Properties

Label 9025.2.a.bs.1.3
Level $9025$
Weight $2$
Character 9025.1
Self dual yes
Analytic conductor $72.065$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9025,2,Mod(1,9025)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9025, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9025.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 9025 = 5^{2} \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9025.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(72.0649878242\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.41289040.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} - 8x^{4} + 21x^{3} + 18x^{2} - 25x - 5 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 475)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(1.02983\) of defining polynomial
Character \(\chi\) \(=\) 9025.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.311108 q^{2} -1.02983 q^{3} -1.90321 q^{4} +0.320390 q^{6} -3.28038 q^{7} +1.21432 q^{8} -1.93944 q^{9} -5.16792 q^{11} +1.95999 q^{12} -3.53471 q^{13} +1.02055 q^{14} +3.42864 q^{16} -1.00928 q^{17} +0.603375 q^{18} +3.37825 q^{21} +1.60778 q^{22} -7.66351 q^{23} -1.25055 q^{24} +1.09968 q^{26} +5.08681 q^{27} +6.24326 q^{28} +4.02606 q^{29} +4.60077 q^{31} -3.49532 q^{32} +5.32210 q^{33} +0.313995 q^{34} +3.69117 q^{36} +6.48831 q^{37} +3.64017 q^{39} +6.80553 q^{41} -1.05100 q^{42} +6.31022 q^{43} +9.83565 q^{44} +2.38418 q^{46} -3.84157 q^{47} -3.53093 q^{48} +3.76091 q^{49} +1.03939 q^{51} +6.72730 q^{52} +7.11892 q^{53} -1.58255 q^{54} -3.98343 q^{56} -1.25254 q^{58} -13.4730 q^{59} +6.13700 q^{61} -1.43134 q^{62} +6.36211 q^{63} -5.76986 q^{64} -1.65575 q^{66} +11.1979 q^{67} +1.92088 q^{68} +7.89215 q^{69} +0.455404 q^{71} -2.35510 q^{72} +4.13382 q^{73} -2.01856 q^{74} +16.9528 q^{77} -1.13248 q^{78} -2.88828 q^{79} +0.579752 q^{81} -2.11725 q^{82} -5.50061 q^{83} -6.42953 q^{84} -1.96316 q^{86} -4.14617 q^{87} -6.27551 q^{88} +7.12866 q^{89} +11.5952 q^{91} +14.5853 q^{92} -4.73803 q^{93} +1.19514 q^{94} +3.59960 q^{96} +10.8250 q^{97} -1.17005 q^{98} +10.0229 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 2 q^{2} - 3 q^{3} + 2 q^{4} - q^{6} + 2 q^{7} - 6 q^{8} + 7 q^{9} - q^{11} - 7 q^{12} - 5 q^{13} + 6 q^{14} - 6 q^{16} - 3 q^{17} - 7 q^{18} - 3 q^{21} - 9 q^{22} - 6 q^{23} + 11 q^{24} + 19 q^{26}+ \cdots - 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.311108 −0.219986 −0.109993 0.993932i \(-0.535083\pi\)
−0.109993 + 0.993932i \(0.535083\pi\)
\(3\) −1.02983 −0.594575 −0.297288 0.954788i \(-0.596082\pi\)
−0.297288 + 0.954788i \(0.596082\pi\)
\(4\) −1.90321 −0.951606
\(5\) 0 0
\(6\) 0.320390 0.130799
\(7\) −3.28038 −1.23987 −0.619934 0.784654i \(-0.712841\pi\)
−0.619934 + 0.784654i \(0.712841\pi\)
\(8\) 1.21432 0.429327
\(9\) −1.93944 −0.646480
\(10\) 0 0
\(11\) −5.16792 −1.55819 −0.779093 0.626908i \(-0.784320\pi\)
−0.779093 + 0.626908i \(0.784320\pi\)
\(12\) 1.95999 0.565801
\(13\) −3.53471 −0.980352 −0.490176 0.871623i \(-0.663067\pi\)
−0.490176 + 0.871623i \(0.663067\pi\)
\(14\) 1.02055 0.272754
\(15\) 0 0
\(16\) 3.42864 0.857160
\(17\) −1.00928 −0.244787 −0.122393 0.992482i \(-0.539057\pi\)
−0.122393 + 0.992482i \(0.539057\pi\)
\(18\) 0.603375 0.142217
\(19\) 0 0
\(20\) 0 0
\(21\) 3.37825 0.737195
\(22\) 1.60778 0.342780
\(23\) −7.66351 −1.59795 −0.798976 0.601362i \(-0.794625\pi\)
−0.798976 + 0.601362i \(0.794625\pi\)
\(24\) −1.25055 −0.255267
\(25\) 0 0
\(26\) 1.09968 0.215664
\(27\) 5.08681 0.978956
