Properties

Label 9025.2.a.by.1.4
Level $9025$
Weight $2$
Character 9025.1
Self dual yes
Analytic conductor $72.065$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9025,2,Mod(1,9025)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9025, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9025.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 9025 = 5^{2} \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9025.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(72.0649878242\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.41289040.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} - 8x^{4} + 21x^{3} + 18x^{2} - 25x - 5 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 475)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-2.24415\) of defining polynomial
Character \(\chi\) \(=\) 9025.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.311108 q^{2} +1.02983 q^{3} -1.90321 q^{4} +0.320390 q^{6} +3.28038 q^{7} -1.21432 q^{8} -1.93944 q^{9} -5.16792 q^{11} -1.95999 q^{12} +3.53471 q^{13} +1.02055 q^{14} +3.42864 q^{16} +1.00928 q^{17} -0.603375 q^{18} +3.37825 q^{21} -1.60778 q^{22} +7.66351 q^{23} -1.25055 q^{24} +1.09968 q^{26} -5.08681 q^{27} -6.24326 q^{28} +4.02606 q^{29} +4.60077 q^{31} +3.49532 q^{32} -5.32210 q^{33} +0.313995 q^{34} +3.69117 q^{36} -6.48831 q^{37} +3.64017 q^{39} +6.80553 q^{41} +1.05100 q^{42} -6.31022 q^{43} +9.83565 q^{44} +2.38418 q^{46} +3.84157 q^{47} +3.53093 q^{48} +3.76091 q^{49} +1.03939 q^{51} -6.72730 q^{52} -7.11892 q^{53} -1.58255 q^{54} -3.98343 q^{56} +1.25254 q^{58} -13.4730 q^{59} +6.13700 q^{61} +1.43134 q^{62} -6.36211 q^{63} -5.76986 q^{64} -1.65575 q^{66} -11.1979 q^{67} -1.92088 q^{68} +7.89215 q^{69} +0.455404 q^{71} +2.35510 q^{72} -4.13382 q^{73} -2.01856 q^{74} -16.9528 q^{77} +1.13248 q^{78} -2.88828 q^{79} +0.579752 q^{81} +2.11725 q^{82} +5.50061 q^{83} -6.42953 q^{84} -1.96316 q^{86} +4.14617 q^{87} +6.27551 q^{88} +7.12866 q^{89} +11.5952 q^{91} -14.5853 q^{92} +4.73803 q^{93} +1.19514 q^{94} +3.59960 q^{96} -10.8250 q^{97} +1.17005 q^{98} +10.0229 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 2 q^{2} + 3 q^{3} + 2 q^{4} - q^{6} - 2 q^{7} + 6 q^{8} + 7 q^{9} - q^{11} + 7 q^{12} + 5 q^{13} + 6 q^{14} - 6 q^{16} + 3 q^{17} + 7 q^{18} - 3 q^{21} + 9 q^{22} + 6 q^{23} + 11 q^{24} + 19 q^{26}+ \cdots - 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.311108 0.219986 0.109993 0.993932i \(-0.464917\pi\)
0.109993 + 0.993932i \(0.464917\pi\)
\(3\) 1.02983 0.594575 0.297288 0.954788i \(-0.403918\pi\)
0.297288 + 0.954788i \(0.403918\pi\)
\(4\) −1.90321 −0.951606
\(5\) 0 0
\(6\) 0.320390 0.130799
\(7\) 3.28038 1.23987 0.619934 0.784654i \(-0.287159\pi\)
0.619934 + 0.784654i \(0.287159\pi\)
\(8\) −1.21432 −0.429327
\(9\) −1.93944 −0.646480
\(10\) 0 0
\(11\) −5.16792 −1.55819 −0.779093 0.626908i \(-0.784320\pi\)
−0.779093 + 0.626908i \(0.784320\pi\)
\(12\) −1.95999 −0.565801
\(13\) 3.53471 0.980352 0.490176 0.871623i \(-0.336933\pi\)
0.490176 + 0.871623i \(0.336933\pi\)
\(14\) 1.02055 0.272754
\(15\) 0 0
\(16\) 3.42864 0.857160
\(17\) 1.00928 0.244787 0.122393 0.992482i \(-0.460943\pi\)
0.122393 + 0.992482i \(0.460943\pi\)
\(18\) −0.603375 −0.142217
\(19\) 0 0
\(20\) 0 0
\(21\) 3.37825 0.737195
\(22\) −1.60778 −0.342780
\(23\) 7.66351 1.59795 0.798976 0.601362i \(-0.205375\pi\)
0.798976 + 0.601362i \(0.205375\pi\)
\(24\) −1.25055 −0.255267
\(25\) 0 0
\(26\) 1.09968 0.215664
\(27\) −5.08681 −0.978956
\(28\) −6.24326 −1.17987
\(29\) 4.02606 0.747620 0.373810 0.927505i \(-0.378051\pi\)
0.373810 + 0.927505i \(0.378051\pi\)
\(30\) 0 0
\(31\) 4.60077 0.826323 0.413162 0.910658i \(-0.364424\pi\)
0.413162 + 0.910658i \(0.364424\pi\)
\(32\) 3.49532 0.617890
\(33\) −5.32210 −0.926459
\(34\) 0.313995 0.0538498
\(35\) 0 0
\(36\) 3.69117 0.615194
\(37\) −6.48831 −1.06667 −0.533336 0.845904i \(-0.679062\pi\)
−0.533336 + 0.845904i \(0.679062\pi\)
\(38\) 0 0
\(39\) 3.64017 0.582893
\(40\) 0 0
\(41\) 6.80553 1.06285 0.531423 0.847107i \(-0.321658\pi\)
0.531423 + 0.847107i \(0.321658\pi\)
\(42\) 1.05100 0.162173
\(43\) −6.31022 −0.962299 −0.481150 0.876639i \(-0.659781\pi\)
−0.481150 + 0.876639i \(0.659781\pi\)
\(44\) 9.83565 1.48278
\(45\) 0 0
\(46\) 2.38418 0.351528
\(47\) 3.84157 0.560351 0.280175 0.959949i \(-0.409607\pi\)
0.280175 + 0.959949i \(0.409607\pi\)
\(48\) 3.53093 0.509646
\(49\) 3.76091 0.537273
\(50\) 0 0
\(51\) 1.03939 0.145544
\(52\) −6.72730 −0.932909
\(53\) −7.11892 −0.977858 −0.488929 0.872323i \(-0.662612\pi\)
−0.488929 + 0.872323i \(0.662612\pi\)
\(54\) −1.58255 −0.215357
\(55\) 0 0
\(56\) −3.98343 −0.532309
\(57\) 0 0
\(58\) 1.25254 0.164466
\(59\) −13.4730 −1.75403 −0.877016 0.480460i \(-0.840470\pi\)
−0.877016 + 0.480460i \(0.840470\pi\)
\(60\) 0 0
