Properties

Label 9025.2.a.bs.1.6
Level $9025$
Weight $2$
Character 9025.1
Self dual yes
Analytic conductor $72.065$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9025,2,Mod(1,9025)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9025, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9025.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 9025 = 5^{2} \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9025.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(72.0649878242\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.41289040.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} - 8x^{4} + 21x^{3} + 18x^{2} - 25x - 5 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 475)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(-0.181608\) of defining polynomial
Character \(\chi\) \(=\) 9025.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.48119 q^{2} +0.181608 q^{3} +0.193937 q^{4} +0.268996 q^{6} -1.30422 q^{7} -2.67513 q^{8} -2.96702 q^{9} +4.98247 q^{11} +0.0352204 q^{12} +0.406135 q^{13} -1.93180 q^{14} -4.35026 q^{16} -2.75019 q^{17} -4.39473 q^{18} -0.236856 q^{21} +7.38001 q^{22} +6.95719 q^{23} -0.485824 q^{24} +0.601564 q^{26} -1.08366 q^{27} -0.252935 q^{28} +4.01457 q^{29} +2.57321 q^{31} -1.09332 q^{32} +0.904855 q^{33} -4.07357 q^{34} -0.575413 q^{36} -3.71348 q^{37} +0.0737572 q^{39} +1.21593 q^{41} -0.350829 q^{42} +3.12261 q^{43} +0.966284 q^{44} +10.3050 q^{46} -6.50809 q^{47} -0.790041 q^{48} -5.29902 q^{49} -0.499456 q^{51} +0.0787643 q^{52} -6.32187 q^{53} -1.60511 q^{54} +3.48895 q^{56} +5.94636 q^{58} -11.2327 q^{59} +0.934143 q^{61} +3.81143 q^{62} +3.86964 q^{63} +7.08110 q^{64} +1.34027 q^{66} -5.29529 q^{67} -0.533363 q^{68} +1.26348 q^{69} +1.63532 q^{71} +7.93716 q^{72} +7.68792 q^{73} -5.50038 q^{74} -6.49822 q^{77} +0.109249 q^{78} +14.5540 q^{79} +8.70426 q^{81} +1.80103 q^{82} -15.2643 q^{83} -0.0459350 q^{84} +4.62519 q^{86} +0.729076 q^{87} -13.3288 q^{88} -14.2145 q^{89} -0.529687 q^{91} +1.34925 q^{92} +0.467315 q^{93} -9.63975 q^{94} -0.198556 q^{96} -18.2822 q^{97} -7.84888 q^{98} -14.7831 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 2 q^{2} - 3 q^{3} + 2 q^{4} - q^{6} + 2 q^{7} - 6 q^{8} + 7 q^{9} - q^{11} - 7 q^{12} - 5 q^{13} + 6 q^{14} - 6 q^{16} - 3 q^{17} - 7 q^{18} - 3 q^{21} - 9 q^{22} - 6 q^{23} + 11 q^{24} + 19 q^{26}+ \cdots - 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.48119 1.04736 0.523681 0.851914i \(-0.324558\pi\)
0.523681 + 0.851914i \(0.324558\pi\)
\(3\) 0.181608 0.104851 0.0524256 0.998625i \(-0.483305\pi\)
0.0524256 + 0.998625i \(0.483305\pi\)
\(4\) 0.193937 0.0969683
\(5\) 0 0
\(6\) 0.268996 0.109817
\(7\) −1.30422 −0.492948 −0.246474 0.969149i \(-0.579272\pi\)
−0.246474 + 0.969149i \(0.579272\pi\)
\(8\) −2.67513 −0.945802
\(9\) −2.96702 −0.989006
\(10\) 0 0
\(11\) 4.98247 1.50227 0.751136 0.660147i \(-0.229506\pi\)
0.751136 + 0.660147i \(0.229506\pi\)
\(12\) 0.0352204 0.0101672
\(13\) 0.406135 0.112641 0.0563207 0.998413i \(-0.482063\pi\)
0.0563207 + 0.998413i \(0.482063\pi\)
\(14\) −1.93180 −0.516295
\(15\) 0 0
\(16\) −4.35026 −1.08757
\(17\) −2.75019 −0.667019 −0.333510 0.942747i \(-0.608233\pi\)
−0.333510 + 0.942747i \(0.608233\pi\)
\(18\) −4.39473 −1.03585
\(19\) 0 0
\(20\) 0 0
\(21\) −0.236856 −0.0516862
\(22\) 7.38001 1.57342
\(23\) 6.95719 1.45067 0.725337 0.688394i \(-0.241684\pi\)
0.725337 + 0.688394i \(0.241684\pi\)
\(24\) −0.485824 −0.0991685
\(25\) 0 0
\(26\) 0.601564 0.117976
\(27\) −1.08366 −0.208550
\(28\) −0.252935 −0.0478003
\(29\) 4.01457 0.745487 0.372743 0.927935i \(-0.378417\pi\)
0.372743 + 0.927935i \(0.378417\pi\)
\(30\) 0 0
\(31\) 2.57321 0.462163 0.231081 0.972934i \(-0.425774\pi\)
0.231081 + 0.972934i \(0.425774\pi\)
\(32\) −1.09332 −0.193274
\(33\) 0.904855 0.157515
\(34\) −4.07357 −0.698611
\(35\) 0 0
\(36\) −0.575413 −0.0959022
\(37\) −3.71348 −0.610492 −0.305246 0.952274i \(-0.598739\pi\)
−0.305246 + 0.952274i \(0.598739\pi\)
\(38\) 0 0
\(39\) 0.0737572 0.0118106
\(40\) 0 0
\(41\) 1.21593 0.189896 0.0949482 0.995482i \(-0.469731\pi\)
0.0949482 + 0.995482i \(0.469731\pi\)
\(42\) −0.350829 −0.0541342
\(43\) 3.12261 0.476193 0.238097 0.971241i \(-0.423476\pi\)
0.238097 + 0.971241i \(0.423476\pi\)
\(44\) 0.966284 0.145673
\(45\) 0 0
\(46\) 10.3050 1.51938
\(47\) −6.50809 −0.949303 −0.474651 0.880174i \(-0.657426\pi\)
−0.474651 + 0.880174i \(0.657426\pi\)
\(48\) −0.790041 −0.114033
\(49\) −5.29902 −0.757003
\(50\) 0 0
\(51\) −0.499456 −0.0699378
\(52\) 0.0787643 0.0109226
\(53\) −6.32187 −0.868376 −0.434188 0.900822i \(-0.642965\pi\)
−0.434188 + 0.900822i \(0.642965\pi\)
\(54\) −1.60511 −0.218427
\(55\) 0 0
\(56\) 3.48895 0.466231
\(57\) 0 0
\(58\) 5.94636 0.780795
\(59\) −11.2327 −1.46238 −0.731188 0.682176i \(-0.761034\pi\)
−0.731188 + 0.682176i \(0.761034\pi\)
\(60\) 0 0