\(28\) 6.24326 1.17987
\(29\) 4.02606 0.747620 0.373810 0.927505i \(-0.378051\pi\)
0.373810 + 0.927505i \(0.378051\pi\)
\(30\) 0 0
\(31\) 4.60077 0.826323 0.413162 0.910658i \(-0.364424\pi\)
0.413162 + 0.910658i \(0.364424\pi\)
\(32\) −3.49532 −0.617890
\(33\) 5.32210 0.926459
\(34\) 0.313995 0.0538498
\(35\) 0 0
\(36\) 3.69117 0.615194
\(37\) 6.48831 1.06667 0.533336 0.845904i \(-0.320938\pi\)
0.533336 + 0.845904i \(0.320938\pi\)
\(38\) 0 0
\(39\) 3.64017 0.582893
\(40\) 0 0
\(41\) 6.80553 1.06285 0.531423 0.847107i \(-0.321658\pi\)
0.531423 + 0.847107i \(0.321658\pi\)
\(42\) −1.05100 −0.162173
\(43\) 6.31022 0.962299 0.481150 0.876639i \(-0.340219\pi\)
0.481150 + 0.876639i \(0.340219\pi\)
\(44\) 9.83565 1.48278
\(45\) 0 0
\(46\) 2.38418 0.351528
\(47\) −3.84157 −0.560351 −0.280175 0.959949i \(-0.590393\pi\)
−0.280175 + 0.959949i \(0.590393\pi\)
\(48\) −3.53093 −0.509646
\(49\) 3.76091 0.537273
\(50\) 0 0
\(51\) 1.03939 0.145544
\(52\) 6.72730 0.932909
\(53\) 7.11892 0.977858 0.488929 0.872323i \(-0.337388\pi\)
0.488929 + 0.872323i \(0.337388\pi\)
\(54\) −1.58255 −0.215357
\(55\) 0 0
\(56\) −3.98343 −0.532309
\(57\) 0 0
\(58\) −1.25254 −0.164466
\(59\) −13.4730 −1.75403 −0.877016 0.480460i \(-0.840470\pi\)
−0.877016 + 0.480460i \(0.840470\pi\)
\(60\) 0 0
\(61\) 6.13700 0.785763 0.392881 0.919589i \(-0.371478\pi\)
0.392881 + 0.919589i \(0.371478\pi\)
\(62\) −1.43134 −0.181780
\(63\) 6.36211 0.801550
\(64\) −5.76986 −0.721232
\(65\) 0 0
\(66\) −1.65575 −0.203808
\(67\) 11.1979 1.36805 0.684023 0.729460i \(-0.260229\pi\)
0.684023 + 0.729460i \(0.260229\pi\)
\(68\) 1.92088 0.232941
\(69\) 7.89215 0.950103
\(70\) 0 0
\(71\) 0.455404 0.0540465 0.0270233 0.999635i \(-0.491397\pi\)
0.0270233 + 0.999635i \(0.491397\pi\)
\(72\) −2.35510 −0.277551
\(73\) 4.13382 0.483827 0.241914 0.970298i \(-0.422225\pi\)
0.241914 + 0.970298i \(0.422225\pi\)
\(74\) −2.01856 −0.234653
\(75\) 0 0
\(76\) 0 0
\(77\) 16.9528 1.93195
\(78\) −1.13248 −0.128229
\(79\) −2.88828 −0.324957 −0.162478 0.986712i \(-0.551949\pi\)
−0.162478 + 0.986712i \(0.551949\pi\)
\(80\) 0 0
\(81\) 0.579752 0.0644169
\(82\) −2.11725 −0.233812
\(83\) −5.50061 −0.603770 −0.301885 0.953344i \(-0.597616\pi\)
−0.301885 + 0.953344i \(0.597616\pi\)
\(84\) −6.42953 −0.701519
\(85\) 0 0
\(86\) −1.96316 −0.211693
\(87\) −4.14617 −0.444516
\(88\) −6.27551 −0.668971
\(89\) 7.12866 0.755636 0.377818 0.925880i \(-0.376674\pi\)
0.377818 + 0.925880i \(0.376674\pi\)
\(90\) 0 0
\(91\) 11.5952 1.21551
\(92\) 14.5853 1.52062
\(93\) −4.73803 −0.491311
\(94\) 1.19514 0.123270
\(95\) 0 0
\(96\) 3.59960 0.367382
\(97\) 10.8250 1.09912 0.549558 0.835456i \(-0.314796\pi\)
0.549558 + 0.835456i \(0.314796\pi\)
\(98\) −1.17005 −0.118193
\(99\) 10.0229 1.00734
\(100\) 0 0
\(101\) −6.18022 −0.614955 −0.307478 0.951555i \(-0.599485\pi\)
−0.307478 + 0.951555i \(0.599485\pi\)
\(102\) −0.323363 −0.0320177
\(103\) −18.3217 −1.80529 −0.902644 0.430387i \(-0.858377\pi\)
−0.902644 + 0.430387i \(0.858377\pi\)
\(104\) −4.29227 −0.420891
\(105\) 0 0
\(106\) −2.21475 −0.215116
\(107\) −8.73445 −0.844391 −0.422196 0.906505i \(-0.638740\pi\)
−0.422196 + 0.906505i \(0.638740\pi\)
\(108\) −9.68127 −0.931581
\(109\) 6.09679 0.583966 0.291983 0.956423i \(-0.405685\pi\)
0.291983 + 0.956423i \(0.405685\pi\)
\(110\) 0 0
\(111\) −6.68188 −0.634216
\(112\) −11.2473 −1.06277
\(113\) −10.3443 −0.973111 −0.486556 0.873650i \(-0.661747\pi\)
−0.486556 + 0.873650i \(0.661747\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −7.66244 −0.711440