\(61\) 6.13700 0.785763 0.392881 0.919589i \(-0.371478\pi\)
0.392881 + 0.919589i \(0.371478\pi\)
\(62\) 1.43134 0.181780
\(63\) −6.36211 −0.801550
\(64\) −5.76986 −0.721232
\(65\) 0 0
\(66\) −1.65575 −0.203808
\(67\) −11.1979 −1.36805 −0.684023 0.729460i \(-0.739771\pi\)
−0.684023 + 0.729460i \(0.739771\pi\)
\(68\) −1.92088 −0.232941
\(69\) 7.89215 0.950103
\(70\) 0 0
\(71\) 0.455404 0.0540465 0.0270233 0.999635i \(-0.491397\pi\)
0.0270233 + 0.999635i \(0.491397\pi\)
\(72\) 2.35510 0.277551
\(73\) −4.13382 −0.483827 −0.241914 0.970298i \(-0.577775\pi\)
−0.241914 + 0.970298i \(0.577775\pi\)
\(74\) −2.01856 −0.234653
\(75\) 0 0
\(76\) 0 0
\(77\) −16.9528 −1.93195
\(78\) 1.13248 0.128229
\(79\) −2.88828 −0.324957 −0.162478 0.986712i \(-0.551949\pi\)
−0.162478 + 0.986712i \(0.551949\pi\)
\(80\) 0 0
\(81\) 0.579752 0.0644169
\(82\) 2.11725 0.233812
\(83\) 5.50061 0.603770 0.301885 0.953344i \(-0.402384\pi\)
0.301885 + 0.953344i \(0.402384\pi\)
\(84\) −6.42953 −0.701519
\(85\) 0 0
\(86\) −1.96316 −0.211693
\(87\) 4.14617 0.444516
\(88\) 6.27551 0.668971
\(89\) 7.12866 0.755636 0.377818 0.925880i \(-0.376674\pi\)
0.377818 + 0.925880i \(0.376674\pi\)
\(90\) 0 0
\(91\) 11.5952 1.21551
\(92\) −14.5853 −1.52062
\(93\) 4.73803 0.491311
\(94\) 1.19514 0.123270
\(95\) 0 0
\(96\) 3.59960 0.367382
\(97\) −10.8250 −1.09912 −0.549558 0.835456i \(-0.685204\pi\)
−0.549558 + 0.835456i \(0.685204\pi\)
\(98\) 1.17005 0.118193
\(99\) 10.0229 1.00734
\(100\) 0 0
\(101\) −6.18022 −0.614955 −0.307478 0.951555i \(-0.599485\pi\)
−0.307478 + 0.951555i \(0.599485\pi\)
\(102\) 0.323363 0.0320177
\(103\) 18.3217 1.80529 0.902644 0.430387i \(-0.141623\pi\)
0.902644 + 0.430387i \(0.141623\pi\)
\(104\) −4.29227 −0.420891
\(105\) 0 0
\(106\) −2.21475 −0.215116
\(107\) 8.73445 0.844391 0.422196 0.906505i \(-0.361260\pi\)
0.422196 + 0.906505i \(0.361260\pi\)
\(108\) 9.68127 0.931581
\(109\) 6.09679 0.583966 0.291983 0.956423i \(-0.405685\pi\)
0.291983 + 0.956423i \(0.405685\pi\)
\(110\) 0 0
\(111\) −6.68188 −0.634216
\(112\) 11.2473 1.06277
\(113\) 10.3443 0.973111 0.486556 0.873650i \(-0.338253\pi\)
0.486556 + 0.873650i \(0.338253\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −7.66244 −0.711440
\(117\) −6.85536 −0.633778
\(118\) −4.19155 −0.385863
\(119\) 3.31083 0.303503
\(120\) 0 0
\(121\) 15.7074 1.42794
\(122\) 1.90927 0.172857
\(123\) 7.00857 0.631942
\(124\) −8.75625 −0.786334
\(125\) 0 0
\(126\) −1.97930 −0.176330
\(127\) 3.36713 0.298784 0.149392 0.988778i \(-0.452268\pi\)
0.149392 + 0.988778i \(0.452268\pi\)
\(128\) −8.78568 −0.776552
\(129\) −6.49848 −0.572159
\(130\) 0 0
\(131\) 2.42178 0.211592 0.105796 0.994388i \(-0.466261\pi\)
0.105796 + 0.994388i \(0.466261\pi\)
\(132\) 10.1291 0.881624
\(133\) 0 0
\(134\) −3.48377 −0.300952
\(135\) 0 0
\(136\) −1.22559 −0.105094
\(137\) 11.5191 0.984144 0.492072 0.870555i \(-0.336240\pi\)
0.492072 + 0.870555i \(0.336240\pi\)
\(138\) 2.45531 0.209010
\(139\) 7.07553 0.600138 0.300069 0.953917i \(-0.402990\pi\)
0.300069 + 0.953917i \(0.402990\pi\)
\(140\) 0 0
\(141\) 3.95618 0.333171
\(142\) 0.141680 0.0118895
\(143\) −18.2671 −1.52757
\(144\) −6.64964 −0.554137
\(145\) 0 0
\(146\) −1.28606 −0.106435
\(147\) 3.87312 0.319449
\(148\) 12.3486 1.01505
\(149\) 12.7495 1.04448 0.522240 0.852798i \(-0.325096\pi\)
0.522240 + 0.852798i \(0.325096\pi\)
\(150\) 0 0
\(151\) 19.6361 1.59797 0.798983 0.601353i \(-0.205372\pi\)
0.798983 + 0.601353i \(0.205372\pi\)
\(152\) 0 0
\(153\) −1.95744 −0.158250
\(154\) −5.27413 −0.425002
\(155\) 0 0
\(156\) −6.92801 −0.554685
\(157\) −3.08489 −0.246201 −0.123101 0.992394i \(-0.539284\pi\)
−0.123101 + 0.992394i \(0.539284\pi\)
\(158\) −0.898567 −0.0714861
\(159\) −7.33131 −0.581410
\(160\) 0 0
\(161\) 25.1393 1.98125
\(162\) 0.180365 0.0141708
\(163\) 22.4721 1.76015 0.880077 0.474831i \(-0.157491\pi\)
0.880077 + 0.474831i \(0.157491\pi\)
\(164\) −12.9524 −1.01141
\(165\) 0 0
\(166\) 1.71128 0.132821
\(167\) 10.5397 0.815590 0.407795 0.913074i \(-0.366298\pi\)
0.407795 + 0.913074i \(0.366298\pi\)
\(168\) −4.10228 −0.316498
\(169\) −0.505830 −0.0389100
\(170\) 0 0
\(171\) 0 0
\(172\) 12.0097 0.915730
\(173\) 22.9381 1.74395 0.871977 0.489547i \(-0.162838\pi\)
0.871977 + 0.489547i \(0.162838\pi\)
\(174\) 1.28991 0.0977876
\(175\) 0 0
\(176\) −17.7189 −1.33561
\(177\) −13.8749 −1.04290
\(178\) 2.21778 0.166230
\(179\) −23.2705 −1.73932 −0.869661 0.493649i \(-0.835663\pi\)
−0.869661 + 0.493649i \(0.835663\pi\)
\(180\) 0 0
\(181\) 15.9669 1.18681 0.593406 0.804904i \(-0.297783\pi\)
0.593406 + 0.804904i \(0.297783\pi\)
\(182\) 3.60736 0.267395
\(183\) 6.32010 0.467195
\(184\) −9.30595 −0.686044
\(185\) 0 0
\(186\) 1.47404 0.108082
\(187\) −5.21589 −0.381423
\(188\) −7.31133 −0.533233
\(189\) −16.6867 −1.21378
\(190\) 0 0