\(61\) 0.934143 0.119605 0.0598024 0.998210i \(-0.480953\pi\)
0.0598024 + 0.998210i \(0.480953\pi\)
\(62\) 3.81143 0.484052
\(63\) 3.86964 0.487528
\(64\) 7.08110 0.885138
\(65\) 0 0
\(66\) 1.34027 0.164975
\(67\) −5.29529 −0.646922 −0.323461 0.946241i \(-0.604846\pi\)
−0.323461 + 0.946241i \(0.604846\pi\)
\(68\) −0.533363 −0.0646797
\(69\) 1.26348 0.152105
\(70\) 0 0
\(71\) 1.63532 0.194077 0.0970383 0.995281i \(-0.469063\pi\)
0.0970383 + 0.995281i \(0.469063\pi\)
\(72\) 7.93716 0.935404
\(73\) 7.68792 0.899803 0.449902 0.893078i \(-0.351459\pi\)
0.449902 + 0.893078i \(0.351459\pi\)
\(74\) −5.50038 −0.639406
\(75\) 0 0
\(76\) 0 0
\(77\) −6.49822 −0.740541
\(78\) 0.109249 0.0123700
\(79\) 14.5540 1.63745 0.818725 0.574186i \(-0.194681\pi\)
0.818725 + 0.574186i \(0.194681\pi\)
\(80\) 0 0
\(81\) 8.70426 0.967140
\(82\) 1.80103 0.198890
\(83\) −15.2643 −1.67547 −0.837735 0.546077i \(-0.816121\pi\)
−0.837735 + 0.546077i \(0.816121\pi\)
\(84\) −0.0459350 −0.00501192
\(85\) 0 0
\(86\) 4.62519 0.498747
\(87\) 0.729076 0.0781652
\(88\) −13.3288 −1.42085
\(89\) −14.2145 −1.50674 −0.753369 0.657598i \(-0.771573\pi\)
−0.753369 + 0.657598i \(0.771573\pi\)
\(90\) 0 0
\(91\) −0.529687 −0.0555263
\(92\) 1.34925 0.140669
\(93\) 0.467315 0.0484583
\(94\) −9.63975 −0.994264
\(95\) 0 0
\(96\) −0.198556 −0.0202650
\(97\) −18.2822 −1.85628 −0.928139 0.372233i \(-0.878592\pi\)
−0.928139 + 0.372233i \(0.878592\pi\)
\(98\) −7.84888 −0.792856
\(99\) −14.7831 −1.48576
\(100\) 0 0
\(101\) −15.9953 −1.59159 −0.795794 0.605567i \(-0.792946\pi\)
−0.795794 + 0.605567i \(0.792946\pi\)
\(102\) −0.739791 −0.0732502
\(103\) −5.30941 −0.523152 −0.261576 0.965183i \(-0.584242\pi\)
−0.261576 + 0.965183i \(0.584242\pi\)
\(104\) −1.08646 −0.106536
\(105\) 0 0
\(106\) −9.36392 −0.909504
\(107\) 13.0024 1.25699 0.628494 0.777814i \(-0.283671\pi\)
0.628494 + 0.777814i \(0.283671\pi\)
\(108\) −0.210161 −0.0202227
\(109\) 8.19394 0.784837 0.392418 0.919787i \(-0.371639\pi\)
0.392418 + 0.919787i \(0.371639\pi\)
\(110\) 0 0
\(111\) −0.674396 −0.0640108
\(112\) 5.67368 0.536113
\(113\) 6.54779 0.615964 0.307982 0.951392i \(-0.400346\pi\)
0.307982 + 0.951392i \(0.400346\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0.778572 0.0722886
\(117\) −1.20501 −0.111403
\(118\) −16.6378 −1.53164
\(119\) 3.58684 0.328805
\(120\) 0 0
\(121\) 13.8250 1.25682
\(122\) 1.38365 0.125270
\(123\) 0.220822 0.0199109
\(124\) 0.499040 0.0448151
\(125\) 0 0
\(126\) 5.73168 0.510619
\(127\) −15.1086 −1.34067 −0.670336 0.742057i \(-0.733850\pi\)
−0.670336 + 0.742057i \(0.733850\pi\)
\(128\) 12.6751 1.12033
\(129\) 0.567090 0.0499295
\(130\) 0 0
\(131\) −2.49358 −0.217865 −0.108933 0.994049i \(-0.534743\pi\)
−0.108933 + 0.994049i \(0.534743\pi\)
\(132\) 0.175485 0.0152740
\(133\) 0 0
\(134\) −7.84335 −0.677562
\(135\) 0 0
\(136\) 7.35712 0.630868
\(137\) −17.6081 −1.50436 −0.752181 0.658956i \(-0.770998\pi\)
−0.752181 + 0.658956i \(0.770998\pi\)
\(138\) 1.87146 0.159309
\(139\) 3.15472 0.267580 0.133790 0.991010i \(-0.457285\pi\)
0.133790 + 0.991010i \(0.457285\pi\)
\(140\) 0 0
\(141\) −1.18192 −0.0995356
\(142\) 2.42223 0.203269
\(143\) 2.02355 0.169218
\(144\) 12.9073 1.07561
\(145\) 0 0
\(146\) 11.3873 0.942420
\(147\) −0.962343 −0.0793727
\(148\) −0.720179 −0.0591983
\(149\) −6.37388 −0.522168 −0.261084 0.965316i \(-0.584080\pi\)
−0.261084 + 0.965316i \(0.584080\pi\)
\(150\) 0 0
\(151\) −4.96340 −0.403915 −0.201958 0.979394i \(-0.564730\pi\)
−0.201958 + 0.979394i \(0.564730\pi\)
\(152\) 0 0
\(153\) 8.15987 0.659686
\(154\) −9.62513 −0.775615
\(155\) 0 0
\(156\) 0.0143042 0.00114525
\(157\) −2.09499 −0.167199 −0.0835993 0.996499i \(-0.526642\pi\)
−0.0835993 + 0.996499i \(0.526642\pi\)
\(158\) 21.5573 1.71500
\(159\) −1.14810 −0.0910503
\(160\) 0 0
\(161\) −9.07368 −0.715106
\(162\) 12.8927 1.01295
\(163\) 9.55821 0.748656 0.374328 0.927296i \(-0.377873\pi\)
0.374328 + 0.927296i \(0.377873\pi\)
\(164\) 0.235813 0.0184139
\(165\) 0 0
\(166\) −22.6093 −1.75482
\(167\) −16.7395 −1.29534 −0.647670 0.761921i \(-0.724256\pi\)
−0.647670 + 0.761921i \(0.724256\pi\)
\(168\) 0.633620 0.0488849
\(169\) −12.8351 −0.987312
\(170\) 0 0
\(171\) 0 0
\(172\) 0.605588 0.0461757
\(173\) −13.9754 −1.06253 −0.531264 0.847206i \(-0.678283\pi\)
−0.531264 + 0.847206i \(0.678283\pi\)
\(174\) 1.07990 0.0818673
\(175\) 0 0
\(176\) −21.6751 −1.63382
\(177\) −2.03995 −0.153332
\(178\) −21.0545 −1.57810
\(179\) 9.86133 0.737071 0.368535 0.929614i \(-0.379859\pi\)
0.368535 + 0.929614i \(0.379859\pi\)
\(180\) 0 0
\(181\) −14.7726 −1.09804 −0.549019 0.835810i \(-0.684998\pi\)
−0.549019 + 0.835810i \(0.684998\pi\)
\(182\) −0.784570 −0.0581562
\(183\) 0.169648 0.0125407
\(184\) −18.6114 −1.37205
\(185\) 0 0
\(186\) 0.692185 0.0507534
\(187\) −13.7028 −1.00204
\(188\) −1.26216 −0.0920522