\(117\) 6.85536 0.633778
\(118\) 4.19155 0.385863
\(119\) 3.31083 0.303503
\(120\) 0 0
\(121\) 15.7074 1.42794
\(122\) −1.90927 −0.172857
\(123\) −7.00857 −0.631942
\(124\) −8.75625 −0.786334
\(125\) 0 0
\(126\) −1.97930 −0.176330
\(127\) −3.36713 −0.298784 −0.149392 0.988778i \(-0.547732\pi\)
−0.149392 + 0.988778i \(0.547732\pi\)
\(128\) 8.78568 0.776552
\(129\) −6.49848 −0.572159
\(130\) 0 0
\(131\) 2.42178 0.211592 0.105796 0.994388i \(-0.466261\pi\)
0.105796 + 0.994388i \(0.466261\pi\)
\(132\) −10.1291 −0.881624
\(133\) 0 0
\(134\) −3.48377 −0.300952
\(135\) 0 0
\(136\) −1.22559 −0.105094
\(137\) −11.5191 −0.984144 −0.492072 0.870555i \(-0.663760\pi\)
−0.492072 + 0.870555i \(0.663760\pi\)
\(138\) −2.45531 −0.209010
\(139\) 7.07553 0.600138 0.300069 0.953917i \(-0.402990\pi\)
0.300069 + 0.953917i \(0.402990\pi\)
\(140\) 0 0
\(141\) 3.95618 0.333171
\(142\) −0.141680 −0.0118895
\(143\) 18.2671 1.52757
\(144\) −6.64964 −0.554137
\(145\) 0 0
\(146\) −1.28606 −0.106435
\(147\) −3.87312 −0.319449
\(148\) −12.3486 −1.01505
\(149\) 12.7495 1.04448 0.522240 0.852798i \(-0.325096\pi\)
0.522240 + 0.852798i \(0.325096\pi\)
\(150\) 0 0
\(151\) 19.6361 1.59797 0.798983 0.601353i \(-0.205372\pi\)
0.798983 + 0.601353i \(0.205372\pi\)
\(152\) 0 0
\(153\) 1.95744 0.158250
\(154\) −5.27413 −0.425002
\(155\) 0 0
\(156\) −6.92801 −0.554685
\(157\) 3.08489 0.246201 0.123101 0.992394i \(-0.460716\pi\)
0.123101 + 0.992394i \(0.460716\pi\)
\(158\) 0.898567 0.0714861
\(159\) −7.33131 −0.581410
\(160\) 0 0
\(161\) 25.1393 1.98125
\(162\) −0.180365 −0.0141708
\(163\) −22.4721 −1.76015 −0.880077 0.474831i \(-0.842509\pi\)
−0.880077 + 0.474831i \(0.842509\pi\)
\(164\) −12.9524 −1.01141
\(165\) 0 0
\(166\) 1.71128 0.132821
\(167\) −10.5397 −0.815590 −0.407795 0.913074i \(-0.633702\pi\)
−0.407795 + 0.913074i \(0.633702\pi\)
\(168\) 4.10228 0.316498
\(169\) −0.505830 −0.0389100
\(170\) 0 0
\(171\) 0 0
\(172\) −12.0097 −0.915730
\(173\) −22.9381 −1.74395 −0.871977 0.489547i \(-0.837162\pi\)
−0.871977 + 0.489547i \(0.837162\pi\)
\(174\) 1.28991 0.0977876
\(175\) 0 0
\(176\) −17.7189 −1.33561
\(177\) 13.8749 1.04290
\(178\) −2.21778 −0.166230
\(179\) −23.2705 −1.73932 −0.869661 0.493649i \(-0.835663\pi\)
−0.869661 + 0.493649i \(0.835663\pi\)
\(180\) 0 0
\(181\) 15.9669 1.18681 0.593406 0.804904i \(-0.297783\pi\)
0.593406 + 0.804904i \(0.297783\pi\)
\(182\) −3.60736 −0.267395
\(183\) −6.32010 −0.467195
\(184\) −9.30595 −0.686044
\(185\) 0 0
\(186\) 1.47404 0.108082
\(187\) 5.21589 0.381423
\(188\) 7.31133 0.533233
\(189\) −16.6867 −1.21378
\(190\) 0 0
\(191\) −2.44600 −0.176986 −0.0884930 0.996077i \(-0.528205\pi\)
−0.0884930 + 0.996077i \(0.528205\pi\)
\(192\) 5.94200 0.428827
\(193\) 19.0456 1.37093 0.685466 0.728104i \(-0.259598\pi\)
0.685466 + 0.728104i \(0.259598\pi\)
\(194\) −3.36775 −0.241791
\(195\) 0 0
\(196\) −7.15782 −0.511273
\(197\) −6.18524 −0.440680 −0.220340 0.975423i \(-0.570717\pi\)
−0.220340 + 0.975423i \(0.570717\pi\)
\(198\) −3.11819 −0.221600
\(199\) 7.21050 0.511138 0.255569 0.966791i \(-0.417737\pi\)
0.255569 + 0.966791i \(0.417737\pi\)
\(200\) 0 0
\(201\) −11.5320 −0.813407
\(202\) 1.92272 0.135282
\(203\) −13.2070 −0.926950
\(204\) −1.97819 −0.138501
\(205\) 0 0
\(206\) 5.70002 0.397139
\(207\) 14.8629 1.03304
\(208\) −12.1192 −0.840318
\(209\) 0 0
\(210\) 0 0
\(211\) 19.6467 1.35253 0.676266 0.736658i \(-0.263597\pi\)
0.676266 + 0.736658i \(0.263597\pi\)
\(212\) −13.5488 −0.930536
