.765256 0.643726i $$-0.222612\pi$$
0.765256 + 0.643726i $$0.222612\pi$$
$$74$$ 0 0
$$75$$ 0 0
$$76$$ 0 0
$$77$$ 21.7945 2.48371
$$78$$ 0 0
$$79$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$80$$ 0 0
$$81$$ 9.00000 1.00000
$$82$$ 0 0
$$83$$ −8.71780 −0.956903 −0.478451 0.878114i $$-0.658802\pi$$
−0.478451 + 0.878114i $$0.658802\pi$$
$$84$$ 0 0
$$85$$ 0 0
$$86$$ 0 0
$$87$$ 0 0
$$88$$ 0 0
$$89$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$90$$ 0 0
$$91$$ 0 0
$$92$$ −17.4356 −1.81779
$$93$$ 0 0
$$94$$ 0 0
$$95$$ 0 0
$$96$$ 0 0
$$97$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$98$$ 0 0
$$99$$ −15.0000 −1.50756
$$100$$ 0 0
$$101$$ −10.0000 −0.995037 −0.497519 0.867453i $$-0.665755\pi$$
−0.497519 + 0.867453i $$0.665755\pi$$
$$102$$ 0 0
$$103$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$104$$ 0 0
$$105$$ 0 0
$$106$$ 0 0
$$107$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$108$$ 0 0
$$109$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$110$$ 0 0
$$111$$ 0 0
$$112$$ 17.4356 1.64751
$$113$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$114$$ 0 0
$$115$$ 0 0
$$116$$ 0 0
$$117$$ 0 0
$$118$$ 0 0
$$119$$ 19.0000 1.74173
$$120$$ 0 0
$$121$$ 14.0000 1.27273
$$122$$ 0 0
$$123$$ 0 0
$$124$$ 0 0
$$125$$ 0 0
$$126$$ 0 0
$$127$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$128$$ 0 0
$$129$$ 0 0
$$130$$ 0 0
$$131$$ −7.00000 −0.611593 −0.305796 0.952097i $$-0.598923\pi$$
−0.305796 + 0.952097i $$0.598923\pi$$
$$132$$ 0 0
$$133$$ 0 0
$$134$$ 0 0
$$135$$ 0 0
$$136$$ 0 0
$$137$$ −4.35890 −0.372406 −0.186203 0.982511i $$-0.559618\pi$$
−0.186203 + 0.982511i $$0.559618\pi$$
$$138$$ 0 0
$$139$$ −9.00000 −0.763370 −0.381685 0.924292i $$-0.624656\pi$$
−0.381685 + 0.924292i $$0.624656\pi$$
$$140$$ 0 0
$$141$$ 0 0
$$142$$ 0 0
$$143$$ 0 0
$$144$$ −12.0000 −1.00000
$$145$$ 0 0
$$146$$ 0 0
$$147$$ 0 0
$$148$$ 0 0
$$149$$ −11.0000 −0.901155 −0.450578 0.892737i $$-0.648782\pi$$
−0.450578 + 0.892737i $$0.648782\pi$$
$$150$$ 0 0
$$151$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$152$$ 0 0
$$153$$ −13.0767 −1.05719
$$154$$ 0 0
$$155$$ 0 0
$$156$$ 0 0
$$157$$ −17.4356 −1.39151 −0.695756 0.718278i $$-0.744931\pi$$
−0.695756 + 0.718278i $$0.744931\pi$$
$$158$$ 0 0
$$159$$ 0 0
$$160$$ 0 0
$$161$$ 38.0000 2.99482
$$162$$ 0 0
$$163$$ 8.71780 0.682831 0.341415 0.939913i $$-0.389094\pi$$
0.341415 + 0.939913i $$0.389094\pi$$
$$164$$ 0 0
$$165$$ 0 0
$$166$$ 0 0
$$167$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$168$$ 0 0
$$169$$ −13.0000 −1.00000
$$170$$ 0 0
$$171$$ 0 0
$$172$$ −26.1534 −1.99418
$$173$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$174$$ 0 0
$$175$$ 0 0
$$176$$ 20.0000 1.50756
$$177$$ 0 0
$$178$$ 0 0
$$179$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$180$$ 0 0
$$181$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$182$$ 0 0
$$183$$ 0 0
$$184$$ 0 0
