Properties

Label 9025.2.a.p.1.1
Level $9025$
Weight $2$
Character 9025.1
Self dual yes
Analytic conductor $72.065$
Analytic rank $0$
Dimension $2$
CM discriminant -19
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 9025 = 5^{2} \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9025.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(72.0649878242\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{19}) \)
Defining polynomial: \( x^{2} - 19 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1805)
Fricke sign: \(-1\)
Sato-Tate group: $N(\mathrm{U}(1))$

Embedding invariants

Embedding label 1.1
Root \(4.35890\) of defining polynomial
Character \(\chi\) \(=\) 9025.1

$q$-expansion

\(f(q)\) \(=\) \(q-2.00000 q^{4} -4.35890 q^{7} -3.00000 q^{9} +O(q^{10})\) \(q-2.00000 q^{4} -4.35890 q^{7} -3.00000 q^{9} +5.00000 q^{11} +4.00000 q^{16} -4.35890 q^{17} -8.71780 q^{23} +8.71780 q^{28} +6.00000 q^{36} -13.0767 q^{43} -10.0000 q^{44} -4.35890 q^{47} +12.0000 q^{49} -15.0000 q^{61} +13.0767 q^{63} -8.00000 q^{64} +8.71780 q^{68} -13.0767 q^{73} -21.7945 q^{77} +9.00000 q^{81} +8.71780 q^{83} +17.4356 q^{92} -15.0000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{4} - 6 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 4 q^{4} - 6 q^{9} + 10 q^{11} + 8 q^{16} + 12 q^{36} - 20 q^{44} + 24 q^{49} - 30 q^{61} - 16 q^{64} + 18 q^{81} - 30 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(3\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(4\) −2.00000 −1.00000
\(5\) 0 0
\(6\) 0 0
\(7\) −4.35890 −1.64751 −0.823754 0.566947i \(-0.808125\pi\)
−0.823754 + 0.566947i \(0.808125\pi\)
\(8\) 0 0
\(9\) −3.00000 −1.00000
\(10\) 0 0
\(11\) 5.00000 1.50756 0.753778 0.657129i \(-0.228229\pi\)
0.753778 + 0.657129i \(0.228229\pi\)
\(12\) 0 0
\(13\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 4.00000 1.00000
\(17\) −4.35890 −1.05719 −0.528594 0.848875i \(-0.677281\pi\)
−0.528594 + 0.848875i \(0.677281\pi\)
\(18\) 0 0
\(19\) 0 0
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −8.71780 −1.81779 −0.908893 0.417029i \(-0.863071\pi\)
−0.908893 + 0.417029i \(0.863071\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 0 0
\(28\) 8.71780 1.64751
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 6.00000 1.00000
\(37\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) 0 0
\(43\) −13.0767 −1.99418 −0.997089 0.0762493i \(-0.975706\pi\)
−0.997089 + 0.0762493i \(0.975706\pi\)
\(44\) −10.0000 −1.50756
\(45\) 0 0
\(46\) 0 0
\(47\) −4.35890 −0.635811 −0.317905 0.948122i \(-0.602979\pi\)
−0.317905 + 0.948122i \(0.602979\pi\)
\(48\) 0 0
\(49\) 12.0000 1.71429
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) −15.0000 −1.92055 −0.960277 0.279050i \(-0.909981\pi\)
−0.960277 + 0.279050i \(0.909981\pi\)
\(62\) 0 0
\(63\) 13.0767 1.64751
\(64\) −8.00000 −1.00000
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(68\) 8.71780 1.05719
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) −13.0767 −1.53051 −0.765256 0.643726i \(-0.777388\pi\)
−0.765256 + 0.643726i \(0.777388\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −21.7945 −2.48371
\(78\) 0 0
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) 0 0
\(81\) 9.00000 1.00000
\(82\) 0 0
\(83\) 8.71780 0.956903 0.478451 0.878114i \(-0.341198\pi\)
0.478451 + 0.878114i \(0.341198\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 17.4356 1.81779
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(98\) 0 0
\(99\) −15.0000 −1.50756
\(100\) 0 0
\(101\) −10.0000 −0.995037 −0.497519 0.867453i \(-0.665755\pi\)
−0.497519 + 0.867453i \(0.665755\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(108\) 0 0
\(109\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −17.4356 −1.64751
\(113\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 19.0000 1.74173
\(120\) 0 0
\(121\) 14.0000 1.27273
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −7.00000 −0.611593 −0.305796 0.952097i \(-0.598923\pi\)