\(213\) −0.468991 −0.0321347
\(214\) 2.71736 0.185755
\(215\) 0 0
\(216\) 6.17701 0.420292
\(217\) −15.0923 −1.02453
\(218\) −1.89676 −0.128465
\(219\) −4.25715 −0.287672
\(220\) 0 0
\(221\) 3.56752 0.239977
\(222\) 2.07879 0.139519
\(223\) 11.3338 0.758967 0.379484 0.925198i \(-0.376102\pi\)
0.379484 + 0.925198i \(0.376102\pi\)
\(224\) 11.4660 0.766103
\(225\) 0 0
\(226\) 3.21820 0.214071
\(227\) 11.1369 0.739180 0.369590 0.929195i \(-0.379498\pi\)
0.369590 + 0.929195i \(0.379498\pi\)
\(228\) 0 0
\(229\) 3.51221 0.232093 0.116047 0.993244i \(-0.462978\pi\)
0.116047 + 0.993244i \(0.462978\pi\)
\(230\) 0 0
\(231\) −17.4585 −1.14869
\(232\) 4.88892 0.320973
\(233\) 6.18998 0.405519 0.202759 0.979229i \(-0.435009\pi\)
0.202759 + 0.979229i \(0.435009\pi\)
\(234\) −2.13276 −0.139423
\(235\) 0 0
\(236\) 25.6419 1.66915
\(237\) 2.97445 0.193211
\(238\) −1.03003 −0.0667666
\(239\) 12.1221 0.784116 0.392058 0.919940i \(-0.371763\pi\)
0.392058 + 0.919940i \(0.371763\pi\)
\(240\) 0 0
\(241\) 5.10204 0.328651 0.164326 0.986406i \(-0.447455\pi\)
0.164326 + 0.986406i \(0.447455\pi\)
\(242\) −4.88669 −0.314128
\(243\) −15.8575 −1.01726
\(244\) −11.6800 −0.747737
\(245\) 0 0
\(246\) 2.18042 0.139019
\(247\) 0 0
\(248\) 5.58681 0.354763
\(249\) 5.66472 0.358987
\(250\) 0 0
\(251\) 25.4244 1.60477 0.802385 0.596806i \(-0.203564\pi\)
0.802385 + 0.596806i \(0.203564\pi\)
\(252\) −12.1084 −0.762760
\(253\) 39.6044 2.48991
\(254\) 1.04754 0.0657285
\(255\) 0 0
\(256\) 8.80642 0.550401
\(257\) −18.4499 −1.15087 −0.575436 0.817847i \(-0.695167\pi\)
−0.575436 + 0.817847i \(0.695167\pi\)
\(258\) 2.02173 0.125867
\(259\) −21.2841 −1.32253
\(260\) 0 0
\(261\) −7.80830 −0.483322
\(262\) −0.753434 −0.0465473
\(263\) 12.9506 0.798568 0.399284 0.916827i \(-0.369259\pi\)
0.399284 + 0.916827i \(0.369259\pi\)
\(264\) 6.46273 0.397754
\(265\) 0 0
\(266\) 0 0
\(267\) −7.34134 −0.449283
\(268\) −21.3121 −1.30184
\(269\) −0.156494 −0.00954163 −0.00477081 0.999989i \(-0.501519\pi\)
−0.00477081 + 0.999989i \(0.501519\pi\)
\(270\) 0 0
\(271\) 27.8191 1.68989 0.844944 0.534855i \(-0.179634\pi\)
0.844944 + 0.534855i \(0.179634\pi\)
\(272\) −3.46046 −0.209821
\(273\) −11.9411 −0.722711
\(274\) 3.58368 0.216498
\(275\) 0 0
\(276\) −15.0204 −0.904124
\(277\) −0.524062 −0.0314878 −0.0157439 0.999876i \(-0.505012\pi\)
−0.0157439 + 0.999876i \(0.505012\pi\)
\(278\) −2.20125 −0.132022
\(279\) −8.92293 −0.534202
\(280\) 0 0
\(281\) 4.88826 0.291609 0.145804 0.989313i \(-0.453423\pi\)
0.145804 + 0.989313i \(0.453423\pi\)
\(282\) −1.23080 −0.0732931
\(283\) −17.8786 −1.06277 −0.531387 0.847129i \(-0.678329\pi\)
−0.531387 + 0.847129i \(0.678329\pi\)
\(284\) −0.866730 −0.0514310
\(285\) 0 0
\(286\) −5.68304 −0.336045
\(287\) −22.3248 −1.31779
\(288\) 6.77896 0.399454
\(289\) −15.9814 −0.940079
\(290\) 0 0
\(291\) −11.1480 −0.653507
\(292\) −7.86754 −0.460413
\(293\) −7.25399 −0.423783 −0.211891 0.977293i \(-0.567962\pi\)
−0.211891 + 0.977293i \(0.567962\pi\)
\(294\) 1.20496 0.0702745
\(295\) 0 0
\(296\) 7.87888 0.457951
\(297\) −26.2882 −1.52540
\(298\) −3.96647 −0.229772
\(299\) 27.0883 1.56656
\(300\) 0 0
\(301\) −20.6999 −1.19312
\(302\) −6.10896 −0.351531
\(303\) 6.36461 0.365637
\(304\) 0 0
\(305\) 0 0
\(306\) −0.608976 −0.0348128
\(307\) −14.3803 −0.820727 −0.410364 0.911922i \(-0.634598\pi\)
−0.410364 + 0.911922i \(0.634598\pi\)
\(308\) −32.2647 −1.83845
\(309\) 18.8683 1.07338
\(310\) 0 0
\(311\) 8.52590 0.483459 0.241730 0.970344i \(-0.422285\pi\)