$$185$$ 0 0
$$186$$ 0 0
$$187$$ 21.7945 1.59377
$$188$$ −8.71780 −0.635811
$$189$$ 0 0
$$190$$ 0 0
$$191$$ −17.0000 −1.23008 −0.615038 0.788497i $$-0.710860\pi$$
−0.615038 + 0.788497i $$0.710860\pi$$
$$192$$ 0 0
$$193$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$194$$ 0 0
$$195$$ 0 0
$$196$$ −24.0000 −1.71429
$$197$$ 17.4356 1.24223 0.621117 0.783718i $$-0.286679\pi$$
0.621117 + 0.783718i $$0.286679\pi$$
$$198$$ 0 0
$$199$$ 25.0000 1.77220 0.886102 0.463491i $$-0.153403\pi$$
0.886102 + 0.463491i $$0.153403\pi$$
$$200$$ 0 0
$$201$$ 0 0
$$202$$ 0 0
$$203$$ 0 0
$$204$$ 0 0
$$205$$ 0 0
$$206$$ 0 0
$$207$$ −26.1534 −1.81779
$$208$$ 0 0
$$209$$ 0 0
$$210$$ 0 0
$$211$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$212$$ 0 0
$$213$$ 0 0
$$214$$ 0 0
$$215$$ 0 0
$$216$$ 0 0
$$217$$ 0 0
$$218$$ 0 0
$$219$$ 0 0
$$220$$ 0 0
$$221$$ 0 0
$$222$$ 0 0
$$223$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$224$$ 0 0
$$225$$ 0 0
$$226$$ 0 0
$$227$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$228$$ 0 0
$$229$$ 21.0000 1.38772 0.693860 0.720110i $$-0.255909\pi$$
0.693860 + 0.720110i $$0.255909\pi$$
$$230$$ 0 0
$$231$$ 0 0
$$232$$ 0 0
$$233$$ −30.5123 −1.99893 −0.999463 0.0327561i $$-0.989572\pi$$
−0.999463 + 0.0327561i $$0.989572\pi$$
$$234$$ 0 0
$$235$$ 0 0
$$236$$ 0 0
$$237$$ 0 0
$$238$$ 0 0
$$239$$ 5.00000 0.323423 0.161712 0.986838i $$-0.448299\pi$$
0.161712 + 0.986838i $$0.448299\pi$$
$$240$$ 0 0
$$241$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$242$$ 0 0
$$243$$ 0 0
$$244$$ 30.0000 1.92055
$$245$$ 0 0
$$246$$ 0 0
$$247$$ 0 0
$$248$$ 0 0
$$249$$ 0 0
$$250$$ 0 0
$$251$$ −23.0000 −1.45175 −0.725874 0.687828i $$-0.758564\pi$$
−0.725874 + 0.687828i $$0.758564\pi$$
$$252$$ 26.1534 1.64751
$$253$$ 43.5890 2.74042
$$254$$ 0 0
$$255$$ 0 0
$$256$$ 16.0000 1.00000
$$257$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$258$$ 0 0
$$259$$ 0 0
$$260$$ 0 0
$$261$$ 0 0
$$262$$ 0 0
$$263$$ −30.5123 −1.88147 −0.940734 0.339145i $$-0.889862\pi$$
−0.940734 + 0.339145i $$0.889862\pi$$
$$264$$ 0 0
$$265$$ 0 0
$$266$$ 0 0
$$267$$ 0 0
$$268$$ 0 0
$$269$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$270$$ 0 0
$$271$$ 20.0000 1.21491 0.607457 0.794353i $$-0.292190\pi$$
0.607457 + 0.794353i $$0.292190\pi$$
$$272$$ 17.4356 1.05719
$$273$$ 0 0
$$274$$ 0 0
$$275$$ 0 0
$$276$$ 0 0
$$277$$ 4.35890 0.261901 0.130950 0.991389i $$-0.458197\pi$$
0.130950 + 0.991389i $$0.458197\pi$$
$$278$$ 0 0
$$279$$ 0 0
$$280$$ 0 0
$$281$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$282$$ 0 0
$$283$$ −13.0767 −0.777329 −0.388664 0.921379i $$-0.627063\pi$$
−0.388664 + 0.921379i $$0.627063\pi$$
$$284$$ 0 0
$$285$$ 0 0
$$286$$ 0 0
$$287$$ 0 0
$$288$$ 0 0
$$289$$ 2.00000 0.117647
$$290$$ 0 0
$$291$$ 0 0
$$292$$ −26.1534 −1.53051
$$293$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$294$$ 0 0
$$295$$ 0 0
$$296$$ 0 0
$$297$$ 0 0
