Properties

Label 9025.2.a.by.1.2
Level $9025$
Weight $2$
Character 9025.1
Self dual yes
Analytic conductor $72.065$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9025,2,Mod(1,9025)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9025, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9025.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 9025 = 5^{2} \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9025.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(72.0649878242\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.41289040.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} - 8x^{4} + 21x^{3} + 18x^{2} - 25x - 5 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 475)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-0.181608\) of defining polynomial
Character \(\chi\) \(=\) 9025.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.48119 q^{2} +2.85674 q^{3} +0.193937 q^{4} -4.23138 q^{6} -3.78541 q^{7} +2.67513 q^{8} +5.16096 q^{9} -5.59460 q^{11} +0.554026 q^{12} -4.90652 q^{13} +5.60693 q^{14} -4.35026 q^{16} -1.75019 q^{17} -7.64438 q^{18} -10.8139 q^{21} +8.28669 q^{22} +0.581537 q^{23} +7.64215 q^{24} +7.26750 q^{26} +6.17328 q^{27} -0.734130 q^{28} -1.66431 q^{29} -7.01680 q^{31} +1.09332 q^{32} -15.9823 q^{33} +2.59237 q^{34} +1.00090 q^{36} -2.36322 q^{37} -14.0166 q^{39} -0.835351 q^{41} +16.0175 q^{42} -1.07133 q^{43} -1.08500 q^{44} -0.861369 q^{46} +3.86756 q^{47} -12.4276 q^{48} +7.32934 q^{49} -4.99984 q^{51} -0.951553 q^{52} +6.79684 q^{53} -9.14383 q^{54} -10.1265 q^{56} +2.46516 q^{58} +0.408564 q^{59} +13.9603 q^{61} +10.3932 q^{62} -19.5363 q^{63} +7.08110 q^{64} +23.6729 q^{66} -0.781406 q^{67} -0.339426 q^{68} +1.66130 q^{69} -6.37838 q^{71} +13.8062 q^{72} +2.88915 q^{73} +3.50038 q^{74} +21.1779 q^{77} +20.7614 q^{78} +12.5027 q^{79} +2.15259 q^{81} +1.23732 q^{82} -10.3903 q^{83} -2.09722 q^{84} +1.58684 q^{86} -4.75449 q^{87} -14.9663 q^{88} -17.8421 q^{89} +18.5732 q^{91} +0.112781 q^{92} -20.0452 q^{93} -5.72861 q^{94} +3.12333 q^{96} -10.9999 q^{97} -10.8562 q^{98} -28.8735 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 2 q^{2} + 3 q^{3} + 2 q^{4} - q^{6} - 2 q^{7} + 6 q^{8} + 7 q^{9} - q^{11} + 7 q^{12} + 5 q^{13} + 6 q^{14} - 6 q^{16} + 3 q^{17} + 7 q^{18} - 3 q^{21} + 9 q^{22} + 6 q^{23} + 11 q^{24} + 19 q^{26}+ \cdots - 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.48119 −1.04736 −0.523681 0.851914i \(-0.675442\pi\)
−0.523681 + 0.851914i \(0.675442\pi\)
\(3\) 2.85674 1.64934 0.824669 0.565615i \(-0.191361\pi\)
0.824669 + 0.565615i \(0.191361\pi\)
\(4\) 0.193937 0.0969683
\(5\) 0 0
\(6\) −4.23138 −1.72746
\(7\) −3.78541 −1.43075 −0.715375 0.698740i \(-0.753744\pi\)
−0.715375 + 0.698740i \(0.753744\pi\)
\(8\) 2.67513 0.945802
\(9\) 5.16096 1.72032
\(10\) 0 0
\(11\) −5.59460 −1.68684 −0.843418 0.537258i \(-0.819460\pi\)
−0.843418 + 0.537258i \(0.819460\pi\)
\(12\) 0.554026 0.159934
\(13\) −4.90652 −1.36082 −0.680411 0.732830i \(-0.738199\pi\)
−0.680411 + 0.732830i \(0.738199\pi\)
\(14\) 5.60693 1.49851
\(15\) 0 0
\(16\) −4.35026 −1.08757
\(17\) −1.75019 −0.424484 −0.212242 0.977217i \(-0.568076\pi\)
−0.212242 + 0.977217i \(0.568076\pi\)
\(18\) −7.64438 −1.80180
\(19\) 0 0
\(20\) 0 0
\(21\) −10.8139 −2.35979
\(22\) 8.28669 1.76673
\(23\) 0.581537 0.121259 0.0606294 0.998160i \(-0.480689\pi\)
0.0606294 + 0.998160i \(0.480689\pi\)
\(24\) 7.64215 1.55995
\(25\) 0 0
\(26\) 7.26750 1.42527
\(27\) 6.17328 1.18805
\(28\) −0.734130 −0.138737
\(29\) −1.66431 −0.309054 −0.154527 0.987989i \(-0.549385\pi\)
−0.154527 + 0.987989i \(0.549385\pi\)
\(30\) 0 0
\(31\) −7.01680 −1.26025 −0.630127 0.776492i \(-0.716997\pi\)
−0.630127 + 0.776492i \(0.716997\pi\)
\(32\) 1.09332 0.193274
\(33\) −15.9823 −2.78216
\(34\) 2.59237 0.444588
\(35\) 0 0
\(36\) 1.00090 0.166816
\(37\) −2.36322 −0.388510 −0.194255 0.980951i \(-0.562229\pi\)
−0.194255 + 0.980951i \(0.562229\pi\)
\(38\) 0 0
\(39\) −14.0166 −2.24446
\(40\) 0 0
\(41\) −0.835351 −0.130460 −0.0652300 0.997870i \(-0.520778\pi\)
−0.0652300 + 0.997870i \(0.520778\pi\)
\(42\) 16.0175 2.47156
\(43\) −1.07133 −0.163376 −0.0816880 0.996658i \(-0.526031\pi\)
−0.0816880 + 0.996658i \(0.526031\pi\)
\(44\) −1.08500 −0.163570
\(45\) 0 0
\(46\) −0.861369 −0.127002
\(47\) 3.86756 0.564142 0.282071 0.959394i \(-0.408979\pi\)
0.282071 + 0.959394i \(0.408979\pi\)
\(48\) −12.4276 −1.79376
\(49\) 7.32934 1.04705
\(50\) 0 0
\(51\) −4.99984 −0.700117
\(52\) −0.951553 −0.131957
\(53\) 6.79684 0.933618 0.466809 0.884358i \(-0.345404\pi\)
0.466809 + 0.884358i \(0.345404\pi\)
\(54\) −9.14383 −1.24432
\(55\) 0 0
\(56\) −10.1265 −1.35321
\(57\) 0 0
\(58\) 2.46516 0.323691
\(59\) 0.408564 0.0531905 0.0265953 0.999646i \(-0.491533\pi\)
0.0265953 + 0.999646i \(0.491533\pi\)