\(189\) 1.41332 0.102804
\(190\) 0 0
\(191\) −20.6797 −1.49633 −0.748166 0.663512i \(-0.769065\pi\)
−0.748166 + 0.663512i \(0.769065\pi\)
\(192\) 1.28598 0.0928078
\(193\) −20.2783 −1.45966 −0.729831 0.683628i \(-0.760401\pi\)
−0.729831 + 0.683628i \(0.760401\pi\)
\(194\) −27.0795 −1.94420
\(195\) 0 0
\(196\) −1.02767 −0.0734053
\(197\) 15.9172 1.13406 0.567028 0.823698i \(-0.308093\pi\)
0.567028 + 0.823698i \(0.308093\pi\)
\(198\) −21.8966 −1.55613
\(199\) −13.2357 −0.938254 −0.469127 0.883131i \(-0.655431\pi\)
−0.469127 + 0.883131i \(0.655431\pi\)
\(200\) 0 0
\(201\) −0.961665 −0.0678306
\(202\) −23.6921 −1.66697
\(203\) −5.23587 −0.367486
\(204\) −0.0968627 −0.00678175
\(205\) 0 0
\(206\) −7.86427 −0.547930
\(207\) −20.6421 −1.43473
\(208\) −1.76679 −0.122505
\(209\) 0 0
\(210\) 0 0
\(211\) 9.77834 0.673168 0.336584 0.941653i \(-0.390728\pi\)
0.336584 + 0.941653i \(0.390728\pi\)
\(212\) −1.22604 −0.0842049
\(213\) 0.296987 0.0203492
\(214\) 19.2591 1.31652
\(215\) 0 0
\(216\) 2.89892 0.197247
\(217\) −3.35603 −0.227822
\(218\) 12.1368 0.822009
\(219\) 1.39619 0.0943455
\(220\) 0 0
\(221\) −1.11695 −0.0751340
\(222\) −0.998912 −0.0670426
\(223\) 25.8620 1.73185 0.865923 0.500178i \(-0.166732\pi\)
0.865923 + 0.500178i \(0.166732\pi\)
\(224\) 1.42593 0.0952738
\(225\) 0 0
\(226\) 9.69854 0.645137
\(227\) −2.28573 −0.151709 −0.0758545 0.997119i \(-0.524168\pi\)
−0.0758545 + 0.997119i \(0.524168\pi\)
\(228\) 0 0
\(229\) −21.8805 −1.44590 −0.722952 0.690898i \(-0.757215\pi\)
−0.722952 + 0.690898i \(0.757215\pi\)
\(230\) 0 0
\(231\) −1.18013 −0.0776467
\(232\) −10.7395 −0.705082
\(233\) −2.05384 −0.134552 −0.0672758 0.997734i \(-0.521431\pi\)
−0.0672758 + 0.997734i \(0.521431\pi\)
\(234\) −1.78485 −0.116679
\(235\) 0 0
\(236\) −2.17844 −0.141804
\(237\) 2.64311 0.171689
\(238\) 5.31281 0.344379
\(239\) 7.68110 0.496849 0.248425 0.968651i \(-0.420087\pi\)
0.248425 + 0.968651i \(0.420087\pi\)
\(240\) 0 0
\(241\) −14.5366 −0.936387 −0.468194 0.883626i \(-0.655095\pi\)
−0.468194 + 0.883626i \(0.655095\pi\)
\(242\) 20.4776 1.31635
\(243\) 4.83173 0.309956
\(244\) 0.181165 0.0115979
\(245\) 0 0
\(246\) 0.327081 0.0208539
\(247\) 0 0
\(248\) −6.88368 −0.437114
\(249\) −2.77211 −0.175675
\(250\) 0 0
\(251\) 7.18731 0.453659 0.226829 0.973935i \(-0.427164\pi\)
0.226829 + 0.973935i \(0.427164\pi\)
\(252\) 0.750464 0.0472748
\(253\) 34.6640 2.17931
\(254\) −22.3788 −1.40417
\(255\) 0 0
\(256\) 4.61213 0.288258
\(257\) 8.70588 0.543058 0.271529 0.962430i \(-0.412471\pi\)
0.271529 + 0.962430i \(0.412471\pi\)
\(258\) 0.839970 0.0522943
\(259\) 4.84318 0.300940
\(260\) 0 0
\(261\) −11.9113 −0.737291
\(262\) −3.69348 −0.228184
\(263\) 30.5232 1.88214 0.941072 0.338208i \(-0.109821\pi\)
0.941072 + 0.338208i \(0.109821\pi\)
\(264\) −2.42061 −0.148978
\(265\) 0 0
\(266\) 0 0
\(267\) −2.58147 −0.157983
\(268\) −1.02695 −0.0627309
\(269\) 18.4076 1.12233 0.561165 0.827704i \(-0.310353\pi\)
0.561165 + 0.827704i \(0.310353\pi\)
\(270\) 0 0
\(271\) −11.4739 −0.696989 −0.348494 0.937311i \(-0.613307\pi\)
−0.348494 + 0.937311i \(0.613307\pi\)
\(272\) 11.9640 0.725427
\(273\) −0.0961953 −0.00582201
\(274\) −26.0810 −1.57561
\(275\) 0 0
\(276\) 0.245035 0.0147494
\(277\) 1.79689 0.107965 0.0539823 0.998542i \(-0.482809\pi\)
0.0539823 + 0.998542i \(0.482809\pi\)
\(278\) 4.67276 0.280253
\(279\) −7.63477 −0.457082
\(280\) 0 0
\(281\) 14.1910 0.846564 0.423282 0.905998i \(-0.360878\pi\)
0.423282 + 0.905998i \(0.360878\pi\)
\(282\) −1.75065 −0.104250
\(283\) −17.9087 −1.06456 −0.532281 0.846568i \(-0.678665\pi\)
−0.532281 + 0.846568i \(0.678665\pi\)
\(284\) 0.317148 0.0188193
\(285\) 0 0
\(286\) 2.99728 0.177233
\(287\) −1.58584 −0.0936090
\(288\) 3.24390 0.191149
\(289\) −9.43645 −0.555085
\(290\) 0 0
\(291\) −3.32019 −0.194633
\(292\) 1.49097 0.0872524
\(293\) −33.3088 −1.94592 −0.972961 0.230970i \(-0.925810\pi\)
−0.972961 + 0.230970i \(0.925810\pi\)
\(294\) −1.42542 −0.0831320
\(295\) 0 0
\(296\) 9.93404 0.577404
\(297\) −5.39929 −0.313299
\(298\) −9.44095 −0.546900
\(299\) 2.82556 0.163406
\(300\) 0 0
\(301\) −4.07256 −0.234738
\(302\) −7.35175 −0.423046
\(303\) −2.90486 −0.166880
\(304\) 0 0
\(305\) 0 0
\(306\) 12.0863 0.690931
\(307\) 15.5571 0.887890 0.443945 0.896054i \(-0.353579\pi\)
0.443945 + 0.896054i \(0.353579\pi\)
\(308\) −1.26024 −0.0718090
\(309\) −0.964230 −0.0548532
\(310\) 0 0
\(311\) 29.1959 1.65555 0.827773 0.561063i \(-0.189608\pi\)
0.827773 + 0.561063i \(0.189608\pi\)
\(312\) −0.197310 −0.0111705
\(313\) −31.8880 −1.80241 −0.901207 0.433388i \(-0.857318\pi\)
−0.901207 + 0.433388i \(0.857318\pi\)
\(314\) −3.10309 −0.175118
\(315\) 0 0
\(316\) 2.82255 0.158781
\(317\) −13.5701 −0.762173 −0.381086 0.924539i \(-0.624450\pi\)
−0.381086 + 0.924539i \(0.624450\pi\)
\(318\) −1.70056 −0.0953627
\(319\) 20.0025 1.11992
\(320\) 0 0