−0.305796 + 0.952097i \(0.598923\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 4.35890 0.372406 0.186203 0.982511i \(-0.440382\pi\)
0.186203 + 0.982511i \(0.440382\pi\)
\(138\) 0 0
\(139\) −9.00000 −0.763370 −0.381685 0.924292i \(-0.624656\pi\)
−0.381685 + 0.924292i \(0.624656\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) −12.0000 −1.00000
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −11.0000 −0.901155 −0.450578 0.892737i \(-0.648782\pi\)
−0.450578 + 0.892737i \(0.648782\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(152\) 0 0
\(153\) 13.0767 1.05719
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 17.4356 1.39151 0.695756 0.718278i \(-0.255069\pi\)
0.695756 + 0.718278i \(0.255069\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 38.0000 2.99482
\(162\) 0 0
\(163\) −8.71780 −0.682831 −0.341415 0.939913i \(-0.610906\pi\)
−0.341415 + 0.939913i \(0.610906\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) −13.0000 −1.00000
\(170\) 0 0
\(171\) 0 0
\(172\) 26.1534 1.99418
\(173\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 20.0000 1.50756
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −21.7945 −1.59377
\(188\) 8.71780 0.635811
\(189\) 0 0
\(190\) 0 0
\(191\) −17.0000 −1.23008 −0.615038 0.788497i \(-0.710860\pi\)
−0.615038 + 0.788497i \(0.710860\pi\)
\(192\) 0 0
\(193\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) −24.0000 −1.71429
\(197\) −17.4356 −1.24223 −0.621117 0.783718i \(-0.713321\pi\)
−0.621117 + 0.783718i \(0.713321\pi\)
\(198\) 0 0
\(199\) 25.0000 1.77220 0.886102 0.463491i \(-0.153403\pi\)
0.886102 + 0.463491i \(0.153403\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 26.1534 1.81779
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(228\) 0 0
\(229\) 21.0000 1.38772 0.693860 0.720110i \(-0.255909\pi\)
0.693860 + 0.720110i \(0.255909\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 30.5123 1.99893 0.999463 0.0327561i \(-0.0104285\pi\)
0.999463 + 0.0327561i \(0.0104285\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 5.00000 0.323423 0.161712 0.986838i \(-0.448299\pi\)
0.161712 + 0.986838i \(0.448299\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 30.0000 1.92055
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −23.0000 −1.45175 −0.725874 0.687828i \(-0.758564\pi\)
−0.725874 + 0.687828i \(0.758564\pi\)
\(252\) −26.1534 −1.64751
\(253\) −43.5890 −2.74042
\(254\) 0 0
\(255\) 0 0
\(256\) 16.0000 1.00000
\(257\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 30.5123 1.88147 0.940734 0.339145i \(-0.110138\pi\)
0.940734 + 0.339145i \(0.110138\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(270\) 0 0
\(271\) 20.0000 1.21491 0.607457 0.794353i \(-0.292190\pi\)
0.607457 + 0.794353i \(0.292190\pi\)
\(272\) −17.4356 −1.05719
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −4.35890 −0.261901 −0.130950 0.991389i \(-0.541803\pi\)
−0.130950 + 0.991389i \(0.541803\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(282\) 0 0
\(283\) 13.0767 0.777329 0.388664 0.921379i \(-0.372937\pi\)
0.388664 + 0.921379i \(0.372937\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 2.00000 0.117647
\(290\) 0 0
\(291\) 0 0
\(292\) 26.1534 1.53051
\(293\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 57.0000 3.28543
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(308\) 43.5890 2.48371
\(309\) 0 0
\(310\) 0 0
\(311\) 35.0000 1.98467 0.992334 0.123585i \(-0.0394392\pi\)
0.992334 + 0.123585i \(0.0394392\pi\)
\(312\) 0 0
\(313\) −34.8712 −1.97104 −0.985518 0.169570i \(-0.945762\pi\)
−0.985518 + 0.169570i \(0.945762\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) −18.0000 −1.00000
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 19.0000 1.04750
\(330\) 0 0
\(331\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(332\) −17.4356 −0.956903
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −21.7945 −1.17679