\(60\) 0 0
\(61\) 13.9603 1.78744 0.893718 0.448630i \(-0.148088\pi\)
0.893718 + 0.448630i \(0.148088\pi\)
\(62\) 10.3932 1.31994
\(63\) −19.5363 −2.46135
\(64\) 7.08110 0.885138
\(65\) 0 0
\(66\) 23.6729 2.91393
\(67\) −0.781406 −0.0954639 −0.0477319 0.998860i \(-0.515199\pi\)
−0.0477319 + 0.998860i \(0.515199\pi\)
\(68\) −0.339426 −0.0411614
\(69\) 1.66130 0.199997
\(70\) 0 0
\(71\) −6.37838 −0.756974 −0.378487 0.925607i \(-0.623556\pi\)
−0.378487 + 0.925607i \(0.623556\pi\)
\(72\) 13.8062 1.62708
\(73\) 2.88915 0.338150 0.169075 0.985603i \(-0.445922\pi\)
0.169075 + 0.985603i \(0.445922\pi\)
\(74\) 3.50038 0.406911
\(75\) 0 0
\(76\) 0 0
\(77\) 21.1779 2.41344
\(78\) 20.7614 2.35076
\(79\) 12.5027 1.40666 0.703331 0.710862i \(-0.251695\pi\)
0.703331 + 0.710862i \(0.251695\pi\)
\(80\) 0 0
\(81\) 2.15259 0.239177
\(82\) 1.23732 0.136639
\(83\) −10.3903 −1.14048 −0.570240 0.821478i \(-0.693150\pi\)
−0.570240 + 0.821478i \(0.693150\pi\)
\(84\) −2.09722 −0.228825
\(85\) 0 0
\(86\) 1.58684 0.171114
\(87\) −4.75449 −0.509735
\(88\) −14.9663 −1.59541
\(89\) −17.8421 −1.89126 −0.945631 0.325242i \(-0.894554\pi\)
−0.945631 + 0.325242i \(0.894554\pi\)
\(90\) 0 0
\(91\) 18.5732 1.94700
\(92\) 0.112781 0.0117583
\(93\) −20.0452 −2.07859
\(94\) −5.72861 −0.590861
\(95\) 0 0
\(96\) 3.12333 0.318774
\(97\) −10.9999 −1.11687 −0.558435 0.829548i \(-0.688598\pi\)
−0.558435 + 0.829548i \(0.688598\pi\)
\(98\) −10.8562 −1.09664
\(99\) −28.8735 −2.90189
\(100\) 0 0
\(101\) 5.15888 0.513328 0.256664 0.966501i \(-0.417377\pi\)
0.256664 + 0.966501i \(0.417377\pi\)
\(102\) 7.40573 0.733277
\(103\) 7.75851 0.764469 0.382235 0.924065i \(-0.375155\pi\)
0.382235 + 0.924065i \(0.375155\pi\)
\(104\) −13.1256 −1.28707
\(105\) 0 0
\(106\) −10.0674 −0.977837
\(107\) 12.6521 1.22313 0.611564 0.791195i \(-0.290541\pi\)
0.611564 + 0.791195i \(0.290541\pi\)
\(108\) 1.19723 0.115203
\(109\) 8.19394 0.784837 0.392418 0.919787i \(-0.371639\pi\)
0.392418 + 0.919787i \(0.371639\pi\)
\(110\) 0 0
\(111\) −6.75109 −0.640785
\(112\) 16.4675 1.55604
\(113\) 12.5551 1.18108 0.590541 0.807007i \(-0.298914\pi\)
0.590541 + 0.807007i \(0.298914\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −0.322770 −0.0299684
\(117\) −25.3223 −2.34105
\(118\) −0.605163 −0.0557098
\(119\) 6.62519 0.607330
\(120\) 0 0
\(121\) 20.2996 1.84541
\(122\) −20.6779 −1.87209
\(123\) −2.38638 −0.215173
\(124\) −1.36081 −0.122205
\(125\) 0 0
\(126\) 28.9371 2.57792
\(127\) 8.15913 0.724006 0.362003 0.932177i \(-0.382093\pi\)
0.362003 + 0.932177i \(0.382093\pi\)
\(128\) −12.6751 −1.12033
\(129\) −3.06050 −0.269462
\(130\) 0 0
\(131\) 19.2498 1.68186 0.840932 0.541141i \(-0.182007\pi\)
0.840932 + 0.541141i \(0.182007\pi\)
\(132\) −3.09955 −0.269782
\(133\) 0 0
\(134\) 1.15741 0.0999853
\(135\) 0 0
\(136\) −4.68199 −0.401477
\(137\) −1.57191 −0.134297 −0.0671487 0.997743i \(-0.521390\pi\)
−0.0671487 + 0.997743i \(0.521390\pi\)
\(138\) −2.46070 −0.209469
\(139\) −2.04918 −0.173809 −0.0869047 0.996217i \(-0.527698\pi\)
−0.0869047 + 0.996217i \(0.527698\pi\)
\(140\) 0 0
\(141\) 11.0486 0.930461
\(142\) 9.44762 0.792826
\(143\) 27.4500 2.29548
\(144\) −22.4515 −1.87096
\(145\) 0 0
\(146\) −4.27940 −0.354165
\(147\) 20.9380 1.72694
\(148\) −0.458314 −0.0376732
\(149\) −1.47568 −0.120892 −0.0604461 0.998171i \(-0.519252\pi\)
−0.0604461 + 0.998171i \(0.519252\pi\)
\(150\) 0 0
\(151\) −6.42543 −0.522894 −0.261447 0.965218i \(-0.584200\pi\)
−0.261447 + 0.965218i \(0.584200\pi\)
\(152\) 0 0
\(153\) −9.03266 −0.730247
\(154\) −31.3685 −2.52775
\(155\) 0 0
\(156\) −2.71834 −0.217641
\(157\) −22.2889 −1.77885 −0.889425 0.457081i \(-0.848895\pi\)
−0.889425 + 0.457081i \(0.848895\pi\)
\(158\) −18.5189 −1.47329
\(159\) 19.4168 1.53985
\(160\) 0 0
\(161\) −2.20135 −0.173491
\(162\) −3.18841 −0.250505
\(163\) 15.0321 1.17741 0.588703 0.808350i \(-0.299639\pi\)
0.588703 + 0.808350i \(0.299639\pi\)
\(164\) −0.162005 −0.0126505
\(165\) 0 0
\(166\) 15.3900 1.19450
\(167\) 9.59857 0.742759 0.371380 0.928481i \(-0.378885\pi\)
0.371380 + 0.928481i \(0.378885\pi\)
\(168\) −28.9287 −2.23190
\(169\) 11.0739 0.851838
\(170\) 0 0
\(171\) 0 0
\(172\) −0.207770 −0.0158423
\(173\) −8.83223 −0.671502 −0.335751 0.941951i \(-0.608990\pi\)
−0.335751 + 0.941951i \(0.608990\pi\)
\(174\) 7.04232 0.533877
\(175\) 0 0
\(176\) 24.3380 1.83454
\(177\) 1.16716 0.0877292
\(178\) 26.4277 1.98084
\(179\) −10.8178 −0.808564 −0.404282 0.914634i \(-0.632478\pi\)
−0.404282 + 0.914634i \(0.632478\pi\)
\(180\) 0 0
\(181\) −10.7472 −0.798831 −0.399416 0.916770i \(-0.630787\pi\)
−0.399416 + 0.916770i \(0.630787\pi\)
\(182\) −27.5105 −2.03921
\(183\) 39.8810 2.94809
\(184\) 1.55569 0.114687
\(185\) 0 0
\(186\) 29.6908 2.17703
\(187\) 9.79162 0.716034
\(188\) 0.750062 0.0547039
\(189\) −23.3684 −1.69980