$$298$$ 0 0
$$299$$ 0 0
$$300$$ 0 0
$$301$$ 57.0000 3.28543
$$302$$ 0 0
$$303$$ 0 0
$$304$$ 0 0
$$305$$ 0 0
$$306$$ 0 0
$$307$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$308$$ −43.5890 −2.48371
$$309$$ 0 0
$$310$$ 0 0
$$311$$ 35.0000 1.98467 0.992334 0.123585i $$-0.0394392\pi$$
0.992334 + 0.123585i $$0.0394392\pi$$
$$312$$ 0 0
$$313$$ 34.8712 1.97104 0.985518 0.169570i $$-0.0542379\pi$$
0.985518 + 0.169570i $$0.0542379\pi$$
$$314$$ 0 0
$$315$$ 0 0
$$316$$ 0 0
$$317$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$318$$ 0 0
$$319$$ 0 0
$$320$$ 0 0
$$321$$ 0 0
$$322$$ 0 0
$$323$$ 0 0
$$324$$ −18.0000 −1.00000
$$325$$ 0 0
$$326$$ 0 0
$$327$$ 0 0
$$328$$ 0 0
$$329$$ 19.0000 1.04750
$$330$$ 0 0
$$331$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$332$$ 17.4356 0.956903
$$333$$ 0 0
$$334$$ 0 0
$$335$$ 0 0
$$336$$ 0 0
$$337$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$338$$ 0 0
$$339$$ 0 0
$$340$$ 0 0
$$341$$ 0 0
$$342$$ 0 0
$$343$$ 21.7945 1.17679
$$344$$ 0 0
$$345$$ 0 0
$$346$$ 0 0
$$347$$ −4.35890 −0.233998 −0.116999 0.993132i $$-0.537327\pi$$
−0.116999 + 0.993132i $$0.537327\pi$$
$$348$$ 0 0
$$349$$ 35.0000 1.87351 0.936754 0.349990i $$-0.113815\pi$$
0.936754 + 0.349990i $$0.113815\pi$$
$$350$$ 0 0
$$351$$ 0 0
$$352$$ 0 0
$$353$$ 34.8712 1.85601 0.928003 0.372572i $$-0.121524\pi$$
0.928003 + 0.372572i $$0.121524\pi$$
$$354$$ 0 0
$$355$$ 0 0
$$356$$ 0 0
$$357$$ 0 0
$$358$$ 0 0
$$359$$ 31.0000 1.63612 0.818059 0.575135i $$-0.195050\pi$$
0.818059 + 0.575135i $$0.195050\pi$$
$$360$$ 0 0
$$361$$ 0 0
$$362$$ 0 0
$$363$$ 0 0
$$364$$ 0 0
$$365$$ 0 0
$$366$$ 0 0
$$367$$ −26.1534 −1.36520 −0.682598 0.730794i $$-0.739150\pi$$
−0.682598 + 0.730794i $$0.739150\pi$$
$$368$$ 34.8712 1.81779
$$369$$ 0 0
$$370$$ 0 0
$$371$$ 0 0
$$372$$ 0 0
$$373$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$374$$ 0 0
$$375$$ 0 0
$$376$$ 0 0
$$377$$ 0 0
$$378$$ 0 0
$$379$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$380$$ 0 0
$$381$$ 0 0
$$382$$ 0 0
$$383$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$384$$ 0 0
$$385$$ 0 0
$$386$$ 0 0
$$387$$ −39.2301 −1.99418
$$388$$ 0 0
$$389$$ 25.0000 1.26755 0.633775 0.773517i $$-0.281504\pi$$
0.633775 + 0.773517i $$0.281504\pi$$
$$390$$ 0 0
$$391$$ 38.0000 1.92174
$$392$$ 0 0
$$393$$ 0 0
$$394$$ 0 0
$$395$$ 0 0
$$396$$ 30.0000 1.50756
$$397$$ −39.2301 −1.96890 −0.984451 0.175660i $$-0.943794\pi$$
−0.984451 + 0.175660i $$0.943794\pi$$
$$398$$ 0 0
$$399$$ 0 0
$$400$$ 0 0
$$401$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$402$$ 0 0
$$403$$ 0 0
$$404$$ 20.0000 0.995037
$$405$$ 0 0
$$406$$ 0 0
$$407$$ 0 0
$$408$$ 0 0
$$409$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$410$$ 0 0
$$411$$ 0 0
$$412$$ 0 0
$$413$$ 0 0
$$414$$ 0 0
$$415$$ 0 0
$$416$$ 0 0
$$417$$ 0 0
$$418$$ 0 0
$$419$$ −40.0000 −1.95413 −0.977064 0.212946i $$-0.931694\pi$$