\(321\) 2.36133 0.131797
\(322\) −13.4399 −0.748976
\(323\) 0 0
\(324\) 1.68807 0.0937819
\(325\) 0 0
\(326\) 14.1576 0.784115
\(327\) 1.48808 0.0822911
\(328\) −3.25277 −0.179604
\(329\) 8.48796 0.467956
\(330\) 0 0
\(331\) 29.4274 1.61747 0.808737 0.588171i \(-0.200152\pi\)
0.808737 + 0.588171i \(0.200152\pi\)
\(332\) −2.96030 −0.162467
\(333\) 11.0180 0.603780
\(334\) −24.7944 −1.35669
\(335\) 0 0
\(336\) 1.03038 0.0562121
\(337\) −15.5118 −0.844979 −0.422489 0.906368i \(-0.638844\pi\)
−0.422489 + 0.906368i \(0.638844\pi\)
\(338\) −19.0112 −1.03407
\(339\) 1.18913 0.0645846
\(340\) 0 0
\(341\) 12.8210 0.694294
\(342\) 0 0
\(343\) 16.0406 0.866110
\(344\) −8.35339 −0.450384
\(345\) 0 0
\(346\) −20.7003 −1.11285
\(347\) 22.5877 1.21257 0.606285 0.795247i \(-0.292659\pi\)
0.606285 + 0.795247i \(0.292659\pi\)
\(348\) 0.141395 0.00757954
\(349\) 25.4885 1.36437 0.682184 0.731181i \(-0.261030\pi\)
0.682184 + 0.731181i \(0.261030\pi\)
\(350\) 0 0
\(351\) −0.440110 −0.0234914
\(352\) −5.44744 −0.290350
\(353\) −10.2959 −0.547994 −0.273997 0.961730i \(-0.588346\pi\)
−0.273997 + 0.961730i \(0.588346\pi\)
\(354\) −3.02156 −0.160594
\(355\) 0 0
\(356\) −2.75672 −0.146106
\(357\) 0.651399 0.0344757
\(358\) 14.6066 0.771980
\(359\) 1.98251 0.104633 0.0523165 0.998631i \(-0.483340\pi\)
0.0523165 + 0.998631i \(0.483340\pi\)
\(360\) 0 0
\(361\) 0 0
\(362\) −21.8811 −1.15004
\(363\) 2.51073 0.131779
\(364\) −0.102726 −0.00538429
\(365\) 0 0
\(366\) 0.251281 0.0131347
\(367\) 5.27424 0.275313 0.137657 0.990480i \(-0.456043\pi\)
0.137657 + 0.990480i \(0.456043\pi\)
\(368\) −30.2656 −1.57770
\(369\) −3.60769 −0.187809
\(370\) 0 0
\(371\) 8.24509 0.428064
\(372\) 0.0906295 0.00469892
\(373\) −31.7192 −1.64236 −0.821179 0.570670i \(-0.806683\pi\)
−0.821179 + 0.570670i \(0.806683\pi\)
\(374\) −20.2964 −1.04950
\(375\) 0 0
\(376\) 17.4100 0.897852
\(377\) 1.63045 0.0839727
\(378\) 2.09341 0.107673
\(379\) −35.5119 −1.82412 −0.912062 0.410052i \(-0.865510\pi\)
−0.912062 + 0.410052i \(0.865510\pi\)
\(380\) 0 0
\(381\) −2.74384 −0.140571
\(382\) −30.6307 −1.56720
\(383\) 13.9302 0.711799 0.355899 0.934524i \(-0.384175\pi\)
0.355899 + 0.934524i \(0.384175\pi\)
\(384\) 2.30190 0.117468
\(385\) 0 0
\(386\) −30.0361 −1.52880
\(387\) −9.26484 −0.470958
\(388\) −3.54559 −0.180000
\(389\) −0.942869 −0.0478053 −0.0239027 0.999714i \(-0.507609\pi\)
−0.0239027 + 0.999714i \(0.507609\pi\)
\(390\) 0 0
\(391\) −19.1336 −0.967628
\(392\) 14.1756 0.715974
\(393\) −0.452853 −0.0228434
\(394\) 23.5765 1.18777
\(395\) 0 0
\(396\) −2.86698 −0.144071
\(397\) 28.5656 1.43367 0.716834 0.697244i \(-0.245591\pi\)
0.716834 + 0.697244i \(0.245591\pi\)
\(398\) −19.6047 −0.982693
\(399\) 0 0
\(400\) 0 0
\(401\) 7.16731 0.357918 0.178959 0.983857i \(-0.442727\pi\)
0.178959 + 0.983857i \(0.442727\pi\)
\(402\) −1.42441 −0.0710432
\(403\) 1.04507 0.0520587
\(404\) −3.10207 −0.154334
\(405\) 0 0
\(406\) −7.75534 −0.384891
\(407\) −18.5023 −0.917125
\(408\) 1.33611 0.0661473
\(409\) 10.5325 0.520798 0.260399 0.965501i \(-0.416146\pi\)
0.260399 + 0.965501i \(0.416146\pi\)
\(410\) 0 0
\(411\) −3.19777 −0.157734
\(412\) −1.02969 −0.0507292
\(413\) 14.6499 0.720875
\(414\) −30.5750 −1.50268
\(415\) 0 0
\(416\) −0.444036 −0.0217706
\(417\) 0.572922 0.0280561
\(418\) 0 0
\(419\) 2.52693 0.123448 0.0617242 0.998093i \(-0.480340\pi\)
0.0617242 + 0.998093i \(0.480340\pi\)
\(420\) 0 0
\(421\) −14.8669 −0.724569 −0.362285 0.932068i \(-0.618003\pi\)
−0.362285 + 0.932068i \(0.618003\pi\)
\(422\) 14.4836 0.705051
\(423\) 19.3096 0.938866
\(424\) 16.9118 0.821311
\(425\) 0 0
\(426\) 0.439895 0.0213130
\(427\) −1.21833 −0.0589589
\(428\) 2.52164 0.121888
\(429\) 0.367493 0.0177427
\(430\) 0 0
\(431\) 4.18068 0.201376 0.100688 0.994918i \(-0.467896\pi\)
0.100688 + 0.994918i \(0.467896\pi\)
\(432\) 4.71419 0.226812
\(433\) −25.3053 −1.21610 −0.608048 0.793900i \(-0.708047\pi\)
−0.608048 + 0.793900i \(0.708047\pi\)
\(434\) −4.97093 −0.238612
\(435\) 0 0
\(436\) 1.58910 0.0761043
\(437\) 0 0
\(438\) 2.06802 0.0988139
\(439\) −28.9121 −1.37990 −0.689950 0.723857i \(-0.742367\pi\)
−0.689950 + 0.723857i \(0.742367\pi\)
\(440\) 0 0
\(441\) 15.7223 0.748680
\(442\) −1.65442 −0.0786926
\(443\) 4.58864 0.218013 0.109007 0.994041i \(-0.465233\pi\)
0.109007 + 0.994041i \(0.465233\pi\)
\(444\) −0.130790 −0.00620702
\(445\) 0 0
\(446\) 38.3066 1.81387
\(447\) −1.15755 −0.0547500
\(448\) −9.23529 −0.436327
\(449\) −29.2171 −1.37884 −0.689420 0.724362i \(-0.742135\pi\)
−0.689420 + 0.724362i \(0.742135\pi\)
\(450\) 0 0
\(451\) 6.05834 0.285276
\(452\) 1.26986 0.0597290
\(453\) −0.901391 −0.0423510
\(454\) −3.38560 −0.158894
\(455\) 0 0
\(456\) 0 0
\(457\) 23.7113 1.10917 0.554584 0.832128i \(-0.312878\pi\)
0.554584 + 0.832128i \(0.312878\pi\)
\(458\) −32.4093 −1.51439
\(459\) 2.98026 0.139107
\(460\) 0 0