\(190\) 0 0
\(191\) −6.28362 −0.454667 −0.227334 0.973817i \(-0.573001\pi\)
−0.227334 + 0.973817i \(0.573001\pi\)
\(192\) 20.2289 1.45989
\(193\) 17.8292 1.28337 0.641686 0.766967i \(-0.278235\pi\)
0.641686 + 0.766967i \(0.278235\pi\)
\(194\) 16.2930 1.16977
\(195\) 0 0
\(196\) 1.42143 0.101530
\(197\) 16.9925 1.21066 0.605332 0.795973i \(-0.293041\pi\)
0.605332 + 0.795973i \(0.293041\pi\)
\(198\) 42.7672 3.03934
\(199\) 16.4442 1.16570 0.582850 0.812580i \(-0.301937\pi\)
0.582850 + 0.812580i \(0.301937\pi\)
\(200\) 0 0
\(201\) −2.23227 −0.157452
\(202\) −7.64131 −0.537641
\(203\) 6.30008 0.442179
\(204\) −0.969651 −0.0678892
\(205\) 0 0
\(206\) −11.4919 −0.800676
\(207\) 3.00128 0.208604
\(208\) 21.3446 1.47998
\(209\) 0 0
\(210\) 0 0
\(211\) −15.5926 −1.07344 −0.536721 0.843760i \(-0.680337\pi\)
−0.536721 + 0.843760i \(0.680337\pi\)
\(212\) 1.31816 0.0905313
\(213\) −18.2214 −1.24851
\(214\) −18.7403 −1.28106
\(215\) 0 0
\(216\) 16.5143 1.12366
\(217\) 26.5615 1.80311
\(218\) −12.1368 −0.822009
\(219\) 8.25355 0.557723
\(220\) 0 0
\(221\) 8.58734 0.577647
\(222\) 9.99967 0.671134
\(223\) 7.80626 0.522746 0.261373 0.965238i \(-0.415825\pi\)
0.261373 + 0.965238i \(0.415825\pi\)
\(224\) −4.13867 −0.276527
\(225\) 0 0
\(226\) −18.5965 −1.23702
\(227\) 16.8511 1.11845 0.559223 0.829017i \(-0.311100\pi\)
0.559223 + 0.829017i \(0.311100\pi\)
\(228\) 0 0
\(229\) −0.251385 −0.0166120 −0.00830600 0.999966i \(-0.502644\pi\)
−0.00830600 + 0.999966i \(0.502644\pi\)
\(230\) 0 0
\(231\) 60.4996 3.98058
\(232\) −4.45224 −0.292304
\(233\) −23.2029 −1.52007 −0.760035 0.649882i \(-0.774818\pi\)
−0.760035 + 0.649882i \(0.774818\pi\)
\(234\) 37.5073 2.45193
\(235\) 0 0
\(236\) 0.0792355 0.00515779
\(237\) 35.7169 2.32006
\(238\) −9.81319 −0.636095
\(239\) −7.58778 −0.490813 −0.245406 0.969420i \(-0.578921\pi\)
−0.245406 + 0.969420i \(0.578921\pi\)
\(240\) 0 0
\(241\) 5.51617 0.355328 0.177664 0.984091i \(-0.443146\pi\)
0.177664 + 0.984091i \(0.443146\pi\)
\(242\) −30.0676 −1.93282
\(243\) −12.3705 −0.793565
\(244\) 2.70742 0.173325
\(245\) 0 0
\(246\) 3.53469 0.225364
\(247\) 0 0
\(248\) −18.7708 −1.19195
\(249\) −29.6823 −1.88104
\(250\) 0 0
\(251\) −18.6587 −1.17772 −0.588862 0.808234i \(-0.700424\pi\)
−0.588862 + 0.808234i \(0.700424\pi\)
\(252\) −3.78881 −0.238673
\(253\) −3.25346 −0.204544
\(254\) −12.0853 −0.758297
\(255\) 0 0
\(256\) 4.61213 0.288258
\(257\) 0.692703 0.0432097 0.0216048 0.999767i \(-0.493122\pi\)
0.0216048 + 0.999767i \(0.493122\pi\)
\(258\) 4.53320 0.282225
\(259\) 8.94574 0.555861
\(260\) 0 0
\(261\) −8.58941 −0.531671
\(262\) −28.5127 −1.76152
\(263\) −11.6268 −0.716936 −0.358468 0.933542i \(-0.616701\pi\)
−0.358468 + 0.933542i \(0.616701\pi\)
\(264\) −42.7548 −2.63137
\(265\) 0 0
\(266\) 0 0
\(267\) −50.9703 −3.11933
\(268\) −0.151543 −0.00925697
\(269\) 23.6115 1.43962 0.719809 0.694173i \(-0.244230\pi\)
0.719809 + 0.694173i \(0.244230\pi\)
\(270\) 0 0
\(271\) −7.63990 −0.464091 −0.232046 0.972705i \(-0.574542\pi\)
−0.232046 + 0.972705i \(0.574542\pi\)
\(272\) 7.61379 0.461654
\(273\) 53.0587 3.21126
\(274\) 2.32830 0.140658
\(275\) 0 0
\(276\) 0.322186 0.0193933
\(277\) 18.6537 1.12079 0.560397 0.828224i \(-0.310648\pi\)
0.560397 + 0.828224i \(0.310648\pi\)
\(278\) 3.03524 0.182041
\(279\) −36.2134 −2.16804
\(280\) 0 0
\(281\) −13.9898 −0.834560 −0.417280 0.908778i \(-0.637017\pi\)
−0.417280 + 0.908778i \(0.637017\pi\)
\(282\) −16.3651 −0.974530
\(283\) 24.6668 1.46629 0.733143 0.680074i \(-0.238052\pi\)
0.733143 + 0.680074i \(0.238052\pi\)
\(284\) −1.23700 −0.0734025
\(285\) 0 0
\(286\) −40.6588 −2.40420
\(287\) 3.16215 0.186656
\(288\) 5.64258 0.332492
\(289\) −13.9368 −0.819814
\(290\) 0 0
\(291\) −31.4238 −1.84210
\(292\) 0.560312 0.0327898
\(293\) 10.5784 0.617994 0.308997 0.951063i \(-0.400007\pi\)
0.308997 + 0.951063i \(0.400007\pi\)
\(294\) −31.0132 −1.80873
\(295\) 0 0
\(296\) −6.32191 −0.367454
\(297\) −34.5371 −2.00404
\(298\) 2.18576 0.126618
\(299\) −2.85332 −0.165012
\(300\) 0 0
\(301\) 4.05542 0.233750
\(302\) 9.51731 0.547660
\(303\) 14.7376 0.846652
\(304\) 0 0
\(305\) 0 0
\(306\) 13.3791 0.764833
\(307\) −12.8244 −0.731930 −0.365965 0.930629i \(-0.619261\pi\)
−0.365965 + 0.930629i \(0.619261\pi\)
\(308\) 4.10716 0.234027
\(309\) 22.1640 1.26087
\(310\) 0 0
\(311\) 3.42706 0.194331 0.0971655 0.995268i \(-0.469022\pi\)
0.0971655 + 0.995268i \(0.469022\pi\)
\(312\) −37.4963 −2.12281
\(313\) −2.84448 −0.160779 −0.0803896 0.996764i \(-0.525616\pi\)
−0.0803896 + 0.996764i \(0.525616\pi\)
\(314\) 33.0142 1.86310
\(315\) 0 0
\(316\) 2.42473 0.136402
\(317\) 4.66145 0.261813 0.130907 0.991395i \(-0.458211\pi\)
0.130907 + 0.991395i \(0.458211\pi\)
\(318\) −28.7601 −1.61278
\(319\) 9.31113 0.521323
\(320\) 0 0
\(321\) 36.1438 2.01735