0.241730 + 0.970344i \(0.422285\pi\)
\(312\) 4.42033 0.250252
\(313\) −21.3619 −1.20744 −0.603722 0.797195i \(-0.706316\pi\)
−0.603722 + 0.797195i \(0.706316\pi\)
\(314\) −0.959733 −0.0541609
\(315\) 0 0
\(316\) 5.49701 0.309231
\(317\) −28.0928 −1.57785 −0.788924 0.614490i \(-0.789362\pi\)
−0.788924 + 0.614490i \(0.789362\pi\)
\(318\) 2.28083 0.127902
\(319\) −20.8063 −1.16493
\(320\) 0 0
\(321\) 8.99504 0.502054
\(322\) −7.82102 −0.435848
\(323\) 0 0
\(324\) −1.10339 −0.0612995
\(325\) 0 0
\(326\) 6.99126 0.387210
\(327\) −6.27868 −0.347212
\(328\) 8.26409 0.456308
\(329\) 12.6018 0.694761
\(330\) 0 0
\(331\) −15.1725 −0.833957 −0.416979 0.908916i \(-0.636911\pi\)
−0.416979 + 0.908916i \(0.636911\pi\)
\(332\) 10.4688 0.574552
\(333\) −12.5837 −0.689582
\(334\) 3.27900 0.179419
\(335\) 0 0
\(336\) 11.5828 0.631894
\(337\) 17.5008 0.953330 0.476665 0.879085i \(-0.341845\pi\)
0.476665 + 0.879085i \(0.341845\pi\)
\(338\) 0.157368 0.00855967
\(339\) 10.6529 0.578588
\(340\) 0 0
\(341\) −23.7764 −1.28757
\(342\) 0 0
\(343\) 10.6254 0.573720
\(344\) 7.66262 0.413141
\(345\) 0 0
\(346\) 7.13623 0.383646
\(347\) 17.3687 0.932401 0.466201 0.884679i \(-0.345623\pi\)
0.466201 + 0.884679i \(0.345623\pi\)
\(348\) 7.89105 0.423004
\(349\) −34.2563 −1.83370 −0.916850 0.399232i \(-0.869277\pi\)
−0.916850 + 0.399232i \(0.869277\pi\)
\(350\) 0 0
\(351\) −17.9804 −0.959722
\(352\) 18.0635 0.962788
\(353\) 34.9287 1.85907 0.929534 0.368736i \(-0.120209\pi\)
0.929534 + 0.368736i \(0.120209\pi\)
\(354\) −4.31660 −0.229425
\(355\) 0 0
\(356\) −13.5673 −0.719068
\(357\) −3.40961 −0.180456
\(358\) 7.23965 0.382627
\(359\) −0.976546 −0.0515401 −0.0257701 0.999668i \(-0.508204\pi\)
−0.0257701 + 0.999668i \(0.508204\pi\)
\(360\) 0 0
\(361\) 0 0
\(362\) −4.96743 −0.261082
\(363\) −16.1760 −0.849020
\(364\) −22.0681 −1.15668
\(365\) 0 0
\(366\) 1.96623 0.102777
\(367\) 9.86635 0.515019 0.257510 0.966276i \(-0.417098\pi\)
0.257510 + 0.966276i \(0.417098\pi\)
\(368\) −26.2754 −1.36970
\(369\) −13.1989 −0.687109
\(370\) 0 0
\(371\) −23.3528 −1.21242
\(372\) 9.01748 0.467535
\(373\) 12.9521 0.670634 0.335317 0.942105i \(-0.391157\pi\)
0.335317 + 0.942105i \(0.391157\pi\)
\(374\) −1.62270 −0.0839080
\(375\) 0 0
\(376\) −4.66490 −0.240574
\(377\) −14.2309 −0.732931
\(378\) 5.19136 0.267015
\(379\) −5.21597 −0.267926 −0.133963 0.990986i \(-0.542770\pi\)
−0.133963 + 0.990986i \(0.542770\pi\)
\(380\) 0 0
\(381\) 3.46758 0.177650
\(382\) 0.760969 0.0389345
\(383\) −33.5314 −1.71337 −0.856686 0.515838i \(-0.827481\pi\)
−0.856686 + 0.515838i \(0.827481\pi\)
\(384\) −9.04780 −0.461718
\(385\) 0 0
\(386\) −5.92524 −0.301587
\(387\) −12.2383 −0.622107
\(388\) −20.6023 −1.04593
\(389\) 27.7406 1.40651 0.703253 0.710940i \(-0.251730\pi\)
0.703253 + 0.710940i \(0.251730\pi\)
\(390\) 0 0
\(391\) 7.73464 0.391158
\(392\) 4.56695 0.230666
\(393\) −2.49403 −0.125807
\(394\) 1.92428 0.0969437
\(395\) 0 0
\(396\) −19.0757 −0.958588
\(397\) −5.49942 −0.276008 −0.138004 0.990432i \(-0.544069\pi\)
−0.138004 + 0.990432i \(0.544069\pi\)
\(398\) −2.24324 −0.112444
\(399\) 0 0
\(400\) 0 0
\(401\) 8.51309 0.425124 0.212562 0.977148i \(-0.431819\pi\)
0.212562 + 0.977148i \(0.431819\pi\)
\(402\) 3.58770 0.178938
\(403\) −16.2624 −0.810088
\(404\) 11.7623 0.585195
\(405\) 0 0
\(406\) 4.10880 0.203917
\(407\) −33.5311 −1.66207
\(408\) 1.26216 0.0624860
\(409\) 21.4706 1.06165 0.530826 0.847481i \(-0.321882\pi\)
0.530826 + 0.847481i \(0.321882\pi\)