\(461\) 35.0218 1.63113 0.815565 0.578666i \(-0.196426\pi\)
0.815565 + 0.578666i \(0.196426\pi\)
\(462\) −1.74800 −0.0813242
\(463\) −20.4936 −0.952417 −0.476209 0.879332i \(-0.657989\pi\)
−0.476209 + 0.879332i \(0.657989\pi\)
\(464\) −17.4644 −0.810765
\(465\) 0 0
\(466\) −3.04214 −0.140924
\(467\) −9.24346 −0.427736 −0.213868 0.976863i \(-0.568606\pi\)
−0.213868 + 0.976863i \(0.568606\pi\)
\(468\) −0.233695 −0.0108026
\(469\) 6.90620 0.318899
\(470\) 0 0
\(471\) −0.380467 −0.0175310
\(472\) 30.0490 1.38312
\(473\) 15.5583 0.715372
\(474\) 3.91496 0.179820
\(475\) 0 0
\(476\) 0.695620 0.0318837
\(477\) 18.7571 0.858829
\(478\) 11.3772 0.520381
\(479\) 3.76753 0.172143 0.0860715 0.996289i \(-0.472569\pi\)
0.0860715 + 0.996289i \(0.472569\pi\)
\(480\) 0 0
\(481\) −1.50817 −0.0687667
\(482\) −21.5316 −0.980737
\(483\) −1.64785 −0.0749798
\(484\) 2.68118 0.121872
\(485\) 0 0
\(486\) 7.15673 0.324636
\(487\) 11.7981 0.534621 0.267311 0.963610i \(-0.413865\pi\)
0.267311 + 0.963610i \(0.413865\pi\)
\(488\) −2.49896 −0.113122
\(489\) 1.73584 0.0784976
\(490\) 0 0
\(491\) 7.83563 0.353617 0.176809 0.984245i \(-0.443423\pi\)
0.176809 + 0.984245i \(0.443423\pi\)
\(492\) 0.0428255 0.00193072
\(493\) −11.0408 −0.497254
\(494\) 0 0
\(495\) 0 0
\(496\) −11.1941 −0.502632
\(497\) −2.13281 −0.0956696
\(498\) −4.10603 −0.183996
\(499\) 1.05959 0.0474338 0.0237169 0.999719i \(-0.492450\pi\)
0.0237169 + 0.999719i \(0.492450\pi\)
\(500\) 0 0
\(501\) −3.04002 −0.135818
\(502\) 10.6458 0.475145
\(503\) −5.37711 −0.239753 −0.119877 0.992789i \(-0.538250\pi\)
−0.119877 + 0.992789i \(0.538250\pi\)
\(504\) −10.3518 −0.461105
\(505\) 0 0
\(506\) 51.3441 2.28253
\(507\) −2.33094 −0.103521
\(508\) −2.93011 −0.130003
\(509\) −33.8480 −1.50028 −0.750142 0.661276i \(-0.770015\pi\)
−0.750142 + 0.661276i \(0.770015\pi\)
\(510\) 0 0
\(511\) −10.0267 −0.443556
\(512\) −18.5188 −0.818423
\(513\) 0 0
\(514\) 12.8951 0.568778
\(515\) 0 0
\(516\) 0.109979 0.00484158
\(517\) −32.4264 −1.42611
\(518\) 7.17369 0.315194
\(519\) −2.53804 −0.111407
\(520\) 0 0
\(521\) 29.5742 1.29567 0.647834 0.761782i \(-0.275675\pi\)
0.647834 + 0.761782i \(0.275675\pi\)
\(522\) −17.6429 −0.772211
\(523\) −24.0446 −1.05140 −0.525698 0.850671i \(-0.676196\pi\)
−0.525698 + 0.850671i \(0.676196\pi\)
\(524\) −0.483596 −0.0211260
\(525\) 0 0
\(526\) 45.2108 1.97129
\(527\) −7.07683 −0.308271
\(528\) −3.93636 −0.171308
\(529\) 25.4025 1.10446
\(530\) 0 0
\(531\) 33.3277 1.44630
\(532\) 0 0
\(533\) 0.493831 0.0213902
\(534\) −3.82366 −0.165466
\(535\) 0 0
\(536\) 14.1656 0.611860
\(537\) 1.79089 0.0772828
\(538\) 27.2652 1.17549
\(539\) −26.4022 −1.13722
\(540\) 0 0
\(541\) −26.1917 −1.12607 −0.563035 0.826433i \(-0.690366\pi\)
−0.563035 + 0.826433i \(0.690366\pi\)
\(542\) −16.9951 −0.730000
\(543\) −2.68282 −0.115131
\(544\) 3.00684 0.128917
\(545\) 0 0
\(546\) −0.142484 −0.00609775
\(547\) 14.9284 0.638293 0.319146 0.947705i \(-0.396604\pi\)
0.319146 + 0.947705i \(0.396604\pi\)
\(548\) −3.41486 −0.145875
\(549\) −2.77162 −0.118290
\(550\) 0 0
\(551\) 0 0
\(552\) −3.37997 −0.143861
\(553\) −18.9815 −0.807177
\(554\) 2.66154 0.113078
\(555\) 0 0
\(556\) 0.611816 0.0259468
\(557\) −5.27514 −0.223515 −0.111758 0.993736i \(-0.535648\pi\)
−0.111758 + 0.993736i \(0.535648\pi\)
\(558\) −11.3086 −0.478730
\(559\) 1.26820 0.0536391
\(560\) 0 0
\(561\) −2.48853 −0.105066
\(562\) 21.0196 0.886660
\(563\) −17.8950 −0.754186 −0.377093 0.926175i \(-0.623076\pi\)
−0.377093 + 0.926175i \(0.623076\pi\)
\(564\) −0.229217 −0.00965179
\(565\) 0 0
\(566\) −26.5263 −1.11498
\(567\) −11.3522 −0.476749
\(568\) −4.37469 −0.183558
\(569\) −6.81848 −0.285846 −0.142923 0.989734i \(-0.545650\pi\)
−0.142923 + 0.989734i \(0.545650\pi\)
\(570\) 0 0
\(571\) 5.16915 0.216322 0.108161 0.994133i \(-0.465504\pi\)
0.108161 + 0.994133i \(0.465504\pi\)
\(572\) 0.392441 0.0164088
\(573\) −3.75560 −0.156892
\(574\) −2.34893 −0.0980425
\(575\) 0 0
\(576\) −21.0098 −0.875407
\(577\) −28.5621 −1.18905 −0.594527 0.804076i \(-0.702661\pi\)
−0.594527 + 0.804076i \(0.702661\pi\)
\(578\) −13.9772 −0.581376
\(579\) −3.68269 −0.153047
\(580\) 0 0
\(581\) 19.9079 0.825919
\(582\) −4.91785 −0.203851
\(583\) −31.4986 −1.30454
\(584\) −20.5662 −0.851035
\(585\) 0 0
\(586\) −49.3368 −2.03809
\(587\) −40.3254 −1.66441 −0.832204 0.554469i \(-0.812921\pi\)
−0.832204 + 0.554469i \(0.812921\pi\)
\(588\) −0.186633 −0.00769663
\(589\) 0 0
\(590\) 0 0
\(591\) 2.89069 0.118907
\(592\) 16.1546 0.663950
\(593\) −27.6905 −1.13711 −0.568555 0.822645i \(-0.692498\pi\)
−0.568555 + 0.822645i \(0.692498\pi\)
\(594\) −7.99740 −0.328137
\(595\) 0 0
\(596\) −1.23613 −0.0506338
\(597\) −2.40371 −0.0983771
\(598\) 4.18520 0.171145
\(599\) 2.62932 0.107431 0.0537156 0.998556i \(-0.482894\pi\)
0.0537156 + 0.998556i \(0.482894\pi\)
\(600\) 0 0