\(191\) −2.44600 −0.176986 −0.0884930 0.996077i \(-0.528205\pi\)
−0.0884930 + 0.996077i \(0.528205\pi\)
\(192\) −5.94200 −0.428827
\(193\) −19.0456 −1.37093 −0.685466 0.728104i \(-0.740402\pi\)
−0.685466 + 0.728104i \(0.740402\pi\)
\(194\) −3.36775 −0.241791
\(195\) 0 0
\(196\) −7.15782 −0.511273
\(197\) 6.18524 0.440680 0.220340 0.975423i \(-0.429283\pi\)
0.220340 + 0.975423i \(0.429283\pi\)
\(198\) 3.11819 0.221600
\(199\) 7.21050 0.511138 0.255569 0.966791i \(-0.417737\pi\)
0.255569 + 0.966791i \(0.417737\pi\)
\(200\) 0 0
\(201\) −11.5320 −0.813407
\(202\) −1.92272 −0.135282
\(203\) 13.2070 0.926950
\(204\) −1.97819 −0.138501
\(205\) 0 0
\(206\) 5.70002 0.397139
\(207\) −14.8629 −1.03304
\(208\) 12.1192 0.840318
\(209\) 0 0
\(210\) 0 0
\(211\) 19.6467 1.35253 0.676266 0.736658i \(-0.263597\pi\)
0.676266 + 0.736658i \(0.263597\pi\)
\(212\) 13.5488 0.930536
\(213\) 0.468991 0.0321347
\(214\) 2.71736 0.185755
\(215\) 0 0
\(216\) 6.17701 0.420292
\(217\) 15.0923 1.02453
\(218\) 1.89676 0.128465
\(219\) −4.25715 −0.287672
\(220\) 0 0
\(221\) 3.56752 0.239977
\(222\) −2.07879 −0.139519
\(223\) −11.3338 −0.758967 −0.379484 0.925198i \(-0.623898\pi\)
−0.379484 + 0.925198i \(0.623898\pi\)
\(224\) 11.4660 0.766103
\(225\) 0 0
\(226\) 3.21820 0.214071
\(227\) −11.1369 −0.739180 −0.369590 0.929195i \(-0.620502\pi\)
−0.369590 + 0.929195i \(0.620502\pi\)
\(228\) 0 0
\(229\) 3.51221 0.232093 0.116047 0.993244i \(-0.462978\pi\)
0.116047 + 0.993244i \(0.462978\pi\)
\(230\) 0 0
\(231\) −17.4585 −1.14869
\(232\) −4.88892 −0.320973
\(233\) −6.18998 −0.405519 −0.202759 0.979229i \(-0.564991\pi\)
−0.202759 + 0.979229i \(0.564991\pi\)
\(234\) −2.13276 −0.139423
\(235\) 0 0
\(236\) 25.6419 1.66915
\(237\) −2.97445 −0.193211
\(238\) 1.03003 0.0667666
\(239\) 12.1221 0.784116 0.392058 0.919940i \(-0.371763\pi\)
0.392058 + 0.919940i \(0.371763\pi\)
\(240\) 0 0
\(241\) 5.10204 0.328651 0.164326 0.986406i \(-0.447455\pi\)
0.164326 + 0.986406i \(0.447455\pi\)
\(242\) 4.88669 0.314128
\(243\) 15.8575 1.01726
\(244\) −11.6800 −0.747737
\(245\) 0 0
\(246\) 2.18042 0.139019
\(247\) 0 0
\(248\) −5.58681 −0.354763
\(249\) 5.66472 0.358987
\(250\) 0 0
\(251\) 25.4244 1.60477 0.802385 0.596806i \(-0.203564\pi\)
0.802385 + 0.596806i \(0.203564\pi\)
\(252\) 12.1084 0.762760
\(253\) −39.6044 −2.48991
\(254\) 1.04754 0.0657285
\(255\) 0 0
\(256\) 8.80642 0.550401
\(257\) 18.4499 1.15087 0.575436 0.817847i \(-0.304833\pi\)
0.575436 + 0.817847i \(0.304833\pi\)
\(258\) −2.02173 −0.125867
\(259\) −21.2841 −1.32253
\(260\) 0 0
\(261\) −7.80830 −0.483322
\(262\) 0.753434 0.0465473
\(263\) −12.9506 −0.798568 −0.399284 0.916827i \(-0.630741\pi\)
−0.399284 + 0.916827i \(0.630741\pi\)
\(264\) 6.46273 0.397754
\(265\) 0 0
\(266\) 0 0
\(267\) 7.34134 0.449283
\(268\) 21.3121 1.30184
\(269\) −0.156494 −0.00954163 −0.00477081 0.999989i \(-0.501519\pi\)
−0.00477081 + 0.999989i \(0.501519\pi\)
\(270\) 0 0
\(271\) 27.8191 1.68989 0.844944 0.534855i \(-0.179634\pi\)
0.844944 + 0.534855i \(0.179634\pi\)
\(272\) 3.46046 0.209821
\(273\) 11.9411 0.722711
\(274\) 3.58368 0.216498
\(275\) 0 0
\(276\) −15.0204 −0.904124
\(277\) 0.524062 0.0314878 0.0157439 0.999876i \(-0.494988\pi\)
0.0157439 + 0.999876i \(0.494988\pi\)
\(278\) 2.20125 0.132022
\(279\) −8.92293 −0.534202
\(280\) 0 0
\(281\) 4.88826 0.291609 0.145804 0.989313i \(-0.453423\pi\)
0.145804 + 0.989313i \(0.453423\pi\)
\(282\) 1.23080 0.0732931
\(283\) 17.8786 1.06277 0.531387 0.847129i \(-0.321671\pi\)
0.531387 + 0.847129i \(0.321671\pi\)
\(284\) −0.866730 −0.0514310
\(285\) 0 0
\(286\) −5.68304 −0.336045
\(287\) 22.3248 1.31779
\(288\) −6.77896 −0.399454
\(289\) −15.9814 −0.940079
\(290\) 0 0
\(291\) −11.1480 −0.653507
\(292\) 7.86754 0.460413
\(293\) 7.25399 0.423783 0.211891 0.977293i \(-0.432038\pi\)
0.211891 + 0.977293i \(0.432038\pi\)
\(294\) 1.20496 0.0702745
\(295\) 0 0
\(296\) 7.87888 0.457951
\(297\) 26.2882 1.52540
\(298\) 3.96647 0.229772
\(299\) 27.0883 1.56656
\(300\) 0 0
\(301\) −20.6999 −1.19312
\(302\) 6.10896 0.351531
\(303\) −6.36461 −0.365637
\(304\) 0 0
\(305\) 0 0
\(306\) −0.608976 −0.0348128
\(307\) 14.3803 0.820727 0.410364 0.911922i \(-0.365402\pi\)
0.410364 + 0.911922i \(0.365402\pi\)
\(308\) 32.2647 1.83845
\(309\) 18.8683 1.07338
\(310\) 0 0
\(311\) 8.52590 0.483459 0.241730 0.970344i \(-0.422285\pi\)
0.241730 + 0.970344i \(0.422285\pi\)
\(312\) −4.42033 −0.250252
\(313\) 21.3619 1.20744 0.603722 0.797195i \(-0.293684\pi\)
0.603722 + 0.797195i \(0.293684\pi\)
\(314\) −0.959733 −0.0541609
\(315\) 0 0
\(316\) 5.49701 0.309231
\(317\) 28.0928 1.57785 0.788924 0.614490i \(-0.210638\pi\)
0.788924 + 0.614490i \(0.210638\pi\)
\(318\) −2.28083 −0.127902
\(319\) −20.8063 −1.16493
\(320\) 0 0
\(321\) 8.99504 0.502054
\(322\) 7.82102 0.435848
\(323\) 0 0