\(410\) 0 0
\(411\) 11.8628 0.585148
\(412\) 34.8700 1.71792
\(413\) 44.1965 2.17477
\(414\) −4.62397 −0.227256
\(415\) 0 0
\(416\) 12.3549 0.605750
\(417\) −7.28662 −0.356827
\(418\) 0 0
\(419\) −5.09378 −0.248848 −0.124424 0.992229i \(-0.539708\pi\)
−0.124424 + 0.992229i \(0.539708\pi\)
\(420\) 0 0
\(421\) −5.65823 −0.275765 −0.137883 0.990449i \(-0.544030\pi\)
−0.137883 + 0.990449i \(0.544030\pi\)
\(422\) −6.11223 −0.297539
\(423\) 7.45050 0.362256
\(424\) 8.64464 0.419821
\(425\) 0 0
\(426\) 0.145907 0.00706920
\(427\) −20.1317 −0.974242
\(428\) 16.6235 0.803528
\(429\) −18.8121 −0.908256
\(430\) 0 0
\(431\) 38.3668 1.84807 0.924033 0.382313i \(-0.124872\pi\)
0.924033 + 0.382313i \(0.124872\pi\)
\(432\) 17.4408 0.839122
\(433\) −6.96250 −0.334596 −0.167298 0.985906i \(-0.553504\pi\)
−0.167298 + 0.985906i \(0.553504\pi\)
\(434\) 4.69533 0.225383
\(435\) 0 0
\(436\) −11.6035 −0.555706
\(437\) 0 0
\(438\) 1.32443 0.0632839
\(439\) −9.52692 −0.454695 −0.227347 0.973814i \(-0.573005\pi\)
−0.227347 + 0.973814i \(0.573005\pi\)
\(440\) 0 0
\(441\) −7.29407 −0.347337
\(442\) −1.10988 −0.0527917
\(443\) 34.7038 1.64883 0.824414 0.565987i \(-0.191505\pi\)
0.824414 + 0.565987i \(0.191505\pi\)
\(444\) 12.7170 0.603524
\(445\) 0 0
\(446\) −3.52603 −0.166963
\(447\) −13.1299 −0.621023
\(448\) 18.9273 0.894233
\(449\) 8.84228 0.417293 0.208646 0.977991i \(-0.433094\pi\)
0.208646 + 0.977991i \(0.433094\pi\)
\(450\) 0 0
\(451\) −35.1704 −1.65611
\(452\) 19.6874 0.926019
\(453\) −20.2220 −0.950111
\(454\) −3.46477 −0.162610
\(455\) 0 0
\(456\) 0 0
\(457\) 0.664998 0.0311073 0.0155536 0.999879i \(-0.495049\pi\)
0.0155536 + 0.999879i \(0.495049\pi\)
\(458\) −1.09268 −0.0510574
\(459\) −5.13402 −0.239636
\(460\) 0 0
\(461\) −39.5392 −1.84152 −0.920762 0.390124i \(-0.872432\pi\)
−0.920762 + 0.390124i \(0.872432\pi\)
\(462\) 5.43149 0.252696
\(463\) −15.5782 −0.723981 −0.361991 0.932182i \(-0.617903\pi\)
−0.361991 + 0.932182i \(0.617903\pi\)
\(464\) 13.8039 0.640830
\(465\) 0 0
\(466\) −1.92575 −0.0892086
\(467\) 41.0358 1.89891 0.949456 0.313901i \(-0.101636\pi\)
0.949456 + 0.313901i \(0.101636\pi\)
\(468\) −13.0472 −0.603107
\(469\) −36.7335 −1.69620
\(470\) 0 0
\(471\) −3.17693 −0.146385
\(472\) −16.3605 −0.753053
\(473\) −32.6107 −1.49944
\(474\) −0.925375 −0.0425039
\(475\) 0 0
\(476\) −6.30121 −0.288816
\(477\) −13.8067 −0.632166
\(478\) −3.77129 −0.172495
\(479\) −23.5587 −1.07643 −0.538213 0.842809i \(-0.680900\pi\)
−0.538213 + 0.842809i \(0.680900\pi\)
\(480\) 0 0
\(481\) −22.9343 −1.04571
\(482\) −1.58728 −0.0722988
\(483\) −25.8893 −1.17800
\(484\) −29.8945 −1.35884
\(485\) 0 0
\(486\) 4.93338 0.223783
\(487\) 23.9166 1.08377 0.541883 0.840454i \(-0.317712\pi\)
0.541883 + 0.840454i \(0.317712\pi\)
\(488\) 7.45228 0.337349
\(489\) 23.1426 1.04654
\(490\) 0 0
\(491\) 16.3475 0.737751 0.368875 0.929479i \(-0.379743\pi\)
0.368875 + 0.929479i \(0.379743\pi\)
\(492\) 13.3388 0.601360
\(493\) −4.06343 −0.183007
\(494\) 0 0
\(495\) 0 0
\(496\) 15.7744 0.708291
\(497\) −1.49390 −0.0670105
\(498\) −1.76234 −0.0789723
\(499\) −32.0708 −1.43569 −0.717844 0.696204i \(-0.754871\pi\)
−0.717844 + 0.696204i \(0.754871\pi\)
\(500\) 0 0
\(501\) 10.8542 0.484930
\(502\) −7.90972 −0.353028
\(503\) 14.7254 0.656572 0.328286 0.944578i \(-0.393529\pi\)
0.328286 + 0.944578i \(0.393529\pi\)
\(504\) 7.72563 0.344127
\(505\) 0 0
\(506\) −12.3212 −0.547746
\(507\) 0.520921 0.0231349
\(508\) 6.40836 0.284325
\(509\) 22.0663 0.978073 0.489037 0.872263i \(-0.337348\pi\)