−0.977064 + 0.212946i $$0.931694\pi$$
$$420$$ 0 0
$$421$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$422$$ 0 0
$$423$$ −13.0767 −0.635811
$$424$$ 0 0
$$425$$ 0 0
$$426$$ 0 0
$$427$$ −65.3835 −3.16413
$$428$$ 0 0
$$429$$ 0 0
$$430$$ 0 0
$$431$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$432$$ 0 0
$$433$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$434$$ 0 0
$$435$$ 0 0
$$436$$ 0 0
$$437$$ 0 0
$$438$$ 0 0
$$439$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$440$$ 0 0
$$441$$ −36.0000 −1.71429
$$442$$ 0 0
$$443$$ −30.5123 −1.44968 −0.724841 0.688916i $$-0.758087\pi$$
−0.724841 + 0.688916i $$0.758087\pi$$
$$444$$ 0 0
$$445$$ 0 0
$$446$$ 0 0
$$447$$ 0 0
$$448$$ −34.8712 −1.64751
$$449$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$450$$ 0 0
$$451$$ 0 0
$$452$$ 0 0
$$453$$ 0 0
$$454$$ 0 0
$$455$$ 0 0
$$456$$ 0 0
$$457$$ −39.2301 −1.83511 −0.917553 0.397613i $$-0.869839\pi$$
−0.917553 + 0.397613i $$0.869839\pi$$
$$458$$ 0 0
$$459$$ 0 0
$$460$$ 0 0
$$461$$ 37.0000 1.72326 0.861631 0.507535i $$-0.169443\pi$$
0.861631 + 0.507535i $$0.169443\pi$$
$$462$$ 0 0
$$463$$ −13.0767 −0.607726 −0.303863 0.952716i $$-0.598276\pi$$
−0.303863 + 0.952716i $$0.598276\pi$$
$$464$$ 0 0
$$465$$ 0 0
$$466$$ 0 0
$$467$$ −4.35890 −0.201706 −0.100853 0.994901i $$-0.532157\pi$$
−0.100853 + 0.994901i $$0.532157\pi$$
$$468$$ 0 0
$$469$$ 0 0
$$470$$ 0 0
$$471$$ 0 0
$$472$$ 0 0
$$473$$ 65.3835 3.00634
$$474$$ 0 0
$$475$$ 0 0
$$476$$ −38.0000 −1.74173
$$477$$ 0 0
$$478$$ 0 0
$$479$$ −4.00000 −0.182765 −0.0913823 0.995816i $$-0.529129\pi$$
−0.0913823 + 0.995816i $$0.529129\pi$$
$$480$$ 0 0
$$481$$ 0 0
$$482$$ 0 0
$$483$$ 0 0
$$484$$ −28.0000 −1.27273
$$485$$ 0 0
$$486$$ 0 0
$$487$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$488$$ 0 0
$$489$$ 0 0
$$490$$ 0 0
$$491$$ 8.00000 0.361035 0.180517 0.983572i $$-0.442223\pi$$
0.180517 + 0.983572i $$0.442223\pi$$
$$492$$ 0 0
$$493$$ 0 0
$$494$$ 0 0
$$495$$ 0 0
$$496$$ 0 0
$$497$$ 0 0
$$498$$ 0 0
$$499$$ −39.0000 −1.74588 −0.872940 0.487828i $$-0.837789\pi$$
−0.872940 + 0.487828i $$0.837789\pi$$
$$500$$ 0 0
$$501$$ 0 0
$$502$$ 0 0
$$503$$ 8.71780 0.388707 0.194354 0.980932i $$-0.437739\pi$$
0.194354 + 0.980932i $$0.437739\pi$$
$$504$$ 0 0
$$505$$ 0 0
$$506$$ 0 0
$$507$$ 0 0
$$508$$ 0 0
$$509$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$510$$ 0 0
$$511$$ 57.0000 2.52153
$$512$$ 0 0
$$513$$ 0 0
$$514$$ 0 0
$$515$$ 0 0
$$516$$ 0 0
$$517$$ 21.7945 0.958521
$$518$$ 0 0
$$519$$ 0 0
$$520$$ 0 0
$$521$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$522$$ 0 0
$$523$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$524$$ 14.0000 0.611593
$$525$$ 0 0
$$526$$ 0 0
$$527$$ 0 0
$$528$$ 0 0
$$529$$ 53.0000 2.30435
$$530$$ 0 0
$$531$$ 0 0
$$532$$ 0 0
$$533$$ 0 0
$$534$$ 0 0
$$535$$ 0 0
$$536$$ 0 0
$$537$$ 0 0
$$538$$ 0 0
$$539$$ 60.0000 2.58438
$$540$$ 0 0