\(324\) −1.10339 −0.0612995
\(325\) 0 0
\(326\) 6.99126 0.387210
\(327\) 6.27868 0.347212
\(328\) −8.26409 −0.456308
\(329\) 12.6018 0.694761
\(330\) 0 0
\(331\) −15.1725 −0.833957 −0.416979 0.908916i \(-0.636911\pi\)
−0.416979 + 0.908916i \(0.636911\pi\)
\(332\) −10.4688 −0.574552
\(333\) 12.5837 0.689582
\(334\) 3.27900 0.179419
\(335\) 0 0
\(336\) 11.5828 0.631894
\(337\) −17.5008 −0.953330 −0.476665 0.879085i \(-0.658155\pi\)
−0.476665 + 0.879085i \(0.658155\pi\)
\(338\) −0.157368 −0.00855967
\(339\) 10.6529 0.578588
\(340\) 0 0
\(341\) −23.7764 −1.28757
\(342\) 0 0
\(343\) −10.6254 −0.573720
\(344\) 7.66262 0.413141
\(345\) 0 0
\(346\) 7.13623 0.383646
\(347\) −17.3687 −0.932401 −0.466201 0.884679i \(-0.654377\pi\)
−0.466201 + 0.884679i \(0.654377\pi\)
\(348\) −7.89105 −0.423004
\(349\) −34.2563 −1.83370 −0.916850 0.399232i \(-0.869277\pi\)
−0.916850 + 0.399232i \(0.869277\pi\)
\(350\) 0 0
\(351\) −17.9804 −0.959722
\(352\) −18.0635 −0.962788
\(353\) −34.9287 −1.85907 −0.929534 0.368736i \(-0.879791\pi\)
−0.929534 + 0.368736i \(0.879791\pi\)
\(354\) −4.31660 −0.229425
\(355\) 0 0
\(356\) −13.5673 −0.719068
\(357\) 3.40961 0.180456
\(358\) −7.23965 −0.382627
\(359\) −0.976546 −0.0515401 −0.0257701 0.999668i \(-0.508204\pi\)
−0.0257701 + 0.999668i \(0.508204\pi\)
\(360\) 0 0
\(361\) 0 0
\(362\) 4.96743 0.261082
\(363\) 16.1760 0.849020
\(364\) −22.0681 −1.15668
\(365\) 0 0
\(366\) 1.96623 0.102777
\(367\) −9.86635 −0.515019 −0.257510 0.966276i \(-0.582902\pi\)
−0.257510 + 0.966276i \(0.582902\pi\)
\(368\) 26.2754 1.36970
\(369\) −13.1989 −0.687109
\(370\) 0 0
\(371\) −23.3528 −1.21242
\(372\) −9.01748 −0.467535
\(373\) −12.9521 −0.670634 −0.335317 0.942105i \(-0.608843\pi\)
−0.335317 + 0.942105i \(0.608843\pi\)
\(374\) −1.62270 −0.0839080
\(375\) 0 0
\(376\) −4.66490 −0.240574
\(377\) 14.2309 0.732931
\(378\) −5.19136 −0.267015
\(379\) −5.21597 −0.267926 −0.133963 0.990986i \(-0.542770\pi\)
−0.133963 + 0.990986i \(0.542770\pi\)
\(380\) 0 0
\(381\) 3.46758 0.177650
\(382\) −0.760969 −0.0389345
\(383\) 33.5314 1.71337 0.856686 0.515838i \(-0.172519\pi\)
0.856686 + 0.515838i \(0.172519\pi\)
\(384\) −9.04780 −0.461718
\(385\) 0 0
\(386\) −5.92524 −0.301587
\(387\) 12.2383 0.622107
\(388\) 20.6023 1.04593
\(389\) 27.7406 1.40651 0.703253 0.710940i \(-0.251730\pi\)
0.703253 + 0.710940i \(0.251730\pi\)
\(390\) 0 0
\(391\) 7.73464 0.391158
\(392\) −4.56695 −0.230666
\(393\) 2.49403 0.125807
\(394\) 1.92428 0.0969437
\(395\) 0 0
\(396\) −19.0757 −0.958588
\(397\) 5.49942 0.276008 0.138004 0.990432i \(-0.455931\pi\)
0.138004 + 0.990432i \(0.455931\pi\)
\(398\) 2.24324 0.112444
\(399\) 0 0
\(400\) 0 0
\(401\) 8.51309 0.425124 0.212562 0.977148i \(-0.431819\pi\)
0.212562 + 0.977148i \(0.431819\pi\)
\(402\) −3.58770 −0.178938
\(403\) 16.2624 0.810088
\(404\) 11.7623 0.585195
\(405\) 0 0
\(406\) 4.10880 0.203917
\(407\) 33.5311 1.66207
\(408\) −1.26216 −0.0624860
\(409\) 21.4706 1.06165 0.530826 0.847481i \(-0.321882\pi\)
0.530826 + 0.847481i \(0.321882\pi\)
\(410\) 0 0
\(411\) 11.8628 0.585148
\(412\) −34.8700 −1.71792
\(413\) −44.1965 −2.17477
\(414\) −4.62397 −0.227256
\(415\) 0 0
\(416\) 12.3549 0.605750
\(417\) 7.28662 0.356827
\(418\) 0 0
\(419\) −5.09378 −0.248848 −0.124424 0.992229i \(-0.539708\pi\)
−0.124424 + 0.992229i \(0.539708\pi\)
\(420\) 0 0
\(421\) −5.65823 −0.275765 −0.137883 0.990449i \(-0.544030\pi\)
−0.137883 + 0.990449i \(0.544030\pi\)
\(422\) 6.11223 0.297539
\(423\) −7.45050 −0.362256
\(424\) 8.64464 0.419821
\(425\) 0 0
\(426\) 0.145907 0.00706920
\(427\) 20.1317 0.974242
\(428\) −16.6235 −0.803528
\(429\) −18.8121 −0.908256
\(430\) 0 0
\(431\) 38.3668 1.84807 0.924033 0.382313i \(-0.124872\pi\)
0.924033 + 0.382313i \(0.124872\pi\)
\(432\) −17.4408 −0.839122
\(433\) 6.96250 0.334596 0.167298 0.985906i \(-0.446496\pi\)
0.167298 + 0.985906i \(0.446496\pi\)
\(434\) 4.69533 0.225383
\(435\) 0 0
\(436\) −11.6035 −0.555706
\(437\) 0 0
\(438\) −1.32443 −0.0632839
\(439\) −9.52692 −0.454695 −0.227347 0.973814i \(-0.573005\pi\)
−0.227347 + 0.973814i \(0.573005\pi\)
\(440\) 0 0
\(441\) −7.29407 −0.347337
\(442\) 1.10988 0.0527917
\(443\) −34.7038 −1.64883 −0.824414 0.565987i \(-0.808495\pi\)
−0.824414 + 0.565987i \(0.808495\pi\)
\(444\) 12.7170 0.603524
\(445\) 0 0
\(446\) −3.52603 −0.166963
\(447\) 13.1299 0.621023
\(448\) −18.9273 −0.894233
\(449\) 8.84228 0.417293 0.208646 0.977991i \(-0.433094\pi\)
0.208646 + 0.977991i \(0.433094\pi\)
\(450\) 0 0
\(451\) −35.1704 −1.65611
\(452\) −19.6874 −0.926019
\(453\) 20.2220 0.950111
\(454\) −3.46477 −0.162610
\(455\) 0 0
\(456\) 0 0
\(457\) −0.664998 −0.0311073 −0.0155536 0.999879i \(-0.504951\pi\)
−0.0155536 + 0.999879i \(0.504951\pi\)
\(458\) 1.09268 0.0510574
\(459\) −5.13402 −0.239636
\(460\) 0 0