\(322\) 3.26063 0.181708
\(323\) 0 0
\(324\) 0.417467 0.0231926
\(325\) 0 0
\(326\) −22.2655 −1.23317
\(327\) 23.4079 1.29446
\(328\) −2.23467 −0.123389
\(329\) −14.6403 −0.807147
\(330\) 0 0
\(331\) 7.00260 0.384898 0.192449 0.981307i \(-0.438357\pi\)
0.192449 + 0.981307i \(0.438357\pi\)
\(332\) −2.01505 −0.110590
\(333\) −12.1964 −0.668361
\(334\) −14.2173 −0.777938
\(335\) 0 0
\(336\) 47.0434 2.56643
\(337\) 13.5376 0.737441 0.368721 0.929540i \(-0.379796\pi\)
0.368721 + 0.929540i \(0.379796\pi\)
\(338\) −16.4026 −0.892183
\(339\) 35.8666 1.94801
\(340\) 0 0
\(341\) 39.2562 2.12584
\(342\) 0 0
\(343\) −1.24667 −0.0673140
\(344\) −2.86594 −0.154521
\(345\) 0 0
\(346\) 13.0822 0.703306
\(347\) 21.9633 1.17905 0.589527 0.807749i \(-0.299314\pi\)
0.589527 + 0.807749i \(0.299314\pi\)
\(348\) −0.922069 −0.0494281
\(349\) −22.1930 −1.18796 −0.593981 0.804479i \(-0.702445\pi\)
−0.593981 + 0.804479i \(0.702445\pi\)
\(350\) 0 0
\(351\) −30.2893 −1.61672
\(352\) −6.11669 −0.326021
\(353\) −0.679013 −0.0361402 −0.0180701 0.999837i \(-0.505752\pi\)
−0.0180701 + 0.999837i \(0.505752\pi\)
\(354\) −1.72879 −0.0918843
\(355\) 0 0
\(356\) −3.46024 −0.183392
\(357\) 18.9264 1.00169
\(358\) 16.0233 0.846859
\(359\) −25.3255 −1.33663 −0.668314 0.743879i \(-0.732984\pi\)
−0.668314 + 0.743879i \(0.732984\pi\)
\(360\) 0 0
\(361\) 0 0
\(362\) 15.9187 0.836666
\(363\) 57.9905 3.04371
\(364\) 3.60202 0.188797
\(365\) 0 0
\(366\) −59.0715 −3.08772
\(367\) 11.6631 0.608807 0.304404 0.952543i \(-0.401543\pi\)
0.304404 + 0.952543i \(0.401543\pi\)
\(368\) −2.52984 −0.131877
\(369\) −4.31121 −0.224433
\(370\) 0 0
\(371\) −25.7288 −1.33577
\(372\) −3.88749 −0.201557
\(373\) 13.0913 0.677843 0.338921 0.940815i \(-0.389938\pi\)
0.338921 + 0.940815i \(0.389938\pi\)
\(374\) −14.5033 −0.749947
\(375\) 0 0
\(376\) 10.3462 0.533566
\(377\) 8.16594 0.420568
\(378\) 34.6132 1.78031
\(379\) 32.7566 1.68259 0.841297 0.540573i \(-0.181792\pi\)
0.841297 + 0.540573i \(0.181792\pi\)
\(380\) 0 0
\(381\) 23.3085 1.19413
\(382\) 9.30727 0.476201
\(383\) 25.6455 1.31042 0.655211 0.755446i \(-0.272580\pi\)
0.655211 + 0.755446i \(0.272580\pi\)
\(384\) −36.2095 −1.84781
\(385\) 0 0
\(386\) −26.4085 −1.34416
\(387\) −5.52907 −0.281059
\(388\) −2.13328 −0.108301
\(389\) −18.5466 −0.940349 −0.470174 0.882574i \(-0.655809\pi\)
−0.470174 + 0.882574i \(0.655809\pi\)
\(390\) 0 0
\(391\) −1.01780 −0.0514723
\(392\) 19.6069 0.990300
\(393\) 54.9917 2.77396
\(394\) −25.1691 −1.26800
\(395\) 0 0
\(396\) −5.59962 −0.281392
\(397\) 15.3961 0.772710 0.386355 0.922350i \(-0.373734\pi\)
0.386355 + 0.922350i \(0.373734\pi\)
\(398\) −24.3571 −1.22091
\(399\) 0 0
\(400\) 0 0
\(401\) 20.5913 1.02828 0.514140 0.857706i \(-0.328111\pi\)
0.514140 + 0.857706i \(0.328111\pi\)
\(402\) 3.30643 0.164910
\(403\) 34.4280 1.71498
\(404\) 1.00050 0.0497765
\(405\) 0 0
\(406\) −9.33165 −0.463122
\(407\) 13.2212 0.655353
\(408\) −13.3752 −0.662172
\(409\) 1.62384 0.0802936 0.0401468 0.999194i \(-0.487217\pi\)
0.0401468 + 0.999194i \(0.487217\pi\)
\(410\) 0 0
\(411\) −4.49054 −0.221502
\(412\) 1.50466 0.0741293
\(413\) −1.54658 −0.0761024
\(414\) −4.44548 −0.218484
\(415\) 0 0
\(416\) −5.36440 −0.263011
\(417\) −5.85398 −0.286671
\(418\) 0 0
\(419\) 16.8087 0.821161 0.410580 0.911824i \(-0.365326\pi\)
0.410580 + 0.911824i \(0.365326\pi\)
\(420\) 0 0
\(421\) −20.9436 −1.02073 −0.510365 0.859958i \(-0.670490\pi\)
−0.510365 + 0.859958i \(0.670490\pi\)
\(422\) 23.0957 1.12428
\(423\) 19.9603 0.970504
\(424\) 18.1824 0.883017
\(425\) 0 0
\(426\) 26.9894 1.30764
\(427\) −52.8455 −2.55737
\(428\) 2.45371 0.118605
\(429\) 78.4175 3.78603
\(430\) 0 0
\(431\) −33.7815 −1.62720 −0.813600 0.581425i \(-0.802495\pi\)
−0.813600 + 0.581425i \(0.802495\pi\)
\(432\) −26.8554 −1.29208
\(433\) −15.0289 −0.722241 −0.361120 0.932519i \(-0.617606\pi\)
−0.361120 + 0.932519i \(0.617606\pi\)
\(434\) −39.3427 −1.88851
\(435\) 0 0
\(436\) 1.58910 0.0761043
\(437\) 0 0
\(438\) −12.2251 −0.584139
\(439\) −37.7214 −1.80035 −0.900173 0.435532i \(-0.856560\pi\)
−0.900173 + 0.435532i \(0.856560\pi\)
\(440\) 0 0
\(441\) 37.8264 1.80126
\(442\) −12.7195 −0.605006
\(443\) −13.1144 −0.623086 −0.311543 0.950232i \(-0.600846\pi\)
−0.311543 + 0.950232i \(0.600846\pi\)
\(444\) −1.30928 −0.0621358
\(445\) 0 0
\(446\) −11.5626 −0.547504
\(447\) −4.21562 −0.199392
\(448\) −26.8049 −1.26641
\(449\) −11.6905 −0.551711 −0.275855 0.961199i \(-0.588961\pi\)
−0.275855 + 0.961199i \(0.588961\pi\)
\(450\) 0 0
\(451\) 4.67346 0.220064
\(452\) 2.43489 0.114528
\(453\) −18.3558 −0.862430
\(454\) −24.9597 −1.17142
\(455\) 0 0
\(456\) 0 0
\(457\) 21.4290 1.00240 0.501202 0.865330i \(-0.332891\pi\)
0.501202 + 0.865330i \(0.332891\pi\)
\(458\) 0.372350 0.0173988
\(459\) −10.8044 −0.504307
\(460\) 0 0