0.489037 + 0.872263i \(0.337348\pi\)
\(510\) 0 0
\(511\) −13.5605 −0.599882
\(512\) −20.3111 −0.897633
\(513\) 0 0
\(514\) 5.73990 0.253176
\(515\) 0 0
\(516\) 12.3680 0.544470
\(517\) 19.8529 0.873131
\(518\) 6.62166 0.290939
\(519\) 23.6225 1.03691
\(520\) 0 0
\(521\) 14.7781 0.647442 0.323721 0.946153i \(-0.395066\pi\)
0.323721 + 0.946153i \(0.395066\pi\)
\(522\) 2.42922 0.106324
\(523\) 12.7100 0.555768 0.277884 0.960615i \(-0.410367\pi\)
0.277884 + 0.960615i \(0.410367\pi\)
\(524\) −4.60916 −0.201352
\(525\) 0 0
\(526\) −4.02903 −0.175674
\(527\) −4.64348 −0.202273
\(528\) 18.2476 0.794124
\(529\) 35.7294 1.55345
\(530\) 0 0
\(531\) 26.1301 1.13395
\(532\) 0 0
\(533\) −24.0556 −1.04196
\(534\) 2.28395 0.0988361
\(535\) 0 0
\(536\) 13.5979 0.587339
\(537\) 23.9648 1.03416
\(538\) 0.0486866 0.00209903
\(539\) −19.4361 −0.837172
\(540\) 0 0
\(541\) −30.2345 −1.29988 −0.649941 0.759985i \(-0.725206\pi\)
−0.649941 + 0.759985i \(0.725206\pi\)
\(542\) −8.65473 −0.371752
\(543\) −16.4433 −0.705649
\(544\) 3.52776 0.151251
\(545\) 0 0
\(546\) 3.71498 0.158987
\(547\) 7.80744 0.333822 0.166911 0.985972i \(-0.446621\pi\)
0.166911 + 0.985972i \(0.446621\pi\)
\(548\) 21.9233 0.936517
\(549\) −11.9024 −0.507980
\(550\) 0 0
\(551\) 0 0
\(552\) 9.58359 0.407905
\(553\) 9.47467 0.402904
\(554\) 0.163040 0.00692689
\(555\) 0 0
\(556\) −13.4662 −0.571095
\(557\) 2.41495 0.102325 0.0511623 0.998690i \(-0.483707\pi\)
0.0511623 + 0.998690i \(0.483707\pi\)
\(558\) 2.77599 0.117517
\(559\) −22.3048 −0.943392
\(560\) 0 0
\(561\) −5.37150 −0.226785
\(562\) −1.52078 −0.0641500
\(563\) −25.3392 −1.06792 −0.533960 0.845510i \(-0.679297\pi\)
−0.533960 + 0.845510i \(0.679297\pi\)
\(564\) −7.52946 −0.317047
\(565\) 0 0
\(566\) 5.56218 0.233796
\(567\) −1.90181 −0.0798685
\(568\) 0.553006 0.0232036
\(569\) 45.1046 1.89088 0.945441 0.325793i \(-0.105631\pi\)
0.945441 + 0.325793i \(0.105631\pi\)
\(570\) 0 0
\(571\) −9.73299 −0.407313 −0.203656 0.979042i \(-0.565283\pi\)
−0.203656 + 0.979042i \(0.565283\pi\)
\(572\) −34.7661 −1.45365
\(573\) 2.51897 0.105232
\(574\) 6.94541 0.289896
\(575\) 0 0
\(576\) 11.1903 0.466262
\(577\) −8.83145 −0.367658 −0.183829 0.982958i \(-0.558849\pi\)
−0.183829 + 0.982958i \(0.558849\pi\)
\(578\) 4.97192 0.206805
\(579\) −19.6138 −0.815123
\(580\) 0 0
\(581\) 18.0441 0.748596
\(582\) 3.46823 0.143763
\(583\) −36.7900 −1.52369
\(584\) 5.01978 0.207720
\(585\) 0 0
\(586\) 2.25677 0.0932265
\(587\) −26.9932 −1.11413 −0.557065 0.830469i \(-0.688073\pi\)
−0.557065 + 0.830469i \(0.688073\pi\)
\(588\) 7.37137 0.303990
\(589\) 0 0
\(590\) 0 0
\(591\) 6.36978 0.262018
\(592\) 22.2461 0.914308
\(593\) −21.2339 −0.871974 −0.435987 0.899953i \(-0.643601\pi\)
−0.435987 + 0.899953i \(0.643601\pi\)
\(594\) 8.17847 0.335567
\(595\) 0 0
\(596\) −24.2650 −0.993934
\(597\) −7.42562 −0.303910
\(598\) −8.42738 −0.344621
\(599\) 30.3294 1.23922 0.619612 0.784908i \(-0.287290\pi\)
0.619612 + 0.784908i \(0.287290\pi\)
\(600\) 0 0
\(601\) 10.7285 0.437624 0.218812 0.975767i \(-0.429782\pi\)
0.218812 + 0.975767i \(0.429782\pi\)
\(602\) 6.43991 0.262471
\(603\) −21.7177 −0.884415
\(604\) −37.3717 −1.52063
\(605\) 0 0
\(606\) −1.98008 −0.0804352
\(607\) −8.81498 −0.357789 −0.178894 0.983868i \(-0.557252\pi\)
−0.178894 + 0.983868i \(0.557252\pi\)
\(608\) 0 0
\(609\) 13.6010 0.551142
\(610\) 0 0
\(611\) 13.5788 0.549341
\(612\) −3.72543 −0.150591
\(613\) 24.1307 0.974631 0.487315 0.873226i \(-0.337976\pi\)