$$541$$ 25.0000 1.07483 0.537417 0.843317i $$-0.319400\pi$$
0.537417 + 0.843317i $$0.319400\pi$$
$$542$$ 0 0
$$543$$ 0 0
$$544$$ 0 0
$$545$$ 0 0
$$546$$ 0 0
$$547$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$548$$ 8.71780 0.372406
$$549$$ 45.0000 1.92055
$$550$$ 0 0
$$551$$ 0 0
$$552$$ 0 0
$$553$$ 0 0
$$554$$ 0 0
$$555$$ 0 0
$$556$$ 18.0000 0.763370
$$557$$ 4.35890 0.184692 0.0923462 0.995727i $$-0.470563\pi$$
0.0923462 + 0.995727i $$0.470563\pi$$
$$558$$ 0 0
$$559$$ 0 0
$$560$$ 0 0
$$561$$ 0 0
$$562$$ 0 0
$$563$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$564$$ 0 0
$$565$$ 0 0
$$566$$ 0 0
$$567$$ 39.2301 1.64751
$$568$$ 0 0
$$569$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$570$$ 0 0
$$571$$ −40.0000 −1.67395 −0.836974 0.547243i $$-0.815677\pi$$
−0.836974 + 0.547243i $$0.815677\pi$$
$$572$$ 0 0
$$573$$ 0 0
$$574$$ 0 0
$$575$$ 0 0
$$576$$ 24.0000 1.00000
$$577$$ 47.9479 1.99610 0.998048 0.0624458i $$-0.0198901\pi$$
0.998048 + 0.0624458i $$0.0198901\pi$$
$$578$$ 0 0
$$579$$ 0 0
$$580$$ 0 0
$$581$$ −38.0000 −1.57651
$$582$$ 0 0
$$583$$ 0 0
$$584$$ 0 0
$$585$$ 0 0
$$586$$ 0 0
$$587$$ 47.9479 1.97902 0.989511 0.144460i $$-0.0461446\pi$$
0.989511 + 0.144460i $$0.0461446\pi$$
$$588$$ 0 0
$$589$$ 0 0
$$590$$ 0 0
$$591$$ 0 0
$$592$$ 0 0
$$593$$ 34.8712 1.43199 0.715994 0.698106i $$-0.245974\pi$$
0.715994 + 0.698106i $$0.245974\pi$$
$$594$$ 0 0
$$595$$ 0 0
$$596$$ 22.0000 0.901155
$$597$$ 0 0
$$598$$ 0 0
$$599$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$600$$ 0 0
$$601$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$602$$ 0 0
$$603$$ 0 0
$$604$$ 0 0
$$605$$ 0 0
$$606$$ 0 0
$$607$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$608$$ 0 0
$$609$$ 0 0
$$610$$ 0 0
$$611$$ 0 0
$$612$$ 26.1534 1.05719
$$613$$ 30.5123 1.23238 0.616190 0.787598i $$-0.288675\pi$$
0.616190 + 0.787598i $$0.288675\pi$$
$$614$$ 0 0
$$615$$ 0 0
$$616$$ 0 0
$$617$$ 47.9479 1.93031 0.965155 0.261680i $$-0.0842766\pi$$
0.965155 + 0.261680i $$0.0842766\pi$$
$$618$$ 0 0
$$619$$ −24.0000 −0.964641 −0.482321 0.875995i $$-0.660206\pi$$
−0.482321 + 0.875995i $$0.660206\pi$$
$$620$$ 0 0
$$621$$ 0 0
$$622$$ 0 0
$$623$$ 0 0
$$624$$ 0 0
$$625$$ 0 0
$$626$$ 0 0
$$627$$ 0 0
$$628$$ 34.8712 1.39151
$$629$$ 0 0
$$630$$ 0 0
$$631$$ −15.0000 −0.597141 −0.298570 0.954388i $$-0.596510\pi$$
−0.298570 + 0.954388i $$0.596510\pi$$
$$632$$ 0 0
$$633$$ 0 0
$$634$$ 0 0
$$635$$ 0 0
$$636$$ 0 0
$$637$$ 0 0
$$638$$ 0 0
$$639$$ 0 0
$$640$$ 0 0
$$641$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$642$$ 0 0
$$643$$ −13.0767 −0.515695 −0.257847 0.966186i $$-0.583013\pi$$
−0.257847 + 0.966186i $$0.583013\pi$$
$$644$$ −76.0000 −2.99482
$$645$$ 0 0
$$646$$ 0 0
$$647$$ 47.9479 1.88503 0.942513 0.334169i $$-0.108456\pi$$
0.942513 + 0.334169i $$0.108456\pi$$
$$648$$ 0 0
$$649$$ 0 0
$$650$$ 0 0
$$651$$ 0 0
$$652$$ −17.4356 −0.682831