\(461\) −9.65840 −0.449837 −0.224918 0.974378i \(-0.572212\pi\)
−0.224918 + 0.974378i \(0.572212\pi\)
\(462\) −89.6117 −4.16911
\(463\) −1.24981 −0.0580838 −0.0290419 0.999578i \(-0.509246\pi\)
−0.0290419 + 0.999578i \(0.509246\pi\)
\(464\) 7.24017 0.336116
\(465\) 0 0
\(466\) 34.3680 1.59206
\(467\) 31.3476 1.45059 0.725296 0.688437i \(-0.241703\pi\)
0.725296 + 0.688437i \(0.241703\pi\)
\(468\) −4.91092 −0.227007
\(469\) 2.95794 0.136585
\(470\) 0 0
\(471\) −63.6736 −2.93393
\(472\) 1.09296 0.0503077
\(473\) 5.99365 0.275588
\(474\) −52.9037 −2.42995
\(475\) 0 0
\(476\) 1.28487 0.0588918
\(477\) 35.0782 1.60612
\(478\) 11.2390 0.514059
\(479\) 4.75460 0.217243 0.108622 0.994083i \(-0.465356\pi\)
0.108622 + 0.994083i \(0.465356\pi\)
\(480\) 0 0
\(481\) 11.5952 0.528693
\(482\) −8.17052 −0.372157
\(483\) −6.28870 −0.286146
\(484\) 3.93683 0.178947
\(485\) 0 0
\(486\) 18.3230 0.831150
\(487\) 17.0491 0.772569 0.386285 0.922380i \(-0.373758\pi\)
0.386285 + 0.922380i \(0.373758\pi\)
\(488\) 37.3457 1.69056
\(489\) 42.9428 1.94194
\(490\) 0 0
\(491\) −4.28063 −0.193182 −0.0965910 0.995324i \(-0.530794\pi\)
−0.0965910 + 0.995324i \(0.530794\pi\)
\(492\) −0.462806 −0.0208649
\(493\) 2.91285 0.131188
\(494\) 0 0
\(495\) 0 0
\(496\) 30.5249 1.37061
\(497\) 24.1448 1.08304
\(498\) 43.9652 1.97013
\(499\) −4.82567 −0.216027 −0.108013 0.994149i \(-0.534449\pi\)
−0.108013 + 0.994149i \(0.534449\pi\)
\(500\) 0 0
\(501\) 27.4206 1.22506
\(502\) 27.6371 1.23350
\(503\) 24.2736 1.08231 0.541153 0.840924i \(-0.317988\pi\)
0.541153 + 0.840924i \(0.317988\pi\)
\(504\) −52.2623 −2.32795
\(505\) 0 0
\(506\) 4.81901 0.214231
\(507\) 31.6352 1.40497
\(508\) 1.58235 0.0702056
\(509\) 10.1138 0.448286 0.224143 0.974556i \(-0.428042\pi\)
0.224143 + 0.974556i \(0.428042\pi\)
\(510\) 0 0
\(511\) −10.9366 −0.483808
\(512\) 18.5188 0.818423
\(513\) 0 0
\(514\) −1.02603 −0.0452562
\(515\) 0 0
\(516\) −0.593543 −0.0261293
\(517\) −21.6375 −0.951615
\(518\) −13.2504 −0.582188
\(519\) −25.2314 −1.10753
\(520\) 0 0
\(521\) −29.3729 −1.28685 −0.643426 0.765508i \(-0.722487\pi\)
−0.643426 + 0.765508i \(0.722487\pi\)
\(522\) 12.7226 0.556852
\(523\) −11.2000 −0.489740 −0.244870 0.969556i \(-0.578745\pi\)
−0.244870 + 0.969556i \(0.578745\pi\)
\(524\) 3.73324 0.163087
\(525\) 0 0
\(526\) 17.2215 0.750892
\(527\) 12.2807 0.534957
\(528\) 69.5272 3.02578
\(529\) −22.6618 −0.985296
\(530\) 0 0
\(531\) 2.10858 0.0915046
\(532\) 0 0
\(533\) 4.09866 0.177533
\(534\) 75.4969 3.26707
\(535\) 0 0
\(536\) −2.09036 −0.0902899
\(537\) −30.9037 −1.33360
\(538\) −34.9732 −1.50780
\(539\) −41.0047 −1.76620
\(540\) 0 0
\(541\) 5.69382 0.244797 0.122398 0.992481i \(-0.460941\pi\)
0.122398 + 0.992481i \(0.460941\pi\)
\(542\) 11.3162 0.486072
\(543\) −30.7019 −1.31754
\(544\) −1.91352 −0.0820415
\(545\) 0 0
\(546\) −78.5903 −3.36335
\(547\) 11.9818 0.512303 0.256151 0.966637i \(-0.417545\pi\)
0.256151 + 0.966637i \(0.417545\pi\)
\(548\) −0.304851 −0.0130226
\(549\) 72.0486 3.07496
\(550\) 0 0
\(551\) 0 0
\(552\) 4.44419 0.189157
\(553\) −47.3278 −2.01258
\(554\) −27.6298 −1.17388
\(555\) 0 0
\(556\) −0.397411 −0.0168540
\(557\) 34.5573 1.46424 0.732119 0.681177i \(-0.238531\pi\)
0.732119 + 0.681177i \(0.238531\pi\)
\(558\) 53.6390 2.27072
\(559\) 5.25649 0.222326
\(560\) 0 0
\(561\) 27.9721 1.18098
\(562\) 20.7216 0.874087
\(563\) 24.8817 1.04864 0.524318 0.851522i \(-0.324320\pi\)
0.524318 + 0.851522i \(0.324320\pi\)
\(564\) 2.14273 0.0902252
\(565\) 0 0
\(566\) −36.5363 −1.53573
\(567\) −8.14845 −0.342203
\(568\) −17.0630 −0.715947
\(569\) 38.7345 1.62384 0.811918 0.583771i \(-0.198423\pi\)
0.811918 + 0.583771i \(0.198423\pi\)
\(570\) 0 0
\(571\) −4.53514 −0.189790 −0.0948948 0.995487i \(-0.530251\pi\)
−0.0948948 + 0.995487i \(0.530251\pi\)
\(572\) 5.32356 0.222589
\(573\) −17.9507 −0.749900
\(574\) −4.68376 −0.195496
\(575\) 0 0
\(576\) 36.5453 1.52272
\(577\) −21.9514 −0.913847 −0.456923 0.889506i \(-0.651049\pi\)
−0.456923 + 0.889506i \(0.651049\pi\)
\(578\) 20.6432 0.858642
\(579\) 50.9333 2.11672
\(580\) 0 0
\(581\) 39.3314 1.63174
\(582\) 46.5448 1.92934
\(583\) −38.0256 −1.57486
\(584\) 7.72886 0.319823
\(585\) 0 0
\(586\) −15.6686 −0.647264
\(587\) −41.0464 −1.69417 −0.847084 0.531460i \(-0.821644\pi\)
−0.847084 + 0.531460i \(0.821644\pi\)
\(588\) 4.06064 0.167458
\(589\) 0 0
\(590\) 0 0
\(591\) 48.5430 1.99679
\(592\) 10.2806 0.422530
\(593\) −9.71964 −0.399138 −0.199569 0.979884i \(-0.563954\pi\)
−0.199569 + 0.979884i \(0.563954\pi\)
\(594\) 51.1561 2.09896
\(595\) 0 0
\(596\) −0.286188 −0.0117227
\(597\) 46.9769 1.92264
\(598\) 4.22632 0.172827
\(599\) 30.4494 1.24413 0.622065 0.782966i \(-0.286294\pi\)
0.622065 + 0.782966i \(0.286294\pi\)
\(600\) 0 0
\(601\) −24.5483 −1.00135 −0.500673 0.865637i \(-0.666914\pi\)