\(461\) −39.5392 −1.84152 −0.920762 0.390124i \(-0.872432\pi\)
−0.920762 + 0.390124i \(0.872432\pi\)
\(462\) −5.43149 −0.252696
\(463\) 15.5782 0.723981 0.361991 0.932182i \(-0.382097\pi\)
0.361991 + 0.932182i \(0.382097\pi\)
\(464\) 13.8039 0.640830
\(465\) 0 0
\(466\) −1.92575 −0.0892086
\(467\) −41.0358 −1.89891 −0.949456 0.313901i \(-0.898364\pi\)
−0.949456 + 0.313901i \(0.898364\pi\)
\(468\) 13.0472 0.603107
\(469\) −36.7335 −1.69620
\(470\) 0 0
\(471\) −3.17693 −0.146385
\(472\) 16.3605 0.753053
\(473\) 32.6107 1.49944
\(474\) −0.925375 −0.0425039
\(475\) 0 0
\(476\) −6.30121 −0.288816
\(477\) 13.8067 0.632166
\(478\) 3.77129 0.172495
\(479\) −23.5587 −1.07643 −0.538213 0.842809i \(-0.680900\pi\)
−0.538213 + 0.842809i \(0.680900\pi\)
\(480\) 0 0
\(481\) −22.9343 −1.04571
\(482\) 1.58728 0.0722988
\(483\) 25.8893 1.17800
\(484\) −29.8945 −1.35884
\(485\) 0 0
\(486\) 4.93338 0.223783
\(487\) −23.9166 −1.08377 −0.541883 0.840454i \(-0.682288\pi\)
−0.541883 + 0.840454i \(0.682288\pi\)
\(488\) −7.45228 −0.337349
\(489\) 23.1426 1.04654
\(490\) 0 0
\(491\) 16.3475 0.737751 0.368875 0.929479i \(-0.379743\pi\)
0.368875 + 0.929479i \(0.379743\pi\)
\(492\) −13.3388 −0.601360
\(493\) 4.06343 0.183007
\(494\) 0 0
\(495\) 0 0
\(496\) 15.7744 0.708291
\(497\) 1.49390 0.0670105
\(498\) 1.76234 0.0789723
\(499\) −32.0708 −1.43569 −0.717844 0.696204i \(-0.754871\pi\)
−0.717844 + 0.696204i \(0.754871\pi\)
\(500\) 0 0
\(501\) 10.8542 0.484930
\(502\) 7.90972 0.353028
\(503\) −14.7254 −0.656572 −0.328286 0.944578i \(-0.606471\pi\)
−0.328286 + 0.944578i \(0.606471\pi\)
\(504\) 7.72563 0.344127
\(505\) 0 0
\(506\) −12.3212 −0.547746
\(507\) −0.520921 −0.0231349
\(508\) −6.40836 −0.284325
\(509\) 22.0663 0.978073 0.489037 0.872263i \(-0.337348\pi\)
0.489037 + 0.872263i \(0.337348\pi\)
\(510\) 0 0
\(511\) −13.5605 −0.599882
\(512\) 20.3111 0.897633
\(513\) 0 0
\(514\) 5.73990 0.253176
\(515\) 0 0
\(516\) 12.3680 0.544470
\(517\) −19.8529 −0.873131
\(518\) −6.62166 −0.290939
\(519\) 23.6225 1.03691
\(520\) 0 0
\(521\) 14.7781 0.647442 0.323721 0.946153i \(-0.395066\pi\)
0.323721 + 0.946153i \(0.395066\pi\)
\(522\) −2.42922 −0.106324
\(523\) −12.7100 −0.555768 −0.277884 0.960615i \(-0.589633\pi\)
−0.277884 + 0.960615i \(0.589633\pi\)
\(524\) −4.60916 −0.201352
\(525\) 0 0
\(526\) −4.02903 −0.175674
\(527\) 4.64348 0.202273
\(528\) −18.2476 −0.794124
\(529\) 35.7294 1.55345
\(530\) 0 0
\(531\) 26.1301 1.13395
\(532\) 0 0
\(533\) 24.0556 1.04196
\(534\) 2.28395 0.0988361
\(535\) 0 0
\(536\) 13.5979 0.587339
\(537\) −23.9648 −1.03416
\(538\) −0.0486866 −0.00209903
\(539\) −19.4361 −0.837172
\(540\) 0 0
\(541\) −30.2345 −1.29988 −0.649941 0.759985i \(-0.725206\pi\)
−0.649941 + 0.759985i \(0.725206\pi\)
\(542\) 8.65473 0.371752
\(543\) 16.4433 0.705649
\(544\) 3.52776 0.151251
\(545\) 0 0
\(546\) 3.71498 0.158987
\(547\) −7.80744 −0.333822 −0.166911 0.985972i \(-0.553379\pi\)
−0.166911 + 0.985972i \(0.553379\pi\)
\(548\) −21.9233 −0.936517
\(549\) −11.9024 −0.507980
\(550\) 0 0
\(551\) 0 0
\(552\) −9.58359 −0.407905
\(553\) −9.47467 −0.402904
\(554\) 0.163040 0.00692689
\(555\) 0 0
\(556\) −13.4662 −0.571095
\(557\) −2.41495 −0.102325 −0.0511623 0.998690i \(-0.516293\pi\)
−0.0511623 + 0.998690i \(0.516293\pi\)
\(558\) −2.77599 −0.117517
\(559\) −22.3048 −0.943392
\(560\) 0 0
\(561\) −5.37150 −0.226785
\(562\) 1.52078 0.0641500
\(563\) 25.3392 1.06792 0.533960 0.845510i \(-0.320703\pi\)
0.533960 + 0.845510i \(0.320703\pi\)
\(564\) −7.52946 −0.317047
\(565\) 0 0
\(566\) 5.56218 0.233796
\(567\) 1.90181 0.0798685
\(568\) −0.553006 −0.0232036
\(569\) 45.1046 1.89088 0.945441 0.325793i \(-0.105631\pi\)
0.945441 + 0.325793i \(0.105631\pi\)
\(570\) 0 0
\(571\) −9.73299 −0.407313 −0.203656 0.979042i \(-0.565283\pi\)
−0.203656 + 0.979042i \(0.565283\pi\)
\(572\) 34.7661 1.45365
\(573\) −2.51897 −0.105232
\(574\) 6.94541 0.289896
\(575\) 0 0
\(576\) 11.1903 0.466262
\(577\) 8.83145 0.367658 0.183829 0.982958i \(-0.441151\pi\)
0.183829 + 0.982958i \(0.441151\pi\)
\(578\) −4.97192 −0.206805
\(579\) −19.6138 −0.815123
\(580\) 0 0
\(581\) 18.0441 0.748596
\(582\) −3.46823 −0.143763
\(583\) 36.7900 1.52369
\(584\) 5.01978 0.207720
\(585\) 0 0
\(586\) 2.25677 0.0932265
\(587\) 26.9932 1.11413 0.557065 0.830469i \(-0.311927\pi\)
0.557065 + 0.830469i \(0.311927\pi\)
\(588\) −7.37137 −0.303990
\(589\) 0 0
\(590\) 0 0
\(591\) 6.36978 0.262018
\(592\) −22.2461 −0.914308
\(593\) 21.2339 0.871974 0.435987 0.899953i \(-0.356399\pi\)
0.435987 + 0.899953i \(0.356399\pi\)
\(594\) 8.17847 0.335567
\(595\) 0 0
\(596\) −24.2650 −0.993934
\(597\) 7.42562 0.303910
\(598\) 8.42738 0.344621
\(599\) 30.3294 1.23922 0.619612 0.784908i \(-0.287290\pi\)
0.619612 + 0.784908i \(0.287290\pi\)
\(600\) 0 0
\(601\) 10.7285 0.437624 0.218812 0.975767i \(-0.429782\pi\)