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 4.35890 0.233998 0.116999 0.993132i \(-0.462673\pi\)
0.116999 + 0.993132i \(0.462673\pi\)
\(348\) 0 0
\(349\) 35.0000 1.87351 0.936754 0.349990i \(-0.113815\pi\)
0.936754 + 0.349990i \(0.113815\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −34.8712 −1.85601 −0.928003 0.372572i \(-0.878476\pi\)
−0.928003 + 0.372572i \(0.878476\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 31.0000 1.63612 0.818059 0.575135i \(-0.195050\pi\)
0.818059 + 0.575135i \(0.195050\pi\)
\(360\) 0 0
\(361\) 0 0
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 26.1534 1.36520 0.682598 0.730794i \(-0.260850\pi\)
0.682598 + 0.730794i \(0.260850\pi\)
\(368\) −34.8712 −1.81779
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 39.2301 1.99418
\(388\) 0 0
\(389\) 25.0000 1.26755 0.633775 0.773517i \(-0.281504\pi\)
0.633775 + 0.773517i \(0.281504\pi\)
\(390\) 0 0
\(391\) 38.0000 1.92174
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 30.0000 1.50756
\(397\) 39.2301 1.96890 0.984451 0.175660i \(-0.0562059\pi\)
0.984451 + 0.175660i \(0.0562059\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 20.0000 0.995037
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −40.0000 −1.95413 −0.977064 0.212946i \(-0.931694\pi\)
−0.977064 + 0.212946i \(0.931694\pi\)
\(420\) 0 0
\(421\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(422\) 0 0
\(423\) 13.0767 0.635811
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 65.3835 3.16413
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0 0
\(433\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 0 0
\(441\) −36.0000 −1.71429
\(442\) 0 0
\(443\) 30.5123 1.44968 0.724841 0.688916i \(-0.241913\pi\)
0.724841 + 0.688916i \(0.241913\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 34.8712 1.64751
\(449\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 39.2301 1.83511 0.917553 0.397613i \(-0.130161\pi\)
0.917553 + 0.397613i \(0.130161\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 37.0000 1.72326 0.861631 0.507535i \(-0.169443\pi\)
0.861631 + 0.507535i \(0.169443\pi\)
\(462\) 0 0
\(463\) 13.0767 0.607726 0.303863 0.952716i \(-0.401724\pi\)
0.303863 + 0.952716i \(0.401724\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 4.35890 0.201706 0.100853 0.994901i \(-0.467843\pi\)
0.100853 + 0.994901i \(0.467843\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −65.3835 −3.00634
\(474\) 0 0
\(475\) 0 0
\(476\) −38.0000 −1.74173
\(477\) 0 0
\(478\) 0 0
\(479\) −4.00000 −0.182765 −0.0913823 0.995816i \(-0.529129\pi\)
−0.0913823 + 0.995816i \(0.529129\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) −28.0000 −1.27273
\(485\) 0 0
\(486\) 0 0
\(487\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 8.00000 0.361035 0.180517 0.983572i \(-0.442223\pi\)
0.180517 + 0.983572i \(0.442223\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −39.0000 −1.74588 −0.872940 0.487828i \(-0.837789\pi\)
−0.872940 + 0.487828i \(0.837789\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −8.71780 −0.388707 −0.194354 0.980932i \(-0.562261\pi\)
−0.194354 + 0.980932i \(0.562261\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(510\) 0 0
\(511\) 57.0000 2.52153
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −21.7945 −0.958521
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(522\) 0 0
\(523\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(524\) 14.0000 0.611593
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 53.0000 2.30435
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 60.0000 2.58438
\(540\) 0 0
\(541\) 25.0000 1.07483 0.537417 0.843317i \(-0.319400\pi\)
0.537417 + 0.843317i \(0.319400\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(548\) −8.71780 −0.372406
\(549\) 45.0000 1.92055
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 18.0000 0.763370
\(557\) −4.35890 −0.184692 −0.0923462 0.995727i \(-0.529437\pi\)
−0.0923462 + 0.995727i \(0.529437\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −39.2301 −1.64751