−0.500673 + 0.865637i \(0.666914\pi\)
\(602\) −6.00686 −0.244821
\(603\) −4.03280 −0.164228
\(604\) −1.24613 −0.0507042
\(605\) 0 0
\(606\) −21.8292 −0.886751
\(607\) −39.0162 −1.58362 −0.791810 0.610767i \(-0.790861\pi\)
−0.791810 + 0.610767i \(0.790861\pi\)
\(608\) 0 0
\(609\) 17.9977 0.729303
\(610\) 0 0
\(611\) −18.9763 −0.767697
\(612\) −1.75176 −0.0708108
\(613\) 4.97416 0.200904 0.100452 0.994942i \(-0.467971\pi\)
0.100452 + 0.994942i \(0.467971\pi\)
\(614\) 18.9955 0.766596
\(615\) 0 0
\(616\) 56.6536 2.28264
\(617\) −38.6420 −1.55567 −0.777834 0.628470i \(-0.783682\pi\)
−0.777834 + 0.628470i \(0.783682\pi\)
\(618\) −32.8293 −1.32059
\(619\) −27.9053 −1.12161 −0.560804 0.827949i \(-0.689508\pi\)
−0.560804 + 0.827949i \(0.689508\pi\)
\(620\) 0 0
\(621\) 3.58999 0.144061
\(622\) −5.07615 −0.203535
\(623\) 67.5398 2.70592
\(624\) 60.9760 2.44099
\(625\) 0 0
\(626\) 4.21322 0.168394
\(627\) 0 0
\(628\) −4.32264 −0.172492
\(629\) 4.13608 0.164916
\(630\) 0 0
\(631\) −13.2402 −0.527085 −0.263543 0.964648i \(-0.584891\pi\)
−0.263543 + 0.964648i \(0.584891\pi\)
\(632\) 33.4463 1.33042
\(633\) −44.5441 −1.77047
\(634\) −6.90451 −0.274213
\(635\) 0 0
\(636\) 3.76563 0.149317
\(637\) −35.9615 −1.42485
\(638\) −13.7916 −0.546014
\(639\) −32.9185 −1.30224
\(640\) 0 0
\(641\) −37.5109 −1.48159 −0.740796 0.671730i \(-0.765552\pi\)
−0.740796 + 0.671730i \(0.765552\pi\)
\(642\) −53.5360 −2.11290
\(643\) −24.3939 −0.962000 −0.481000 0.876721i \(-0.659726\pi\)
−0.481000 + 0.876721i \(0.659726\pi\)
\(644\) −0.426923 −0.0168231
\(645\) 0 0
\(646\) 0 0
\(647\) 8.05266 0.316583 0.158291 0.987392i \(-0.449401\pi\)
0.158291 + 0.987392i \(0.449401\pi\)
\(648\) 5.75847 0.226214
\(649\) −2.28575 −0.0897237
\(650\) 0 0
\(651\) 75.8791 2.97394
\(652\) 2.91528 0.114171
\(653\) −19.9890 −0.782228 −0.391114 0.920342i \(-0.627910\pi\)
−0.391114 + 0.920342i \(0.627910\pi\)
\(654\) −34.6717 −1.35577
\(655\) 0 0
\(656\) 3.63400 0.141884
\(657\) 14.9108 0.581725
\(658\) 21.6852 0.845375
\(659\) 32.4393 1.26366 0.631829 0.775108i \(-0.282305\pi\)
0.631829 + 0.775108i \(0.282305\pi\)
\(660\) 0 0
\(661\) 35.5542 1.38290 0.691448 0.722426i \(-0.256973\pi\)
0.691448 + 0.722426i \(0.256973\pi\)
\(662\) −10.3722 −0.403127
\(663\) 24.5318 0.952735
\(664\) −27.7953 −1.07867
\(665\) 0 0
\(666\) 18.0653 0.700017
\(667\) −0.967855 −0.0374755
\(668\) 1.86151 0.0720241
\(669\) 22.3004 0.862185
\(670\) 0 0
\(671\) −78.1024 −3.01511
\(672\) −11.8231 −0.456086
\(673\) −27.5963 −1.06376 −0.531880 0.846820i \(-0.678514\pi\)
−0.531880 + 0.846820i \(0.678514\pi\)
\(674\) −20.0518 −0.772368
\(675\) 0 0
\(676\) 2.14763 0.0826013
\(677\) −21.2114 −0.815221 −0.407610 0.913156i \(-0.633638\pi\)
−0.407610 + 0.913156i \(0.633638\pi\)
\(678\) −53.1254 −2.04027
\(679\) 41.6391 1.59796
\(680\) 0 0
\(681\) 48.1391 1.84470
\(682\) −58.1460 −2.22653
\(683\) −19.3626 −0.740891 −0.370446 0.928854i \(-0.620795\pi\)
−0.370446 + 0.928854i \(0.620795\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 1.84656 0.0705021
\(687\) −0.718142 −0.0273988
\(688\) 4.66056 0.177682
\(689\) −33.3488 −1.27049
\(690\) 0 0
\(691\) −1.28081 −0.0487241 −0.0243621 0.999703i \(-0.507755\pi\)
−0.0243621 + 0.999703i \(0.507755\pi\)
\(692\) −1.71289 −0.0651144
\(693\) 109.298 4.15189
\(694\) −32.5320 −1.23490
\(695\) 0 0
\(696\) −12.7189 −0.482108
\(697\) 1.46202 0.0553781
\(698\) 32.8721 1.24423
\(699\) −66.2845 −2.50711
\(700\) 0 0
\(701\) −37.1297 −1.40237 −0.701185 0.712979i \(-0.747345\pi\)
−0.701185 + 0.712979i \(0.747345\pi\)
\(702\) 44.8644 1.69330
\(703\) 0 0
\(704\) −39.6159 −1.49308
\(705\) 0 0
\(706\) 1.00575 0.0378519
\(707\) −19.5285 −0.734445
\(708\) 0.226355 0.00850695
\(709\) 13.1577 0.494149 0.247074 0.968997i \(-0.420531\pi\)
0.247074 + 0.968997i \(0.420531\pi\)
\(710\) 0 0
\(711\) 64.5258 2.41991
\(712\) −47.7300 −1.78876
\(713\) −4.08052 −0.152817
\(714\) −28.0337 −1.04914
\(715\) 0 0
\(716\) −2.09798 −0.0784050
\(717\) −21.6763 −0.809516
\(718\) 37.5120 1.39993
\(719\) 14.5571 0.542886 0.271443 0.962454i \(-0.412499\pi\)
0.271443 + 0.962454i \(0.412499\pi\)
\(720\) 0 0
\(721\) −29.3692 −1.09376
\(722\) 0 0
\(723\) 15.7583 0.586056
\(724\) −2.08427 −0.0774613
\(725\) 0 0
\(726\) −85.8952 −3.18787
\(727\) 8.97163 0.332739 0.166370 0.986063i \(-0.446796\pi\)
0.166370 + 0.986063i \(0.446796\pi\)
\(728\) 49.6857 1.84147
\(729\) −41.7969 −1.54803
\(730\) 0 0
\(731\) 1.87503 0.0693504
\(732\) 7.73438 0.285871
\(733\) 24.7325 0.913516 0.456758 0.889591i \(-0.349010\pi\)
0.456758 + 0.889591i \(0.349010\pi\)
\(734\) −17.2753 −0.637642
\(735\) 0 0
\(736\) 0.635806 0.0234361
\(737\) 4.37165 0.161032
\(738\) 6.38574 0.235062
\(739\) −1.56918 −0.0577230 −0.0288615 0.999583i \(-0.509188\pi\)