0.218812 + 0.975767i \(0.429782\pi\)
\(602\) −6.43991 −0.262471
\(603\) 21.7177 0.884415
\(604\) −37.3717 −1.52063
\(605\) 0 0
\(606\) −1.98008 −0.0804352
\(607\) 8.81498 0.357789 0.178894 0.983868i \(-0.442748\pi\)
0.178894 + 0.983868i \(0.442748\pi\)
\(608\) 0 0
\(609\) 13.6010 0.551142
\(610\) 0 0
\(611\) 13.5788 0.549341
\(612\) 3.72543 0.150591
\(613\) −24.1307 −0.974631 −0.487315 0.873226i \(-0.662024\pi\)
−0.487315 + 0.873226i \(0.662024\pi\)
\(614\) 4.47383 0.180549
\(615\) 0 0
\(616\) 20.5861 0.829436
\(617\) 15.4650 0.622595 0.311298 0.950312i \(-0.399236\pi\)
0.311298 + 0.950312i \(0.399236\pi\)
\(618\) 5.87008 0.236129
\(619\) 0.0390990 0.00157152 0.000785761 1.00000i \(-0.499750\pi\)
0.000785761 1.00000i \(0.499750\pi\)
\(620\) 0 0
\(621\) −38.9828 −1.56433
\(622\) 2.65247 0.106354
\(623\) 23.3847 0.936889
\(624\) 12.4808 0.499633
\(625\) 0 0
\(626\) 6.64584 0.265621
\(627\) 0 0
\(628\) 5.87120 0.234286
\(629\) −6.54853 −0.261107
\(630\) 0 0
\(631\) 6.73516 0.268122 0.134061 0.990973i \(-0.457198\pi\)
0.134061 + 0.990973i \(0.457198\pi\)
\(632\) 3.50730 0.139513
\(633\) 20.2328 0.804182
\(634\) 8.73989 0.347105
\(635\) 0 0
\(636\) 13.9530 0.553274
\(637\) 13.2937 0.526717
\(638\) −6.47301 −0.256269
\(639\) −0.883229 −0.0349400
\(640\) 0 0
\(641\) −27.5788 −1.08930 −0.544649 0.838664i \(-0.683337\pi\)
−0.544649 + 0.838664i \(0.683337\pi\)
\(642\) 2.79843 0.110445
\(643\) −11.9081 −0.469611 −0.234806 0.972042i \(-0.575445\pi\)
−0.234806 + 0.972042i \(0.575445\pi\)
\(644\) −47.8453 −1.88537
\(645\) 0 0
\(646\) 0 0
\(647\) 11.6648 0.458590 0.229295 0.973357i \(-0.426358\pi\)
0.229295 + 0.973357i \(0.426358\pi\)
\(648\) −0.704005 −0.0276559
\(649\) 69.6273 2.73311
\(650\) 0 0
\(651\) 15.5426 0.609161
\(652\) −42.7692 −1.67497
\(653\) 40.7527 1.59477 0.797387 0.603468i \(-0.206215\pi\)
0.797387 + 0.603468i \(0.206215\pi\)
\(654\) 1.95335 0.0763819
\(655\) 0 0
\(656\) 23.3337 0.911029
\(657\) 8.01730 0.312785
\(658\) 3.92053 0.152838
\(659\) 23.1446 0.901585 0.450793 0.892629i \(-0.351141\pi\)
0.450793 + 0.892629i \(0.351141\pi\)
\(660\) 0 0
\(661\) −4.88970 −0.190187 −0.0950936 0.995468i \(-0.530315\pi\)
−0.0950936 + 0.995468i \(0.530315\pi\)
\(662\) −4.72029 −0.183459
\(663\) 3.67395 0.142685
\(664\) −6.67950 −0.259215
\(665\) 0 0
\(666\) 3.91488 0.151699
\(667\) 30.8537 1.19466
\(668\) −20.0594 −0.776120
\(669\) −11.6719 −0.451263
\(670\) 0 0
\(671\) −31.7155 −1.22436
\(672\) 11.8081 0.455506
\(673\) 29.5149 1.13771 0.568857 0.822436i \(-0.307386\pi\)
0.568857 + 0.822436i \(0.307386\pi\)
\(674\) −5.44464 −0.209720
\(675\) 0 0
\(676\) 0.962701 0.0370270
\(677\) −29.4248 −1.13089 −0.565443 0.824788i \(-0.691295\pi\)
−0.565443 + 0.824788i \(0.691295\pi\)
\(678\) 3.31421 0.127282
\(679\) −35.5103 −1.36276
\(680\) 0 0
\(681\) −11.4691 −0.439498
\(682\) −7.39703 −0.283247
\(683\) 29.9433 1.14575 0.572875 0.819643i \(-0.305828\pi\)
0.572875 + 0.819643i \(0.305828\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −3.30566 −0.126211
\(687\) 3.61699 0.137997
\(688\) −21.6355 −0.824844
\(689\) −25.1633 −0.958645
\(690\) 0 0
\(691\) −24.2225 −0.921467 −0.460733 0.887539i \(-0.652414\pi\)
−0.460733 + 0.887539i \(0.652414\pi\)
\(692\) −43.6561 −1.65956
\(693\) 32.8789 1.24896
\(694\) −5.40354 −0.205116
\(695\) 0 0
\(696\) −5.03478 −0.190843
\(697\) 6.86870 0.260171
\(698\) −10.6574 −0.403389
\(699\) −6.37465 −0.241111
\(700\) 0 0
\(701\) −14.8539 −0.561024 −0.280512 0.959851i \(-0.590504\pi\)
−0.280512 + 0.959851i \(0.590504\pi\)
\(702\) −5.59384 −0.211126
\(703\) 0 0
\(704\) 29.8182 1.12381
\(705\) 0 0
\(706\) −10.8666 −0.408970
\(707\) −20.2735 −0.762463
\(708\) 26.4070 0.992434
\(709\) −29.8009 −1.11920 −0.559598 0.828764i \(-0.689044\pi\)
−0.559598 + 0.828764i \(0.689044\pi\)
\(710\) 0 0
\(711\) 5.60165 0.210078
\(712\) −8.65647 −0.324415
\(713\) 35.2581 1.32043
\(714\) 1.06076 0.0396978
\(715\) 0 0
\(716\) 44.2888 1.65515
\(717\) 12.4838 0.466216
\(718\) −0.303811 −0.0113381
\(719\) −25.8925 −0.965628 −0.482814 0.875723i \(-0.660385\pi\)
−0.482814 + 0.875723i \(0.660385\pi\)
\(720\) 0 0
\(721\) 60.1021 2.23832
\(722\) 0 0
\(723\) 5.25426 0.195408
\(724\) −30.3884 −1.12938
\(725\) 0 0
\(726\) 5.03248 0.186773
\(727\) −9.34885 −0.346729 −0.173365 0.984858i \(-0.555464\pi\)
−0.173365 + 0.984858i \(0.555464\pi\)
\(728\) −14.0803 −0.521850
\(729\) 14.5913 0.540419
\(730\) 0 0
\(731\) −6.36879 −0.235558
\(732\) −12.0285 −0.444586
\(733\) −7.20434 −0.266098 −0.133049 0.991109i \(-0.542477\pi\)
−0.133049 + 0.991109i \(0.542477\pi\)
\(734\) −3.06950 −0.113297
\(735\) 0 0
\(736\) 26.7864 0.987360
\(737\) 57.8701 2.13167
\(738\) −4.10629 −0.151155
\(739\) 12.9740 0.477258 0.238629 0.971111i \(-0.423302\pi\)