\(568\) 0 0
\(569\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(570\) 0 0
\(571\) −40.0000 −1.67395 −0.836974 0.547243i \(-0.815677\pi\)
−0.836974 + 0.547243i \(0.815677\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 24.0000 1.00000
\(577\) −47.9479 −1.99610 −0.998048 0.0624458i \(-0.980110\pi\)
−0.998048 + 0.0624458i \(0.980110\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −38.0000 −1.57651
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −47.9479 −1.97902 −0.989511 0.144460i \(-0.953855\pi\)
−0.989511 + 0.144460i \(0.953855\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −34.8712 −1.43199 −0.715994 0.698106i \(-0.754026\pi\)
−0.715994 + 0.698106i \(0.754026\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 22.0000 0.901155
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) −26.1534 −1.05719
\(613\) −30.5123 −1.23238 −0.616190 0.787598i \(-0.711325\pi\)
−0.616190 + 0.787598i \(0.711325\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −47.9479 −1.93031 −0.965155 0.261680i \(-0.915723\pi\)
−0.965155 + 0.261680i \(0.915723\pi\)
\(618\) 0 0
\(619\) −24.0000 −0.964641 −0.482321 0.875995i \(-0.660206\pi\)
−0.482321 + 0.875995i \(0.660206\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) −34.8712 −1.39151
\(629\) 0 0
\(630\) 0 0
\(631\) −15.0000 −0.597141 −0.298570 0.954388i \(-0.596510\pi\)
−0.298570 + 0.954388i \(0.596510\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(642\) 0 0
\(643\) 13.0767 0.515695 0.257847 0.966186i \(-0.416987\pi\)
0.257847 + 0.966186i \(0.416987\pi\)
\(644\) −76.0000 −2.99482
\(645\) 0 0
\(646\) 0 0
\(647\) −47.9479 −1.88503 −0.942513 0.334169i \(-0.891544\pi\)
−0.942513 + 0.334169i \(0.891544\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 17.4356 0.682831
\(653\) −30.5123 −1.19404 −0.597019 0.802227i \(-0.703648\pi\)
−0.597019 + 0.802227i \(0.703648\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 39.2301 1.53051
\(658\) 0 0
\(659\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −75.0000 −2.89534
\(672\) 0 0
\(673\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 26.0000 1.00000
\(677\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) −52.3068 −1.99418
\(689\) 0 0
\(690\) 0 0
\(691\) 35.0000 1.33146 0.665731 0.746191i \(-0.268120\pi\)
0.665731 + 0.746191i \(0.268120\pi\)
\(692\) 0 0
\(693\) 65.3835 2.48371
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −50.0000 −1.88847 −0.944237 0.329267i \(-0.893198\pi\)
−0.944237 + 0.329267i \(0.893198\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) −40.0000 −1.50756
\(705\) 0 0
\(706\) 0 0
\(707\) 43.5890 1.63933
\(708\) 0 0
\(709\) −10.0000 −0.375558 −0.187779 0.982211i \(-0.560129\pi\)
−0.187779 + 0.982211i \(0.560129\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −49.0000 −1.82739 −0.913696 0.406399i \(-0.866784\pi\)
−0.913696 + 0.406399i \(0.866784\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −39.2301 −1.45496 −0.727482 0.686127i \(-0.759309\pi\)
−0.727482 + 0.686127i \(0.759309\pi\)
\(728\) 0 0
\(729\) −27.0000 −1.00000
\(730\) 0 0
\(731\) 57.0000 2.10822
\(732\) 0 0
\(733\) 52.3068 1.93200 0.965998 0.258551i \(-0.0832450\pi\)
0.965998 + 0.258551i \(0.0832450\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 45.0000 1.65535 0.827676 0.561206i \(-0.189663\pi\)
0.827676 + 0.561206i \(0.189663\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −26.1534 −0.956903
\(748\) 43.5890 1.59377
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(752\) −17.4356 −0.635811
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 47.9479 1.74270 0.871348 0.490666i \(-0.163246\pi\)
0.871348 + 0.490666i \(0.163246\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 55.0000 1.99375 0.996874 0.0790050i \(-0.0251743\pi\)
0.996874 + 0.0790050i \(0.0251743\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 34.0000 1.23008
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 51.0000 1.83911 0.919554 0.392965i \(-0.128551\pi\)