−0.0288615 + 0.999583i \(0.509188\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 38.1094 1.39904
\(743\) 24.2926 0.891208 0.445604 0.895230i \(-0.352989\pi\)
0.445604 + 0.895230i \(0.352989\pi\)
\(744\) −53.6234 −1.96593
\(745\) 0 0
\(746\) −19.3908 −0.709947
\(747\) −53.6237 −1.96199
\(748\) 1.89895 0.0694326
\(749\) −47.8935 −1.74999
\(750\) 0 0
\(751\) −34.9542 −1.27550 −0.637748 0.770245i \(-0.720134\pi\)
−0.637748 + 0.770245i \(0.720134\pi\)
\(752\) −16.8249 −0.613541
\(753\) −53.3029 −1.94247
\(754\) −12.0954 −0.440487
\(755\) 0 0
\(756\) −4.53199 −0.164827
\(757\) −3.22086 −0.117064 −0.0585321 0.998286i \(-0.518642\pi\)
−0.0585321 + 0.998286i \(0.518642\pi\)
\(758\) −48.5189 −1.76229
\(759\) −9.29430 −0.337362
\(760\) 0 0
\(761\) 3.72402 0.134996 0.0674979 0.997719i \(-0.478498\pi\)
0.0674979 + 0.997719i \(0.478498\pi\)
\(762\) −34.5244 −1.25069
\(763\) −31.0174 −1.12291
\(764\) −1.21862 −0.0440883
\(765\) 0 0
\(766\) −37.9859 −1.37249
\(767\) −2.00463 −0.0723829
\(768\) 13.1756 0.475435
\(769\) −32.2064 −1.16139 −0.580695 0.814121i \(-0.697219\pi\)
−0.580695 + 0.814121i \(0.697219\pi\)
\(770\) 0 0
\(771\) 1.97887 0.0712674
\(772\) 3.45773 0.124446
\(773\) −20.6833 −0.743926 −0.371963 0.928248i \(-0.621315\pi\)
−0.371963 + 0.928248i \(0.621315\pi\)
\(774\) 8.18963 0.294370
\(775\) 0 0
\(776\) −29.4262 −1.05634
\(777\) 25.5556 0.916804
\(778\) 27.4711 0.984886
\(779\) 0 0
\(780\) 0 0
\(781\) 35.6845 1.27689
\(782\) 1.50756 0.0539102
\(783\) −10.2742 −0.367171
\(784\) −31.8845 −1.13873
\(785\) 0 0
\(786\) −81.4534 −2.90535
\(787\) 46.0227 1.64053 0.820266 0.571982i \(-0.193825\pi\)
0.820266 + 0.571982i \(0.193825\pi\)
\(788\) 3.29546 0.117396
\(789\) −33.2146 −1.18247
\(790\) 0 0
\(791\) −47.5261 −1.68983
\(792\) −77.2403 −2.74462
\(793\) −68.4965 −2.43238
\(794\) −22.8047 −0.809307
\(795\) 0 0
\(796\) 3.18914 0.113036
\(797\) 25.0847 0.888546 0.444273 0.895891i \(-0.353462\pi\)
0.444273 + 0.895891i \(0.353462\pi\)
\(798\) 0 0
\(799\) −6.76897 −0.239469
\(800\) 0 0
\(801\) −92.0824 −3.25357
\(802\) −30.4997 −1.07698
\(803\) −16.1637 −0.570403
\(804\) −0.432919 −0.0152679
\(805\) 0 0
\(806\) −50.9946 −1.79621
\(807\) 67.4518 2.37442
\(808\) 13.8007 0.485507
\(809\) 27.6272 0.971319 0.485660 0.874148i \(-0.338579\pi\)
0.485660 + 0.874148i \(0.338579\pi\)
\(810\) 0 0
\(811\) 38.4507 1.35019 0.675094 0.737732i \(-0.264103\pi\)
0.675094 + 0.737732i \(0.264103\pi\)
\(812\) 1.22182 0.0428774
\(813\) −21.8252 −0.765443
\(814\) −19.5832 −0.686392
\(815\) 0 0
\(816\) 21.7506 0.761423
\(817\) 0 0
\(818\) −2.40522 −0.0840966
\(819\) 95.8553 3.34946
\(820\) 0 0
\(821\) 52.6678 1.83812 0.919060 0.394117i \(-0.128950\pi\)
0.919060 + 0.394117i \(0.128950\pi\)
\(822\) 6.65136 0.231993
\(823\) −4.67194 −0.162854 −0.0814269 0.996679i \(-0.525948\pi\)
−0.0814269 + 0.996679i \(0.525948\pi\)
\(824\) 20.7550 0.723036
\(825\) 0 0
\(826\) 2.29079 0.0797068
\(827\) 27.4248 0.953653 0.476827 0.878997i \(-0.341787\pi\)
0.476827 + 0.878997i \(0.341787\pi\)
\(828\) 0.582059 0.0202279
\(829\) −0.156181 −0.00542438 −0.00271219 0.999996i \(-0.500863\pi\)
−0.00271219 + 0.999996i \(0.500863\pi\)
\(830\) 0 0
\(831\) 53.2888 1.84857
\(832\) −34.7435 −1.20452
\(833\) −12.8277 −0.444455
\(834\) 8.67088 0.300248
\(835\) 0 0
\(836\) 0 0
\(837\) −43.3167 −1.49724
\(838\) −24.8970 −0.860053
\(839\) 29.1892 1.00772 0.503862 0.863784i \(-0.331912\pi\)
0.503862 + 0.863784i \(0.331912\pi\)
\(840\) 0 0
\(841\) −26.2301 −0.904486
\(842\) 31.0216 1.06907
\(843\) −39.9651 −1.37647
\(844\) −3.02398 −0.104090
\(845\) 0 0
\(846\) −29.5651 −1.01647
\(847\) −76.8421 −2.64033
\(848\) −29.5680 −1.01537
\(849\) 70.4665 2.41840
\(850\) 0 0
\(851\) −1.37430 −0.0471103
\(852\) −3.53379 −0.121066
\(853\) 45.7663 1.56701 0.783505 0.621386i \(-0.213430\pi\)
0.783505 + 0.621386i \(0.213430\pi\)
\(854\) 78.2745 2.67850
\(855\) 0 0
\(856\) 33.8461 1.15684
\(857\) 14.9161 0.509525 0.254763 0.967004i \(-0.418003\pi\)
0.254763 + 0.967004i \(0.418003\pi\)
\(858\) −116.151 −3.96535
\(859\) 49.2200 1.67936 0.839682 0.543078i \(-0.182741\pi\)
0.839682 + 0.543078i \(0.182741\pi\)
\(860\) 0 0
\(861\) 9.03343 0.307858
\(862\) 50.0370 1.70427
\(863\) 20.9577 0.713407 0.356704 0.934218i \(-0.383901\pi\)
0.356704 + 0.934218i \(0.383901\pi\)
\(864\) 6.74938 0.229619
\(865\) 0 0
\(866\) 22.2607 0.756448
\(867\) −39.8139 −1.35215
\(868\) 5.15124 0.174844
\(869\) −69.9476 −2.37281
\(870\) 0 0
\(871\) 3.83398 0.129909
\(872\) 21.9199 0.742300
\(873\) −56.7700 −1.92137
\(874\) 0 0
\(875\) 0 0
\(876\) 1.60067 0.0540815
\(877\) −26.2017 −0.884769 −0.442385 0.896825i \(-0.645867\pi\)
−0.442385 + 0.896825i \(0.645867\pi\)
\(878\) 55.8728 1.88562
\(879\) 30.2196 1.01928
\(880\) 0 0
\(881\) −45.3499 −1.52788 −0.763938 0.645289i \(-0.776737\pi\)
−0.763938 + 0.645289i \(0.776737\pi\)