$$653$$ 30.5123 1.19404 0.597019 0.802227i $$-0.296352\pi$$
0.597019 + 0.802227i $$0.296352\pi$$
$$654$$ 0 0
$$655$$ 0 0
$$656$$ 0 0
$$657$$ −39.2301 −1.53051
$$658$$ 0 0
$$659$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$660$$ 0 0
$$661$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$662$$ 0 0
$$663$$ 0 0
$$664$$ 0 0
$$665$$ 0 0
$$666$$ 0 0
$$667$$ 0 0
$$668$$ 0 0
$$669$$ 0 0
$$670$$ 0 0
$$671$$ −75.0000 −2.89534
$$672$$ 0 0
$$673$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$674$$ 0 0
$$675$$ 0 0
$$676$$ 26.0000 1.00000
$$677$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$678$$ 0 0
$$679$$ 0 0
$$680$$ 0 0
$$681$$ 0 0
$$682$$ 0 0
$$683$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$684$$ 0 0
$$685$$ 0 0
$$686$$ 0 0
$$687$$ 0 0
$$688$$ 52.3068 1.99418
$$689$$ 0 0
$$690$$ 0 0
$$691$$ 35.0000 1.33146 0.665731 0.746191i $$-0.268120\pi$$
0.665731 + 0.746191i $$0.268120\pi$$
$$692$$ 0 0
$$693$$ −65.3835 −2.48371
$$694$$ 0 0
$$695$$ 0 0
$$696$$ 0 0
$$697$$ 0 0
$$698$$ 0 0
$$699$$ 0 0
$$700$$ 0 0
$$701$$ −50.0000 −1.88847 −0.944237 0.329267i $$-0.893198\pi$$
−0.944237 + 0.329267i $$0.893198\pi$$
$$702$$ 0 0
$$703$$ 0 0
$$704$$ −40.0000 −1.50756
$$705$$ 0 0
$$706$$ 0 0
$$707$$ −43.5890 −1.63933
$$708$$ 0 0
$$709$$ −10.0000 −0.375558 −0.187779 0.982211i $$-0.560129\pi$$
−0.187779 + 0.982211i $$0.560129\pi$$
$$710$$ 0 0
$$711$$ 0 0
$$712$$ 0 0
$$713$$ 0 0
$$714$$ 0 0
$$715$$ 0 0
$$716$$ 0 0
$$717$$ 0 0
$$718$$ 0 0
$$719$$ −49.0000 −1.82739 −0.913696 0.406399i $$-0.866784\pi$$
−0.913696 + 0.406399i $$0.866784\pi$$
$$720$$ 0 0
$$721$$ 0 0
$$722$$ 0 0
$$723$$ 0 0
$$724$$ 0 0
$$725$$ 0 0
$$726$$ 0 0
$$727$$ 39.2301 1.45496 0.727482 0.686127i $$-0.240691\pi$$
0.727482 + 0.686127i $$0.240691\pi$$
$$728$$ 0 0
$$729$$ −27.0000 −1.00000
$$730$$ 0 0
$$731$$ 57.0000 2.10822
$$732$$ 0 0
$$733$$ −52.3068 −1.93200 −0.965998 0.258551i $$-0.916755\pi$$
−0.965998 + 0.258551i $$0.916755\pi$$
$$734$$ 0 0
$$735$$ 0 0
$$736$$ 0 0
$$737$$ 0 0
$$738$$ 0 0
$$739$$ 45.0000 1.65535 0.827676 0.561206i $$-0.189663\pi$$
0.827676 + 0.561206i $$0.189663\pi$$
$$740$$ 0 0
$$741$$ 0 0
$$742$$ 0 0
$$743$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$744$$ 0 0
$$745$$ 0 0
$$746$$ 0 0
$$747$$ 26.1534 0.956903
$$748$$ −43.5890 −1.59377
$$749$$ 0 0
$$750$$ 0 0
$$751$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$752$$ 17.4356 0.635811
$$753$$ 0 0
$$754$$ 0 0
$$755$$ 0 0
$$756$$ 0 0
$$757$$ −47.9479 −1.74270 −0.871348 0.490666i $$-0.836754\pi$$
−0.871348 + 0.490666i $$0.836754\pi$$
$$758$$ 0 0
$$759$$ 0 0
$$760$$ 0 0
$$761$$ 55.0000 1.99375 0.996874 0.0790050i $$-0.0251743\pi$$
0.996874 + 0.0790050i $$0.0251743\pi$$
$$762$$ 0 0
$$763$$ 0 0
$$764$$ 34.0000 1.23008
$$765$$ 0 0
$$766$$ 0 0
$$767$$ 0 0
$$768$$ 0 0
$$769$$ 51.0000 1.83911 0.919554 0.392965i $$-0.128551\pi$$
0.919554 + 0.392965i $$0.128551\pi$$
$$770$$ 0 0
$$771$$ 0 0
