gp: [N,k,chi] = [9025,2,Mod(1,9025)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("9025.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(9025, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 2, names="a")
Newform invariants
sage: traces = [21,6,9,24,0,0,0,18,24,0,0,24,12,-6]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(14)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion .
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
\( p \)
Sign
\(5\)
\( +1 \)
\(19\)
\( -1 \)
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(9025))\):
\( T_{2}^{21} - 6 T_{2}^{20} - 15 T_{2}^{19} + 148 T_{2}^{18} + 3 T_{2}^{17} - 1485 T_{2}^{16} + 1258 T_{2}^{15} + \cdots + 27 \)
T2^21 - 6*T2^20 - 15*T2^19 + 148*T2^18 + 3*T2^17 - 1485*T2^16 + 1258*T2^15 + 7722*T2^14 - 10365*T2^13 - 21862*T2^12 + 38256*T2^11 + 32145*T2^10 - 72959*T2^9 - 20928*T2^8 + 71337*T2^7 + 4368*T2^6 - 35004*T2^5 + 159*T2^4 + 7885*T2^3 - 153*T2^2 - 621*T2 + 27
\( T_{3}^{21} - 9 T_{3}^{20} - 3 T_{3}^{19} + 242 T_{3}^{18} - 444 T_{3}^{17} - 2439 T_{3}^{16} + 7552 T_{3}^{15} + \cdots + 89 \)
T3^21 - 9*T3^20 - 3*T3^19 + 242*T3^18 - 444*T3^17 - 2439*T3^16 + 7552*T3^15 + 10173*T3^14 - 54213*T3^13 - 2209*T3^12 + 198513*T3^11 - 124413*T3^10 - 362025*T3^9 + 400515*T3^8 + 263358*T3^7 - 471127*T3^6 - 6084*T3^5 + 206547*T3^4 - 49951*T3^3 - 17445*T3^2 + 3453*T3 + 89
\( T_{7}^{21} - 90 T_{7}^{19} - 59 T_{7}^{18} + 3339 T_{7}^{17} + 4161 T_{7}^{16} - 65180 T_{7}^{15} + \cdots + 6558193 \)
T7^21 - 90*T7^19 - 59*T7^18 + 3339*T7^17 + 4161*T7^16 - 65180*T7^15 - 116691*T7^14 + 709269*T7^13 + 1670221*T7^12 - 4153359*T7^11 - 13072284*T7^10 + 10469960*T7^9 + 55185768*T7^8 + 5186313*T7^7 - 114141302*T7^6 - 66678717*T7^5 + 93280626*T7^4 + 73841737*T7^3 - 30119172*T7^2 - 20412291*T7 + 6558193
\( T_{11}^{21} - 114 T_{11}^{19} + 34 T_{11}^{18} + 5262 T_{11}^{17} - 3396 T_{11}^{16} - 127360 T_{11}^{15} + \cdots + 58182921 \)
T11^21 - 114*T11^19 + 34*T11^18 + 5262*T11^17 - 3396*T11^16 - 127360*T11^15 + 131607*T11^14 + 1743171*T11^13 - 2533851*T11^12 - 13451583*T11^11 + 25904346*T11^10 + 53800671*T11^9 - 140542338*T11^8 - 81224748*T11^7 + 388076879*T11^6 - 78230913*T11^5 - 478178685*T11^4 + 324075655*T11^3 + 165852045*T11^2 - 223434855*T11 + 58182921
\( T_{29}^{21} + 3 T_{29}^{20} - 282 T_{29}^{19} - 648 T_{29}^{18} + 33453 T_{29}^{17} + 56463 T_{29}^{16} + \cdots - 13449210273 \)
T29^21 + 3*T29^20 - 282*T29^19 - 648*T29^18 + 33453*T29^17 + 56463*T29^16 - 2171250*T29^15 - 2604687*T29^14 + 83815455*T29^13 + 72585113*T29^12 - 1957188387*T29^11 - 1424135154*T29^10 + 26889458543*T29^9 + 22528544691*T29^8 - 200557191216*T29^7 - 250574179808*T29^6 + 656792485665*T29^5 + 1281903059865*T29^4 - 55317830518*T29^3 - 1253920401171*T29^2 - 632656816947*T29 - 13449210273