\(601\) −27.7009 −1.12994 −0.564972 0.825110i \(-0.691113\pi\)
−0.564972 + 0.825110i \(0.691113\pi\)
\(602\) −6.03225 −0.245856
\(603\) 15.7112 0.639810
\(604\) −0.962584 −0.0391670
\(605\) 0 0
\(606\) −4.30267 −0.174784
\(607\) 32.0668 1.30155 0.650775 0.759271i \(-0.274444\pi\)
0.650775 + 0.759271i \(0.274444\pi\)
\(608\) 0 0
\(609\) −0.950874 −0.0385313
\(610\) 0 0
\(611\) −2.64316 −0.106931
\(612\) 1.58250 0.0639686
\(613\) 12.4603 0.503266 0.251633 0.967823i \(-0.419032\pi\)
0.251633 + 0.967823i \(0.419032\pi\)
\(614\) 23.0431 0.929943
\(615\) 0 0
\(616\) 17.3836 0.700405
\(617\) −26.4739 −1.06580 −0.532900 0.846178i \(-0.678898\pi\)
−0.532900 + 0.846178i \(0.678898\pi\)
\(618\) −1.42821 −0.0574511
\(619\) 33.3766 1.34152 0.670760 0.741674i \(-0.265968\pi\)
0.670760 + 0.741674i \(0.265968\pi\)
\(620\) 0 0
\(621\) −7.53921 −0.302538
\(622\) 43.2448 1.73396
\(623\) 18.5388 0.742743
\(624\) −0.320863 −0.0128448
\(625\) 0 0
\(626\) −47.2323 −1.88778
\(627\) 0 0
\(628\) −0.406296 −0.0162130
\(629\) 10.2128 0.407210
\(630\) 0 0
\(631\) 40.1201 1.59716 0.798578 0.601891i \(-0.205586\pi\)
0.798578 + 0.601891i \(0.205586\pi\)
\(632\) −38.9338 −1.54870
\(633\) 1.77582 0.0705826
\(634\) −20.1000 −0.798271
\(635\) 0 0
\(636\) −0.222659 −0.00882899
\(637\) −2.15211 −0.0852699
\(638\) 29.6276 1.17297
\(639\) −4.85202 −0.191943
\(640\) 0 0
\(641\) −0.406546 −0.0160576 −0.00802880 0.999968i \(-0.502556\pi\)
−0.00802880 + 0.999968i \(0.502556\pi\)
\(642\) 3.49760 0.138039
\(643\) −25.1696 −0.992593 −0.496296 0.868153i \(-0.665307\pi\)
−0.496296 + 0.868153i \(0.665307\pi\)
\(644\) −1.75972 −0.0693426
\(645\) 0 0
\(646\) 0 0
\(647\) 18.3604 0.721821 0.360911 0.932600i \(-0.382466\pi\)
0.360911 + 0.932600i \(0.382466\pi\)
\(648\) −23.2850 −0.914722
\(649\) −55.9668 −2.19689
\(650\) 0 0
\(651\) −0.609480 −0.0238874
\(652\) 1.85369 0.0725959
\(653\) 33.0301 1.29257 0.646284 0.763097i \(-0.276322\pi\)
0.646284 + 0.763097i \(0.276322\pi\)
\(654\) 2.20414 0.0861886
\(655\) 0 0
\(656\) −5.28961 −0.206525
\(657\) −22.8102 −0.889911
\(658\) 12.5723 0.490120
\(659\) 26.4620 1.03081 0.515406 0.856946i \(-0.327641\pi\)
0.515406 + 0.856946i \(0.327641\pi\)
\(660\) 0 0
\(661\) 15.5935 0.606515 0.303258 0.952909i \(-0.401926\pi\)
0.303258 + 0.952909i \(0.401926\pi\)
\(662\) 43.5876 1.69408
\(663\) −0.202846 −0.00787790
\(664\) 40.8339 1.58466
\(665\) 0 0
\(666\) 16.3197 0.632377
\(667\) 27.9301 1.08146
\(668\) −3.24640 −0.125607
\(669\) 4.69673 0.181586
\(670\) 0 0
\(671\) 4.65434 0.179679
\(672\) 0.258959 0.00998958
\(673\) 6.13645 0.236543 0.118271 0.992981i \(-0.462265\pi\)
0.118271 + 0.992981i \(0.462265\pi\)
\(674\) −22.9759 −0.884999
\(675\) 0 0
\(676\) −2.48919 −0.0957379
\(677\) −22.2754 −0.856112 −0.428056 0.903752i \(-0.640801\pi\)
−0.428056 + 0.903752i \(0.640801\pi\)
\(678\) 1.76133 0.0676435
\(679\) 23.8440 0.915048
\(680\) 0 0
\(681\) −0.415105 −0.0159069
\(682\) 18.9903 0.727178
\(683\) −16.7397 −0.640527 −0.320264 0.947328i \(-0.603772\pi\)
−0.320264 + 0.947328i \(0.603772\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 23.7592 0.907131
\(687\) −3.97367 −0.151605
\(688\) −13.5842 −0.517891
\(689\) −2.56753 −0.0978151
\(690\) 0 0
\(691\) 36.7557 1.39825 0.699126 0.714999i \(-0.253573\pi\)
0.699126 + 0.714999i \(0.253573\pi\)
\(692\) −2.71034 −0.103032
\(693\) 19.2804 0.732400
\(694\) 33.4567 1.27000
\(695\) 0 0
\(696\) −1.95037 −0.0739288
\(697\) −3.34404 −0.126665
\(698\) 37.7534 1.42899
\(699\) −0.372993 −0.0141079
\(700\) 0 0
\(701\) 35.4106 1.33744 0.668721 0.743514i \(-0.266842\pi\)
0.668721 + 0.743514i \(0.266842\pi\)
\(702\) −0.651889 −0.0246040
\(703\) 0 0
\(704\) 35.2814 1.32972
\(705\) 0 0
\(706\) −15.2502 −0.573949
\(707\) 20.8613 0.784570
\(708\) −0.395621 −0.0148683
\(709\) 33.8369 1.27077 0.635386 0.772195i \(-0.280841\pi\)
0.635386 + 0.772195i \(0.280841\pi\)
\(710\) 0 0
\(711\) −43.1819 −1.61945
\(712\) 38.0257 1.42508
\(713\) 17.9023 0.670448
\(714\) 0.964848 0.0361085
\(715\) 0 0
\(716\) 1.91247 0.0714725
\(717\) 1.39495 0.0520953
\(718\) 2.93649 0.109589
\(719\) 26.9940 1.00671 0.503353 0.864081i \(-0.332100\pi\)
0.503353 + 0.864081i \(0.332100\pi\)
\(720\) 0 0
\(721\) 6.92463 0.257887
\(722\) 0 0
\(723\) −2.63997 −0.0981814
\(724\) −2.86494 −0.106475
\(725\) 0 0
\(726\) 3.71888 0.138021
\(727\) 21.6033 0.801221 0.400610 0.916249i \(-0.368798\pi\)
0.400610 + 0.916249i \(0.368798\pi\)
\(728\) 1.41698 0.0525169
\(729\) −25.2353 −0.934640
\(730\) 0 0
\(731\) −8.58777 −0.317630
\(732\) 0.0329009 0.00121605
\(733\) 17.2551 0.637332 0.318666 0.947867i \(-0.396765\pi\)
0.318666 + 0.947867i \(0.396765\pi\)
\(734\) 7.81217 0.288353
\(735\) 0 0
\(736\) −7.60644 −0.280377
\(737\) −26.3836 −0.971853
\(738\) −5.34369 −0.196704
\(739\) 4.79106 0.176242 0.0881210 0.996110i \(-0.471914\pi\)