0.919554 + 0.392965i \(0.128551\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 48.0000 1.71429
\(785\) 0 0
\(786\) 0 0
\(787\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(788\) 34.8712 1.24223
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) −50.0000 −1.77220
\(797\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(798\) 0 0
\(799\) 19.0000 0.672172
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −65.3835 −2.30733
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 5.00000 0.175791 0.0878953 0.996130i \(-0.471986\pi\)
0.0878953 + 0.996130i \(0.471986\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 53.0000 1.84971 0.924856 0.380317i \(-0.124185\pi\)
0.924856 + 0.380317i \(0.124185\pi\)
\(822\) 0 0
\(823\) 56.6657 1.97524 0.987621 0.156860i \(-0.0501372\pi\)
0.987621 + 0.156860i \(0.0501372\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(828\) −52.3068 −1.81779
\(829\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −52.3068 −1.81232
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) −29.0000 −1.00000
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −61.0246 −2.09683
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 52.3068 1.79095 0.895475 0.445112i \(-0.146836\pi\)
0.895475 + 0.445112i \(0.146836\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(858\) 0 0
\(859\) −15.0000 −0.511793 −0.255897 0.966704i \(-0.582371\pi\)
−0.255897 + 0.966704i \(0.582371\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 35.0000 1.17918 0.589590 0.807703i \(-0.299289\pi\)
0.589590 + 0.807703i \(0.299289\pi\)
\(882\) 0 0
\(883\) −30.5123 −1.02682 −0.513410 0.858143i \(-0.671618\pi\)
−0.513410 + 0.858143i \(0.671618\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 45.0000 1.50756
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(908\) 0 0
\(909\) 30.0000 0.995037
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) 0 0
\(913\) 43.5890 1.44258
\(914\) 0 0
\(915\) 0 0
\(916\) −42.0000 −1.38772
\(917\) 30.5123 1.00760
\(918\) 0 0
\(919\) −60.0000 −1.97922 −0.989609 0.143787i \(-0.954072\pi\)
−0.989609 + 0.143787i \(0.954072\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −50.0000 −1.64045 −0.820223 0.572043i \(-0.806151\pi\)
−0.820223 + 0.572043i \(0.806151\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −61.0246 −1.99893
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 39.2301 1.28159 0.640796 0.767712i \(-0.278605\pi\)
0.640796 + 0.767712i \(0.278605\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 61.0246 1.98303 0.991516 0.129983i \(-0.0414921\pi\)
0.991516 + 0.129983i \(0.0414921\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −10.0000 −0.323423
\(957\) 0 0
\(958\) 0 0
\(959\) −19.0000 −0.613542
\(960\) 0 0
\(961\) −31.0000 −1.00000
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −61.0246 −1.96242 −0.981209 0.192947i \(-0.938195\pi\)
−0.981209 + 0.192947i \(0.938195\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(972\) 0 0
\(973\) 39.2301 1.25766
\(974\) 0 0
\(975\) 0 0
\(976\) −60.0000 −1.92055
\(977\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 114.000 3.62499
\(990\) 0 0
\(991\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 4.35890 0.138048 0.0690239 0.997615i \(-0.478012\pi\)
0.0690239 + 0.997615i \(0.478012\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9025.2.a.p.1.1 2
5.2 odd 4 1805.2.b.d.1084.1 2
5.3 odd 4 1805.2.b.d.1084.2 yes 2
5.4 even 2 inner 9025.2.a.p.1.2 2
19.18 odd 2 CM 9025.2.a.p.1.1 2
95.18 even 4 1805.2.b.d.1084.2 yes 2
95.37 even 4 1805.2.b.d.1084.1 2
95.94 odd 2 inner 9025.2.a.p.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1805.2.b.d.1084.1 2 5.2 odd 4
1805.2.b.d.1084.1 2 95.37 even 4
1805.2.b.d.1084.2 yes 2 5.3 odd 4
1805.2.b.d.1084.2 yes 2 95.18 even 4
9025.2.a.p.1.1 2 1.1 even 1 trivial
9025.2.a.p.1.1 2 19.18 odd 2 CM
9025.2.a.p.1.2 2 5.4 even 2 inner
9025.2.a.p.1.2 2 95.94 odd 2 inner