\(882\) −56.0282 −1.88657
\(883\) 43.3170 1.45773 0.728867 0.684655i \(-0.240047\pi\)
0.728867 + 0.684655i \(0.240047\pi\)
\(884\) 1.66540 0.0560134
\(885\) 0 0
\(886\) 19.4250 0.652597
\(887\) 39.0147 1.30998 0.654992 0.755636i \(-0.272672\pi\)
0.654992 + 0.755636i \(0.272672\pi\)
\(888\) −18.0600 −0.606055
\(889\) −30.8857 −1.03587
\(890\) 0 0
\(891\) −12.0429 −0.403452
\(892\) 1.51392 0.0506898
\(893\) 0 0
\(894\) 6.24416 0.208836
\(895\) 0 0
\(896\) 47.9806 1.60292
\(897\) −8.15118 −0.272160
\(898\) 17.3160 0.577841
\(899\) 11.6781 0.389486
\(900\) 0 0
\(901\) −11.8958 −0.396306
\(902\) −6.92230 −0.230487
\(903\) 11.5853 0.385533
\(904\) 33.5865 1.11707
\(905\) 0 0
\(906\) 27.1885 0.903277
\(907\) −50.1608 −1.66556 −0.832780 0.553603i \(-0.813252\pi\)
−0.832780 + 0.553603i \(0.813252\pi\)
\(908\) 3.26804 0.108454
\(909\) 26.6248 0.883088
\(910\) 0 0
\(911\) 50.4028 1.66992 0.834959 0.550312i \(-0.185491\pi\)
0.834959 + 0.550312i \(0.185491\pi\)
\(912\) 0 0
\(913\) 58.1294 1.92380
\(914\) −31.7405 −1.04988
\(915\) 0 0
\(916\) −0.0487528 −0.00161084
\(917\) −72.8685 −2.40633
\(918\) 16.0035 0.528193
\(919\) 48.7246 1.60728 0.803638 0.595118i \(-0.202895\pi\)
0.803638 + 0.595118i \(0.202895\pi\)
\(920\) 0 0
\(921\) −36.6361 −1.20720
\(922\) 14.3060 0.471142
\(923\) 31.2956 1.03011
\(924\) 11.7331 0.385990
\(925\) 0 0
\(926\) 1.85122 0.0608348
\(927\) 40.0413 1.31513
\(928\) −1.81962 −0.0597320
\(929\) 8.03664 0.263673 0.131837 0.991271i \(-0.457913\pi\)
0.131837 + 0.991271i \(0.457913\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −4.49989 −0.147399
\(933\) 9.79022 0.320518
\(934\) −46.4318 −1.51930
\(935\) 0 0
\(936\) −67.7405 −2.21417
\(937\) 25.5426 0.834441 0.417221 0.908805i \(-0.363004\pi\)
0.417221 + 0.908805i \(0.363004\pi\)
\(938\) −4.38129 −0.143054
\(939\) −8.12592 −0.265179
\(940\) 0 0
\(941\) −8.61494 −0.280839 −0.140419 0.990092i \(-0.544845\pi\)
−0.140419 + 0.990092i \(0.544845\pi\)
\(942\) 94.3130 3.07288
\(943\) −0.485787 −0.0158194
\(944\) −1.77736 −0.0578482
\(945\) 0 0
\(946\) −8.87776 −0.288641
\(947\) −38.4276 −1.24873 −0.624364 0.781133i \(-0.714642\pi\)
−0.624364 + 0.781133i \(0.714642\pi\)
\(948\) 6.92682 0.224973
\(949\) −14.1757 −0.460162
\(950\) 0 0
\(951\) 13.3165 0.431819
\(952\) 17.7233 0.574414
\(953\) −8.89041 −0.287988 −0.143994 0.989579i \(-0.545995\pi\)
−0.143994 + 0.989579i \(0.545995\pi\)
\(954\) −51.9576 −1.68219
\(955\) 0 0
\(956\) −1.47155 −0.0475933
\(957\) 26.5995 0.859838
\(958\) −7.04248 −0.227532
\(959\) 5.95033 0.192146
\(960\) 0 0
\(961\) 18.2354 0.588239
\(962\) −17.1747 −0.553734
\(963\) 65.2971 2.10417
\(964\) 1.06979 0.0344555
\(965\) 0 0
\(966\) 9.31478 0.299698
\(967\) −61.6297 −1.98188 −0.990939 0.134314i \(-0.957117\pi\)
−0.990939 + 0.134314i \(0.957117\pi\)
\(968\) 54.3040 1.74540
\(969\) 0 0
\(970\) 0 0
\(971\) −5.85997 −0.188055 −0.0940277 0.995570i \(-0.529974\pi\)
−0.0940277 + 0.995570i \(0.529974\pi\)
\(972\) −2.39908 −0.0769507
\(973\) 7.75700 0.248678
\(974\) −25.2531 −0.809160
\(975\) 0 0
\(976\) −60.7310 −1.94395
\(977\) −2.40082 −0.0768089 −0.0384044 0.999262i \(-0.512228\pi\)
−0.0384044 + 0.999262i \(0.512228\pi\)
\(978\) −63.6066 −2.03392
\(979\) 99.8196 3.19025
\(980\) 0 0
\(981\) 42.2885 1.35017
\(982\) 6.34044 0.202332
\(983\) 18.3685 0.585864 0.292932 0.956133i \(-0.405369\pi\)
0.292932 + 0.956133i \(0.405369\pi\)
\(984\) −6.38388 −0.203511
\(985\) 0 0
\(986\) −4.31450 −0.137402
\(987\) −41.8236 −1.33126
\(988\) 0 0
\(989\) −0.623016 −0.0198108
\(990\) 0 0
\(991\) −10.2947 −0.327021 −0.163511 0.986542i \(-0.552282\pi\)
−0.163511 + 0.986542i \(0.552282\pi\)
\(992\) −7.67161 −0.243574
\(993\) 20.0046 0.634826
\(994\) −35.7631 −1.13434
\(995\) 0 0
\(996\) −5.75648 −0.182401
\(997\) −2.30230 −0.0729146 −0.0364573 0.999335i \(-0.511607\pi\)
−0.0364573 + 0.999335i \(0.511607\pi\)
\(998\) 7.14776 0.226258
\(999\) −14.5888 −0.461569
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9025.2.a.by.1.2 6
5.4 even 2 9025.2.a.bs.1.5 6
19.8 odd 6 475.2.e.h.26.2 yes 12
19.12 odd 6 475.2.e.h.201.2 yes 12
19.18 odd 2 9025.2.a.br.1.5 6
95.8 even 12 475.2.j.d.349.3 24
95.12 even 12 475.2.j.d.49.3 24
95.27 even 12 475.2.j.d.349.10 24
95.69 odd 6 475.2.e.f.201.5 yes 12
95.84 odd 6 475.2.e.f.26.5 12
95.88 even 12 475.2.j.d.49.10 24
95.94 odd 2 9025.2.a.bz.1.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
475.2.e.f.26.5 12 95.84 odd 6
475.2.e.f.201.5 yes 12 95.69 odd 6
475.2.e.h.26.2 yes 12 19.8 odd 6
475.2.e.h.201.2 yes 12 19.12 odd 6
475.2.j.d.49.3 24 95.12 even 12
475.2.j.d.49.10 24 95.88 even 12
475.2.j.d.349.3 24 95.8 even 12
475.2.j.d.349.10 24 95.27 even 12
9025.2.a.br.1.5 6 19.18 odd 2
9025.2.a.bs.1.5 6 5.4 even 2
9025.2.a.by.1.2 6 1.1 even 1 trivial
9025.2.a.bz.1.2 6 95.94 odd 2