0.0881210 + 0.996110i \(0.471914\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 12.2126 0.448338
\(743\) 14.4875 0.531493 0.265747 0.964043i \(-0.414382\pi\)
0.265747 + 0.964043i \(0.414382\pi\)
\(744\) −1.25013 −0.0458320
\(745\) 0 0
\(746\) −46.9823 −1.72014
\(747\) 45.2893 1.65705
\(748\) −2.65746 −0.0971665
\(749\) −16.9579 −0.619630
\(750\) 0 0
\(751\) −6.45274 −0.235464 −0.117732 0.993045i \(-0.537562\pi\)
−0.117732 + 0.993045i \(0.537562\pi\)
\(752\) 28.3119 1.03243
\(753\) 1.30527 0.0475667
\(754\) 2.41502 0.0879499
\(755\) 0 0
\(756\) 0.274095 0.00996874
\(757\) −36.9590 −1.34330 −0.671649 0.740870i \(-0.734414\pi\)
−0.671649 + 0.740870i \(0.734414\pi\)
\(758\) −52.6000 −1.91052
\(759\) 6.29525 0.228503
\(760\) 0 0
\(761\) 48.3893 1.75411 0.877055 0.480389i \(-0.159505\pi\)
0.877055 + 0.480389i \(0.159505\pi\)
\(762\) −4.06416 −0.147229
\(763\) −10.6867 −0.386883
\(764\) −4.01055 −0.145097
\(765\) 0 0
\(766\) 20.6333 0.745511
\(767\) −4.56200 −0.164724
\(768\) 0.837598 0.0302242
\(769\) 41.4353 1.49420 0.747098 0.664713i \(-0.231446\pi\)
0.747098 + 0.664713i \(0.231446\pi\)
\(770\) 0 0
\(771\) 1.58105 0.0569403
\(772\) −3.93270 −0.141541
\(773\) −38.8309 −1.39665 −0.698325 0.715781i \(-0.746071\pi\)
−0.698325 + 0.715781i \(0.746071\pi\)
\(774\) −13.7230 −0.493264
\(775\) 0 0
\(776\) 48.9074 1.75567
\(777\) 0.879559 0.0315540
\(778\) −1.39657 −0.0500695
\(779\) 0 0
\(780\) 0 0
\(781\) 8.14793 0.291556
\(782\) −28.3406 −1.01346
\(783\) −4.35041 −0.155471
\(784\) 23.0521 0.823290
\(785\) 0 0
\(786\) −0.670764 −0.0239254
\(787\) −51.4952 −1.83561 −0.917803 0.397037i \(-0.870038\pi\)
−0.917803 + 0.397037i \(0.870038\pi\)
\(788\) 3.08694 0.109968
\(789\) 5.54325 0.197345
\(790\) 0 0
\(791\) −8.53973 −0.303638
\(792\) 39.5467 1.40523
\(793\) 0.379388 0.0134725
\(794\) 42.3112 1.50157
\(795\) 0 0
\(796\) −2.56689 −0.0909809
\(797\) 7.50433 0.265817 0.132908 0.991128i \(-0.457568\pi\)
0.132908 + 0.991128i \(0.457568\pi\)
\(798\) 0 0
\(799\) 17.8985 0.633203
\(800\) 0 0
\(801\) 42.1748 1.49017
\(802\) 10.6162 0.374870
\(803\) 38.3049 1.35175
\(804\) −0.186502 −0.00657742
\(805\) 0 0
\(806\) 1.54795 0.0545243
\(807\) 3.34296 0.117678
\(808\) 42.7894 1.50533
\(809\) −17.9109 −0.629714 −0.314857 0.949139i \(-0.601957\pi\)
−0.314857 + 0.949139i \(0.601957\pi\)
\(810\) 0 0
\(811\) −5.15032 −0.180852 −0.0904260 0.995903i \(-0.528823\pi\)
−0.0904260 + 0.995903i \(0.528823\pi\)
\(812\) −1.01543 −0.0356345
\(813\) −2.08375 −0.0730802
\(814\) −27.4055 −0.960562
\(815\) 0 0
\(816\) 2.17276 0.0760619
\(817\) 0 0
\(818\) 15.6007 0.545464
\(819\) 1.57159 0.0549159
\(820\) 0 0
\(821\) −1.38105 −0.0481990 −0.0240995 0.999710i \(-0.507672\pi\)
−0.0240995 + 0.999710i \(0.507672\pi\)
\(822\) −4.73652 −0.165205
\(823\) −14.4160 −0.502509 −0.251254 0.967921i \(-0.580843\pi\)
−0.251254 + 0.967921i \(0.580843\pi\)
\(824\) 14.2034 0.494798
\(825\) 0 0
\(826\) 21.6994 0.755017
\(827\) 9.47321 0.329416 0.164708 0.986342i \(-0.447332\pi\)
0.164708 + 0.986342i \(0.447332\pi\)
\(828\) −4.00326 −0.139123
\(829\) 12.3950 0.430497 0.215248 0.976559i \(-0.430944\pi\)
0.215248 + 0.976559i \(0.430944\pi\)
\(830\) 0 0
\(831\) 0.326329 0.0113202
\(832\) 2.87588 0.0997032
\(833\) 14.5733 0.504935
\(834\) 0.848608 0.0293849
\(835\) 0 0
\(836\) 0 0
\(837\) −2.78848 −0.0963839
\(838\) 3.74287 0.129295
\(839\) −12.5298 −0.432578 −0.216289 0.976329i \(-0.569395\pi\)
−0.216289 + 0.976329i \(0.569395\pi\)
\(840\) 0 0
\(841\) −12.8832 −0.444250
\(842\) −22.0208 −0.758887
\(843\) 2.57720 0.0887633
\(844\) 1.89638 0.0652760
\(845\) 0 0
\(846\) 28.6013 0.983333
\(847\) −18.0308 −0.619547
\(848\) 27.5018 0.944416
\(849\) −3.25236 −0.111621
\(850\) 0 0
\(851\) −25.8354 −0.885625
\(852\) 0.0575965 0.00197323
\(853\) −3.47300 −0.118913 −0.0594567 0.998231i \(-0.518937\pi\)
−0.0594567 + 0.998231i \(0.518937\pi\)
\(854\) −1.80458 −0.0617513
\(855\) 0 0
\(856\) −34.7831 −1.18886
\(857\) −16.6617 −0.569153 −0.284577 0.958653i \(-0.591853\pi\)
−0.284577 + 0.958653i \(0.591853\pi\)
\(858\) 0.544329 0.0185831
\(859\) 40.8085 1.39237 0.696183 0.717864i \(-0.254880\pi\)
0.696183 + 0.717864i \(0.254880\pi\)
\(860\) 0 0
\(861\) −0.288000 −0.00981502
\(862\) 6.19239 0.210914
\(863\) 4.07050 0.138561 0.0692806 0.997597i \(-0.477930\pi\)
0.0692806 + 0.997597i \(0.477930\pi\)
\(864\) 1.18478 0.0403072
\(865\) 0 0
\(866\) −37.4821 −1.27369
\(867\) −1.71373 −0.0582014
\(868\) −0.650856 −0.0220915
\(869\) 72.5148 2.45990
\(870\) 0 0
\(871\) −2.15060 −0.0728703
\(872\) −21.9199 −0.742300
\(873\) 54.2437 1.83587
\(874\) 0 0
\(875\) 0 0
\(876\) 0.270771 0.00914852
\(877\) −26.5144 −0.895327 −0.447663 0.894202i \(-0.647744\pi\)
−0.447663 + 0.894202i \(0.647744\pi\)
\(878\) −42.8244 −1.44526
\(879\) −6.04914 −0.204032
\(880\) 0 0
\(881\) −22.3730 −0.753766 −0.376883 0.926261i \(-0.623004\pi\)