0.238629 + 0.971111i \(0.423302\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −7.26523 −0.266715
\(743\) 9.23100 0.338652 0.169326 0.985560i \(-0.445841\pi\)
0.169326 + 0.985560i \(0.445841\pi\)
\(744\) −5.75349 −0.210933
\(745\) 0 0
\(746\) −4.02950 −0.147530
\(747\) −10.6681 −0.390326
\(748\) 9.92694 0.362965
\(749\) 28.6523 1.04693
\(750\) 0 0
\(751\) −14.9226 −0.544534 −0.272267 0.962222i \(-0.587773\pi\)
−0.272267 + 0.962222i \(0.587773\pi\)
\(752\) 13.1714 0.480310
\(753\) 26.1829 0.954157
\(754\) 4.42736 0.161235
\(755\) 0 0
\(756\) 31.7583 1.15504
\(757\) −24.4976 −0.890382 −0.445191 0.895436i \(-0.646864\pi\)
−0.445191 + 0.895436i \(0.646864\pi\)
\(758\) −1.62273 −0.0589402
\(759\) −40.7860 −1.48044
\(760\) 0 0
\(761\) −15.8968 −0.576260 −0.288130 0.957591i \(-0.593034\pi\)
−0.288130 + 0.957591i \(0.593034\pi\)
\(762\) 1.07879 0.0390805
\(763\) 19.9998 0.724041
\(764\) 4.65525 0.168421
\(765\) 0 0
\(766\) 10.4319 0.376919
\(767\) −47.6231 −1.71957
\(768\) 9.06916 0.327255
\(769\) −29.5850 −1.06686 −0.533432 0.845843i \(-0.679098\pi\)
−0.533432 + 0.845843i \(0.679098\pi\)
\(770\) 0 0
\(771\) 19.0003 0.684280
\(772\) 36.2478 1.30459
\(773\) 14.1310 0.508257 0.254129 0.967170i \(-0.418211\pi\)
0.254129 + 0.967170i \(0.418211\pi\)
\(774\) 3.80743 0.136855
\(775\) 0 0
\(776\) 13.1451 0.471880
\(777\) −21.9191 −0.786345
\(778\) 8.63032 0.309412
\(779\) 0 0
\(780\) 0 0
\(781\) −2.35349 −0.0842145
\(782\) 2.40631 0.0860494
\(783\) −20.4798 −0.731887
\(784\) 12.8948 0.460529
\(785\) 0 0
\(786\) 0.775912 0.0276759
\(787\) 24.2465 0.864293 0.432146 0.901803i \(-0.357756\pi\)
0.432146 + 0.901803i \(0.357756\pi\)
\(788\) −11.7718 −0.419354
\(789\) −13.3370 −0.474809
\(790\) 0 0
\(791\) 33.9333 1.20653
\(792\) −12.1710 −0.432477
\(793\) 21.6925 0.770324
\(794\) 1.71091 0.0607180
\(795\) 0 0
\(796\) −13.7231 −0.486402
\(797\) −27.9258 −0.989184 −0.494592 0.869125i \(-0.664682\pi\)
−0.494592 + 0.869125i \(0.664682\pi\)
\(798\) 0 0
\(799\) 3.87723 0.137166
\(800\) 0 0
\(801\) −13.8256 −0.488504
\(802\) 2.64849 0.0935214
\(803\) 21.3633 0.753893
\(804\) 21.9479 0.774043
\(805\) 0 0
\(806\) 5.05936 0.178208
\(807\) −0.161163 −0.00567321
\(808\) 7.50476 0.264017
\(809\) 8.78914 0.309010 0.154505 0.987992i \(-0.450622\pi\)
0.154505 + 0.987992i \(0.450622\pi\)
\(810\) 0 0
\(811\) 14.0993 0.495092 0.247546 0.968876i \(-0.420376\pi\)
0.247546 + 0.968876i \(0.420376\pi\)
\(812\) −25.1357 −0.882091
\(813\) 28.6490 1.00477
\(814\) 10.4318 0.365633
\(815\) 0 0
\(816\) 3.56370 0.124755
\(817\) 0 0
\(818\) 6.67967 0.233549
\(819\) −22.4882 −0.785801
\(820\) 0 0
\(821\) −30.5326 −1.06559 −0.532797 0.846243i \(-0.678859\pi\)
−0.532797 + 0.846243i \(0.678859\pi\)
\(822\) 3.69060 0.128725
\(823\) 14.3583 0.500498 0.250249 0.968182i \(-0.419488\pi\)
0.250249 + 0.968182i \(0.419488\pi\)
\(824\) −22.2484 −0.775059
\(825\) 0 0
\(826\) −13.7499 −0.478420
\(827\) −8.27364 −0.287703 −0.143851 0.989599i \(-0.545949\pi\)
−0.143851 + 0.989599i \(0.545949\pi\)
\(828\) 28.2873 0.983052
\(829\) −13.1498 −0.456710 −0.228355 0.973578i \(-0.573335\pi\)
−0.228355 + 0.973578i \(0.573335\pi\)
\(830\) 0 0
\(831\) 0.539697 0.0187219
\(832\) −20.3948 −0.707062
\(833\) 3.79582 0.131517
\(834\) 2.26693 0.0784972
\(835\) 0 0
\(836\) 0 0
\(837\) −23.4032 −0.808934
\(838\) −1.58472 −0.0547431
\(839\) 8.41534 0.290530 0.145265 0.989393i \(-0.453597\pi\)
0.145265 + 0.989393i \(0.453597\pi\)
\(840\) 0 0
\(841\) −12.7909 −0.441064
\(842\) −1.76032 −0.0606646
\(843\) 5.03410 0.173384
\(844\) −37.3918 −1.28708
\(845\) 0 0
\(846\) −2.31791 −0.0796914
\(847\) 51.5262 1.77046
\(848\) −24.4082 −0.838181
\(849\) 18.4120 0.631899
\(850\) 0 0
\(851\) −49.7232 −1.70449
\(852\) −0.892589 −0.0305796
\(853\) −52.0363 −1.78169 −0.890845 0.454308i \(-0.849887\pi\)
−0.890845 + 0.454308i \(0.849887\pi\)
\(854\) 6.26314 0.214320
\(855\) 0 0
\(856\) −10.6064 −0.362520
\(857\) −21.4595 −0.733043 −0.366522 0.930410i \(-0.619451\pi\)
−0.366522 + 0.930410i \(0.619451\pi\)
\(858\) −5.85259 −0.199804
\(859\) 18.1479 0.619199 0.309599 0.950867i \(-0.399805\pi\)
0.309599 + 0.950867i \(0.399805\pi\)
\(860\) 0 0
\(861\) 22.9908 0.783525
\(862\) 11.9362 0.406549
\(863\) −13.7867 −0.469303 −0.234652 0.972080i \(-0.575395\pi\)
−0.234652 + 0.972080i \(0.575395\pi\)
\(864\) −17.7800 −0.604888
\(865\) 0 0
\(866\) 2.16609 0.0736066
\(867\) −16.4581 −0.558948
\(868\) −28.7238 −0.974951
\(869\) 14.9264 0.506343
\(870\) 0 0
\(871\) −39.5815 −1.34117
\(872\) −7.40345 −0.250712
\(873\) 20.9945 0.710557
\(874\) 0 0
\(875\) 0 0
\(876\) 8.10226 0.273750
\(877\) −21.1937 −0.715660 −0.357830 0.933787i \(-0.616483\pi\)
−0.357830 + 0.933787i \(0.616483\pi\)
\(878\) −2.96390 −0.100027
\(879\) 7.47041 0.251971
\(880\) 0 0
\(881\) 44.5944 1.50242 0.751212 0.660061i \(-0.229469\pi\)
0.751212 + 0.660061i \(0.229469\pi\)