$$772$$ 0 0
$$773$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$774$$ 0 0
$$775$$ 0 0
$$776$$ 0 0
$$777$$ 0 0
$$778$$ 0 0
$$779$$ 0 0
$$780$$ 0 0
$$781$$ 0 0
$$782$$ 0 0
$$783$$ 0 0
$$784$$ 48.0000 1.71429
$$785$$ 0 0
$$786$$ 0 0
$$787$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$788$$ −34.8712 −1.24223
$$789$$ 0 0
$$790$$ 0 0
$$791$$ 0 0
$$792$$ 0 0
$$793$$ 0 0
$$794$$ 0 0
$$795$$ 0 0
$$796$$ −50.0000 −1.77220
$$797$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$798$$ 0 0
$$799$$ 19.0000 0.672172
$$800$$ 0 0
$$801$$ 0 0
$$802$$ 0 0
$$803$$ 65.3835 2.30733
$$804$$ 0 0
$$805$$ 0 0
$$806$$ 0 0
$$807$$ 0 0
$$808$$ 0 0
$$809$$ 5.00000 0.175791 0.0878953 0.996130i $$-0.471986\pi$$
0.0878953 + 0.996130i $$0.471986\pi$$
$$810$$ 0 0
$$811$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$812$$ 0 0
$$813$$ 0 0
$$814$$ 0 0
$$815$$ 0 0
$$816$$ 0 0
$$817$$ 0 0
$$818$$ 0 0
$$819$$ 0 0
$$820$$ 0 0
$$821$$ 53.0000 1.84971 0.924856 0.380317i $$-0.124185\pi$$
0.924856 + 0.380317i $$0.124185\pi$$
$$822$$ 0 0
$$823$$ −56.6657 −1.97524 −0.987621 0.156860i $$-0.949863\pi$$
−0.987621 + 0.156860i $$0.949863\pi$$
$$824$$ 0 0
$$825$$ 0 0
$$826$$ 0 0
$$827$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$828$$ 52.3068 1.81779
$$829$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$830$$ 0 0
$$831$$ 0 0
$$832$$ 0 0
$$833$$ 52.3068 1.81232
$$834$$ 0 0
$$835$$ 0 0
$$836$$ 0 0
$$837$$ 0 0
$$838$$ 0 0
$$839$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$840$$ 0 0
$$841$$ −29.0000 −1.00000
$$842$$ 0 0
$$843$$ 0 0
$$844$$ 0 0
$$845$$ 0 0
$$846$$ 0 0
$$847$$ 61.0246 2.09683
$$848$$ 0 0
$$849$$ 0 0
$$850$$ 0 0
$$851$$ 0 0
$$852$$ 0 0
$$853$$ −52.3068 −1.79095 −0.895475 0.445112i $$-0.853164\pi$$
−0.895475 + 0.445112i $$0.853164\pi$$
$$854$$ 0 0
$$855$$ 0 0
$$856$$ 0 0
$$857$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$858$$ 0 0
$$859$$ −15.0000 −0.511793 −0.255897 0.966704i $$-0.582371\pi$$
−0.255897 + 0.966704i $$0.582371\pi$$
$$860$$ 0 0
$$861$$ 0 0
$$862$$ 0 0
$$863$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$864$$ 0 0
$$865$$ 0 0
$$866$$ 0 0
$$867$$ 0 0
$$868$$ 0 0
$$869$$ 0 0
$$870$$ 0 0
$$871$$ 0 0
$$872$$ 0 0
$$873$$ 0 0
$$874$$ 0 0
$$875$$ 0 0
$$876$$ 0 0
$$877$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$878$$ 0 0
$$879$$ 0 0
$$880$$ 0 0
$$881$$ 35.0000 1.17918 0.589590 0.807703i $$-0.299289\pi$$
0.589590 + 0.807703i $$0.299289\pi$$
$$882$$ 0 0
$$883$$ 30.5123 1.02682 0.513410 0.858143i $$-0.328382\pi$$
0.513410 + 0.858143i $$0.328382\pi$$
$$884$$ 0 0
$$885$$ 0 0
$$886$$ 0 0
$$887$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$888$$ 0 0
$$889$$ 0 0
$$890$$ 0 0
$$891$$ 45.0000 1.50756
$$892$$ 0 0
$$893$$ 0 0
$$894$$ 0 0
$$895$$ 0 0
$$896$$ 0 0
$$897$$ 0 0
$$898$$ 0 0
$$899$$ 0 0
$$900$$ 0 0
$$901$$ 0 0
$$902$$ 0 0
$$903$$ 0 0
$$904$$ 0 0
$$905$$ 0 0
$$906$$ 0 0