−0.376883 + 0.926261i \(0.623004\pi\)
\(882\) 23.2878 0.784140
\(883\) −19.7138 −0.663422 −0.331711 0.943381i \(-0.607626\pi\)
−0.331711 + 0.943381i \(0.607626\pi\)
\(884\) −0.216617 −0.00728562
\(885\) 0 0
\(886\) 6.79667 0.228339
\(887\) 11.4216 0.383500 0.191750 0.981444i \(-0.438584\pi\)
0.191750 + 0.981444i \(0.438584\pi\)
\(888\) 1.80410 0.0605416
\(889\) 19.7049 0.660881
\(890\) 0 0
\(891\) 43.3687 1.45291
\(892\) 5.01558 0.167934
\(893\) 0 0
\(894\) −1.71455 −0.0573431
\(895\) 0 0
\(896\) −16.5311 −0.552266
\(897\) 0.513143 0.0171333
\(898\) −43.2762 −1.44415
\(899\) 10.3303 0.344536
\(900\) 0 0
\(901\) 17.3864 0.579223
\(902\) 8.97358 0.298787
\(903\) −0.739608 −0.0246126
\(904\) −17.5162 −0.582580
\(905\) 0 0
\(906\) −1.33514 −0.0443569
\(907\) −10.7383 −0.356559 −0.178280 0.983980i \(-0.557053\pi\)
−0.178280 + 0.983980i \(0.557053\pi\)
\(908\) −0.443286 −0.0147110
\(909\) 47.4582 1.57409
\(910\) 0 0
\(911\) 27.5952 0.914269 0.457134 0.889398i \(-0.348876\pi\)
0.457134 + 0.889398i \(0.348876\pi\)
\(912\) 0 0
\(913\) −76.0538 −2.51701
\(914\) 35.1210 1.16170
\(915\) 0 0
\(916\) −4.24343 −0.140207
\(917\) 3.25217 0.107396
\(918\) 4.41435 0.145695
\(919\) −49.2639 −1.62507 −0.812533 0.582915i \(-0.801912\pi\)
−0.812533 + 0.582915i \(0.801912\pi\)
\(920\) 0 0
\(921\) 2.82529 0.0930964
\(922\) 51.8741 1.70838
\(923\) 0.664160 0.0218611
\(924\) −0.228870 −0.00752927
\(925\) 0 0
\(926\) −30.3550 −0.997526
\(927\) 15.7531 0.517401
\(928\) −4.38921 −0.144083
\(929\) 43.0748 1.41324 0.706619 0.707594i \(-0.250220\pi\)
0.706619 + 0.707594i \(0.250220\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −0.398315 −0.0130472
\(933\) 5.30219 0.173586
\(934\) −13.6914 −0.447995
\(935\) 0 0
\(936\) 3.22356 0.105365
\(937\) 43.4444 1.41927 0.709633 0.704571i \(-0.248861\pi\)
0.709633 + 0.704571i \(0.248861\pi\)
\(938\) 10.2294 0.334003
\(939\) −5.79110 −0.188985
\(940\) 0 0
\(941\) −29.2941 −0.954961 −0.477480 0.878642i \(-0.658450\pi\)
−0.477480 + 0.878642i \(0.658450\pi\)
\(942\) −0.563545 −0.0183613
\(943\) 8.45946 0.275478
\(944\) 48.8653 1.59043
\(945\) 0 0
\(946\) 23.0449 0.749254
\(947\) −2.00589 −0.0651826 −0.0325913 0.999469i \(-0.510376\pi\)
−0.0325913 + 0.999469i \(0.510376\pi\)
\(948\) 0.512596 0.0166484
\(949\) 3.12233 0.101355
\(950\) 0 0
\(951\) −2.46443 −0.0799148
\(952\) −9.59528 −0.310985
\(953\) 19.2389 0.623210 0.311605 0.950212i \(-0.399133\pi\)
0.311605 + 0.950212i \(0.399133\pi\)
\(954\) 27.7829 0.899505
\(955\) 0 0
\(956\) 1.48965 0.0481786
\(957\) 3.63260 0.117425
\(958\) 5.58045 0.180296
\(959\) 22.9648 0.741572
\(960\) 0 0
\(961\) −24.3786 −0.786406
\(962\) −2.23390 −0.0720237
\(963\) −38.5783 −1.24317
\(964\) −2.81919 −0.0907999
\(965\) 0 0
\(966\) −2.44079 −0.0785310
\(967\) 28.4143 0.913742 0.456871 0.889533i \(-0.348970\pi\)
0.456871 + 0.889533i \(0.348970\pi\)
\(968\) −36.9838 −1.18870
\(969\) 0 0
\(970\) 0 0
\(971\) −17.9762 −0.576885 −0.288442 0.957497i \(-0.593137\pi\)
−0.288442 + 0.957497i \(0.593137\pi\)
\(972\) 0.937049 0.0300559
\(973\) −4.11444 −0.131903
\(974\) 17.4752 0.559942
\(975\) 0 0
\(976\) −4.06377 −0.130078
\(977\) −13.2288 −0.423226 −0.211613 0.977354i \(-0.567872\pi\)
−0.211613 + 0.977354i \(0.567872\pi\)
\(978\) 2.57112 0.0822154
\(979\) −70.8235 −2.26353
\(980\) 0 0
\(981\) −24.3116 −0.776208
\(982\) 11.6061 0.370365
\(983\) −48.5234 −1.54766 −0.773828 0.633396i \(-0.781661\pi\)
−0.773828 + 0.633396i \(0.781661\pi\)
\(984\) −0.590728 −0.0188317
\(985\) 0 0
\(986\) −16.3536 −0.520805
\(987\) 1.54148 0.0490658
\(988\) 0 0
\(989\) 21.7246 0.690802
\(990\) 0 0
\(991\) −40.2803 −1.27955 −0.639773 0.768564i \(-0.720972\pi\)
−0.639773 + 0.768564i \(0.720972\pi\)
\(992\) −2.81335 −0.0893239
\(993\) 5.34423 0.169594
\(994\) −3.15911 −0.100201
\(995\) 0 0
\(996\) −0.537613 −0.0170349
\(997\) 27.5590 0.872803 0.436401 0.899752i \(-0.356253\pi\)
0.436401 + 0.899752i \(0.356253\pi\)
\(998\) 1.56946 0.0496804
\(999\) 4.02413 0.127318
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9025.2.a.bs.1.6 6
5.4 even 2 9025.2.a.by.1.1 6
19.8 odd 6 475.2.e.f.26.6 12
19.12 odd 6 475.2.e.f.201.6 yes 12
19.18 odd 2 9025.2.a.bz.1.1 6
95.8 even 12 475.2.j.d.349.9 24
95.12 even 12 475.2.j.d.49.9 24
95.27 even 12 475.2.j.d.349.4 24
95.69 odd 6 475.2.e.h.201.1 yes 12
95.84 odd 6 475.2.e.h.26.1 yes 12
95.88 even 12 475.2.j.d.49.4 24
95.94 odd 2 9025.2.a.br.1.6 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
475.2.e.f.26.6 12 19.8 odd 6
475.2.e.f.201.6 yes 12 19.12 odd 6
475.2.e.h.26.1 yes 12 95.84 odd 6
475.2.e.h.201.1 yes 12 95.69 odd 6
475.2.j.d.49.4 24 95.88 even 12
475.2.j.d.49.9 24 95.12 even 12
475.2.j.d.349.4 24 95.27 even 12
475.2.j.d.349.9 24 95.8 even 12
9025.2.a.br.1.6 6 95.94 odd 2
9025.2.a.bs.1.6 6 1.1 even 1 trivial
9025.2.a.by.1.1 6 5.4 even 2
9025.2.a.bz.1.1 6 19.18 odd 2