\(882\) −2.26924 −0.0764093
\(883\) −1.69355 −0.0569924 −0.0284962 0.999594i \(-0.509072\pi\)
−0.0284962 + 0.999594i \(0.509072\pi\)
\(884\) −6.78974 −0.228364
\(885\) 0 0
\(886\) −10.7966 −0.362720
\(887\) 48.4354 1.62630 0.813151 0.582053i \(-0.197750\pi\)
0.813151 + 0.582053i \(0.197750\pi\)
\(888\) 8.11394 0.272286
\(889\) 11.0455 0.370453
\(890\) 0 0
\(891\) −2.99611 −0.100374
\(892\) 21.5706 0.722238
\(893\) 0 0
\(894\) 4.08481 0.136617
\(895\) 0 0
\(896\) −28.8204 −0.962822
\(897\) 27.8965 0.931436
\(898\) 2.75090 0.0917988
\(899\) 18.5230 0.617776
\(900\) 0 0
\(901\) −7.18499 −0.239367
\(902\) −10.9418 −0.364322
\(903\) −21.3175 −0.709402
\(904\) −12.5613 −0.417783
\(905\) 0 0
\(906\) 6.29122 0.209012
\(907\) 27.9388 0.927692 0.463846 0.885916i \(-0.346469\pi\)
0.463846 + 0.885916i \(0.346469\pi\)
\(908\) 21.1958 0.703408
\(909\) 11.9862 0.397556
\(910\) 0 0
\(911\) −45.0862 −1.49377 −0.746887 0.664951i \(-0.768452\pi\)
−0.746887 + 0.664951i \(0.768452\pi\)
\(912\) 0 0
\(913\) −28.4267 −0.940787
\(914\) −0.206886 −0.00684318
\(915\) 0 0
\(916\) −6.68448 −0.220861
\(917\) 7.94436 0.262346
\(918\) −1.59723 −0.0527166
\(919\) −5.86849 −0.193584 −0.0967918 0.995305i \(-0.530858\pi\)
−0.0967918 + 0.995305i \(0.530858\pi\)
\(920\) 0 0
\(921\) 14.8093 0.487984
\(922\) −12.3010 −0.405111
\(923\) 1.60972 0.0529846
\(924\) 33.2273 1.09310
\(925\) 0 0
\(926\) 4.84651 0.159266
\(927\) −35.5338 −1.16708
\(928\) 14.0723 0.461947
\(929\) 46.6314 1.52993 0.764963 0.644075i \(-0.222757\pi\)
0.764963 + 0.644075i \(0.222757\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 11.7808 0.385894
\(933\) 8.78026 0.287453
\(934\) −12.7666 −0.417735
\(935\) 0 0
\(936\) 8.32460 0.272098
\(937\) 51.2940 1.67570 0.837850 0.545900i \(-0.183812\pi\)
0.837850 + 0.545900i \(0.183812\pi\)
\(938\) −11.4281 −0.373140
\(939\) 21.9992 0.717916
\(940\) 0 0
\(941\) 11.3486 0.369954 0.184977 0.982743i \(-0.440779\pi\)
0.184977 + 0.982743i \(0.440779\pi\)
\(942\) −0.988367 −0.0322027
\(943\) 52.1543 1.69838
\(944\) −46.1940 −1.50349
\(945\) 0 0
\(946\) 10.1454 0.329857
\(947\) 7.20935 0.234272 0.117136 0.993116i \(-0.462629\pi\)
0.117136 + 0.993116i \(0.462629\pi\)
\(948\) 5.66101 0.183861
\(949\) −14.6119 −0.474321
\(950\) 0 0
\(951\) 28.9309 0.938150
\(952\) −4.02041 −0.130302
\(953\) 20.5394 0.665338 0.332669 0.943044i \(-0.392051\pi\)
0.332669 + 0.943044i \(0.392051\pi\)
\(954\) 4.29538 0.139068
\(955\) 0 0
\(956\) −23.0710 −0.746170
\(957\) −21.4271 −0.692639
\(958\) −7.32930 −0.236799
\(959\) 37.7871 1.22021
\(960\) 0 0
\(961\) −9.83289 −0.317190
\(962\) −7.13504 −0.230043
\(963\) −16.9400 −0.545882
\(964\) −9.71026 −0.312746
\(965\) 0 0
\(966\) 8.05436 0.259145
\(967\) 17.0669 0.548835 0.274417 0.961611i \(-0.411515\pi\)
0.274417 + 0.961611i \(0.411515\pi\)
\(968\) −19.0738 −0.613055
\(969\) 0 0
\(970\) 0 0
\(971\) 3.48171 0.111733 0.0558667 0.998438i \(-0.482208\pi\)
0.0558667 + 0.998438i \(0.482208\pi\)
\(972\) −30.1801 −0.968028
\(973\) 23.2104 0.744093
\(974\) −7.44065 −0.238414
\(975\) 0 0
\(976\) 21.0416 0.673524
\(977\) 21.9600 0.702562 0.351281 0.936270i \(-0.385746\pi\)
0.351281 + 0.936270i \(0.385746\pi\)
\(978\) 7.19984 0.230226
\(979\) −36.8403 −1.17742
\(980\) 0 0
\(981\) −11.8244 −0.377523
\(982\) 5.08583 0.162295
\(983\) −5.49704 −0.175328 −0.0876641 0.996150i \(-0.527940\pi\)
−0.0876641 + 0.996150i \(0.527940\pi\)
\(984\) −8.51065 −0.271310
\(985\) 0 0
\(986\) 1.26416 0.0402592
\(987\) 12.9778 0.413088
\(988\) 0 0
\(989\) −48.3584 −1.53771
\(990\) 0 0
\(991\) 29.4970 0.937003 0.468502 0.883463i \(-0.344794\pi\)
0.468502 + 0.883463i \(0.344794\pi\)
\(992\) 16.0812 0.510577
\(993\) −15.6252 −0.495850
\(994\) 0.464764 0.0147414
\(995\) 0 0
\(996\) −10.7812 −0.341614
\(997\) 7.26449 0.230069 0.115034 0.993362i \(-0.463302\pi\)
0.115034 + 0.993362i \(0.463302\pi\)
\(998\) −9.97749 −0.315832
\(999\) 33.0048 1.04422
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9025.2.a.by.1.4 6
5.4 even 2 9025.2.a.bs.1.3 6
19.8 odd 6 475.2.e.h.26.4 yes 12
19.12 odd 6 475.2.e.h.201.4 yes 12
19.18 odd 2 9025.2.a.br.1.3 6
95.8 even 12 475.2.j.d.349.7 24
95.12 even 12 475.2.j.d.49.7 24
95.27 even 12 475.2.j.d.349.6 24
95.69 odd 6 475.2.e.f.201.3 yes 12
95.84 odd 6 475.2.e.f.26.3 12
95.88 even 12 475.2.j.d.49.6 24
95.94 odd 2 9025.2.a.bz.1.4 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
475.2.e.f.26.3 12 95.84 odd 6
475.2.e.f.201.3 yes 12 95.69 odd 6
475.2.e.h.26.4 yes 12 19.8 odd 6
475.2.e.h.201.4 yes 12 19.12 odd 6
475.2.j.d.49.6 24 95.88 even 12
475.2.j.d.49.7 24 95.12 even 12
475.2.j.d.349.6 24 95.27 even 12
475.2.j.d.349.7 24 95.8 even 12
9025.2.a.br.1.3 6 19.18 odd 2
9025.2.a.bs.1.3 6 5.4 even 2
9025.2.a.by.1.4 6 1.1 even 1 trivial
9025.2.a.bz.1.4 6 95.94 odd 2