$$907$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$908$$ 0 0
$$909$$ 30.0000 0.995037
$$910$$ 0 0
$$911$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$912$$ 0 0
$$913$$ −43.5890 −1.44258
$$914$$ 0 0
$$915$$ 0 0
$$916$$ −42.0000 −1.38772
$$917$$ −30.5123 −1.00760
$$918$$ 0 0
$$919$$ −60.0000 −1.97922 −0.989609 0.143787i $$-0.954072\pi$$
−0.989609 + 0.143787i $$0.954072\pi$$
$$920$$ 0 0
$$921$$ 0 0
$$922$$ 0 0
$$923$$ 0 0
$$924$$ 0 0
$$925$$ 0 0
$$926$$ 0 0
$$927$$ 0 0
$$928$$ 0 0
$$929$$ −50.0000 −1.64045 −0.820223 0.572043i $$-0.806151\pi$$
−0.820223 + 0.572043i $$0.806151\pi$$
$$930$$ 0 0
$$931$$ 0 0
$$932$$ 61.0246 1.99893
$$933$$ 0 0
$$934$$ 0 0
$$935$$ 0 0
$$936$$ 0 0
$$937$$ −39.2301 −1.28159 −0.640796 0.767712i $$-0.721395\pi$$
−0.640796 + 0.767712i $$0.721395\pi$$
$$938$$ 0 0
$$939$$ 0 0
$$940$$ 0 0
$$941$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$942$$ 0 0
$$943$$ 0 0
$$944$$ 0 0
$$945$$ 0 0
$$946$$ 0 0
$$947$$ −61.0246 −1.98303 −0.991516 0.129983i $$-0.958508\pi$$
−0.991516 + 0.129983i $$0.958508\pi$$
$$948$$ 0 0
$$949$$ 0 0
$$950$$ 0 0
$$951$$ 0 0
$$952$$ 0 0
$$953$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$954$$ 0 0
$$955$$ 0 0
$$956$$ −10.0000 −0.323423
$$957$$ 0 0
$$958$$ 0 0
$$959$$ −19.0000 −0.613542
$$960$$ 0 0
$$961$$ −31.0000 −1.00000
$$962$$ 0 0
$$963$$ 0 0
$$964$$ 0 0
$$965$$ 0 0
$$966$$ 0 0
$$967$$ 61.0246 1.96242 0.981209 0.192947i $$-0.0618045\pi$$
0.981209 + 0.192947i $$0.0618045\pi$$
$$968$$ 0 0
$$969$$ 0 0
$$970$$ 0 0
$$971$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$972$$ 0 0
$$973$$ −39.2301 −1.25766
$$974$$ 0 0
$$975$$ 0 0
$$976$$ −60.0000 −1.92055
$$977$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$978$$ 0 0
$$979$$ 0 0
$$980$$ 0 0
$$981$$ 0 0
$$982$$ 0 0
$$983$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$984$$ 0 0
$$985$$ 0 0
$$986$$ 0 0
$$987$$ 0 0
$$988$$ 0 0
$$989$$ 114.000 3.62499
$$990$$ 0 0
$$991$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$992$$ 0 0
$$993$$ 0 0
$$994$$ 0 0
$$995$$ 0 0
$$996$$ 0 0
$$997$$ −4.35890 −0.138048 −0.0690239 0.997615i $$-0.521988\pi$$
−0.0690239 + 0.997615i $$0.521988\pi$$
$$998$$ 0 0
$$999$$ 0 0
Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000

## Twists

By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9025.2.a.p.1.2 2
5.2 odd 4 1805.2.b.d.1084.2 yes 2
5.3 odd 4 1805.2.b.d.1084.1 2
5.4 even 2 inner 9025.2.a.p.1.1 2
19.18 odd 2 CM 9025.2.a.p.1.2 2
95.18 even 4 1805.2.b.d.1084.1 2
95.37 even 4 1805.2.b.d.1084.2 yes 2
95.94 odd 2 inner 9025.2.a.p.1.1 2

By twisted newform
Twist Min Dim Char Parity Ord Type
1805.2.b.d.1084.1 2 5.3 odd 4
1805.2.b.d.1084.1 2 95.18 even 4
1805.2.b.d.1084.2 yes 2 5.2 odd 4
1805.2.b.d.1084.2 yes 2 95.37 even 4
9025.2.a.p.1.1 2 5.4 even 2 inner
9025.2.a.p.1.1 2 95.94 odd 2 inner
9025.2.a.p.1.2 2 1.1 even 1 trivial
9025.2.a.p.1.2 2 19.18 odd 2 CM