0.487315 + 0.873226i \(0.337976\pi\)
\(614\) 4.47383 0.180549
\(615\) 0 0
\(616\) 20.5861 0.829436
\(617\) −15.4650 −0.622595 −0.311298 0.950312i \(-0.600764\pi\)
−0.311298 + 0.950312i \(0.600764\pi\)
\(618\) −5.87008 −0.236129
\(619\) 0.0390990 0.00157152 0.000785761 1.00000i \(-0.499750\pi\)
0.000785761 1.00000i \(0.499750\pi\)
\(620\) 0 0
\(621\) −38.9828 −1.56433
\(622\) −2.65247 −0.106354
\(623\) −23.3847 −0.936889
\(624\) 12.4808 0.499633
\(625\) 0 0
\(626\) 6.64584 0.265621
\(627\) 0 0
\(628\) −5.87120 −0.234286
\(629\) −6.54853 −0.261107
\(630\) 0 0
\(631\) 6.73516 0.268122 0.134061 0.990973i \(-0.457198\pi\)
0.134061 + 0.990973i \(0.457198\pi\)
\(632\) −3.50730 −0.139513
\(633\) −20.2328 −0.804182
\(634\) 8.73989 0.347105
\(635\) 0 0
\(636\) 13.9530 0.553274
\(637\) −13.2937 −0.526717
\(638\) 6.47301 0.256269
\(639\) −0.883229 −0.0349400
\(640\) 0 0
\(641\) −27.5788 −1.08930 −0.544649 0.838664i \(-0.683337\pi\)
−0.544649 + 0.838664i \(0.683337\pi\)
\(642\) −2.79843 −0.110445
\(643\) 11.9081 0.469611 0.234806 0.972042i \(-0.424555\pi\)
0.234806 + 0.972042i \(0.424555\pi\)
\(644\) −47.8453 −1.88537
\(645\) 0 0
\(646\) 0 0
\(647\) −11.6648 −0.458590 −0.229295 0.973357i \(-0.573642\pi\)
−0.229295 + 0.973357i \(0.573642\pi\)
\(648\) 0.704005 0.0276559
\(649\) 69.6273 2.73311
\(650\) 0 0
\(651\) 15.5426 0.609161
\(652\) 42.7692 1.67497
\(653\) −40.7527 −1.59477 −0.797387 0.603468i \(-0.793785\pi\)
−0.797387 + 0.603468i \(0.793785\pi\)
\(654\) 1.95335 0.0763819
\(655\) 0 0
\(656\) 23.3337 0.911029
\(657\) −8.01730 −0.312785
\(658\) −3.92053 −0.152838
\(659\) 23.1446 0.901585 0.450793 0.892629i \(-0.351141\pi\)
0.450793 + 0.892629i \(0.351141\pi\)
\(660\) 0 0
\(661\) −4.88970 −0.190187 −0.0950936 0.995468i \(-0.530315\pi\)
−0.0950936 + 0.995468i \(0.530315\pi\)
\(662\) 4.72029 0.183459
\(663\) −3.67395 −0.142685
\(664\) −6.67950 −0.259215
\(665\) 0 0
\(666\) 3.91488 0.151699
\(667\) −30.8537 −1.19466
\(668\) 20.0594 0.776120
\(669\) −11.6719 −0.451263
\(670\) 0 0
\(671\) −31.7155 −1.22436
\(672\) −11.8081 −0.455506
\(673\) −29.5149 −1.13771 −0.568857 0.822436i \(-0.692614\pi\)
−0.568857 + 0.822436i \(0.692614\pi\)
\(674\) −5.44464 −0.209720
\(675\) 0 0
\(676\) 0.962701 0.0370270
\(677\) 29.4248 1.13089 0.565443 0.824788i \(-0.308705\pi\)
0.565443 + 0.824788i \(0.308705\pi\)
\(678\) −3.31421 −0.127282
\(679\) −35.5103 −1.36276
\(680\) 0 0
\(681\) −11.4691 −0.439498
\(682\) 7.39703 0.283247
\(683\) −29.9433 −1.14575 −0.572875 0.819643i \(-0.694172\pi\)
−0.572875 + 0.819643i \(0.694172\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −3.30566 −0.126211
\(687\) −3.61699 −0.137997
\(688\) 21.6355 0.824844
\(689\) −25.1633 −0.958645
\(690\) 0 0
\(691\) −24.2225 −0.921467 −0.460733 0.887539i \(-0.652414\pi\)
−0.460733 + 0.887539i \(0.652414\pi\)
\(692\) 43.6561 1.65956
\(693\) −32.8789 −1.24896
\(694\) −5.40354 −0.205116
\(695\) 0 0
\(696\) −5.03478 −0.190843
\(697\) −6.86870 −0.260171
\(698\) 10.6574 0.403389
\(699\) −6.37465 −0.241111
\(700\) 0 0
\(701\) −14.8539 −0.561024 −0.280512 0.959851i \(-0.590504\pi\)
−0.280512 + 0.959851i \(0.590504\pi\)
\(702\) 5.59384 0.211126
\(703\) 0 0
\(704\) 29.8182 1.12381
\(705\) 0 0
\(706\) −10.8666 −0.408970
\(707\) 20.2735 0.762463
\(708\) −26.4070 −0.992434
\(709\) −29.8009 −1.11920 −0.559598 0.828764i \(-0.689044\pi\)
−0.559598 + 0.828764i \(0.689044\pi\)
\(710\) 0 0
\(711\) 5.60165 0.210078
\(712\) 8.65647 0.324415
\(713\) −35.2581 −1.32043
\(714\) 1.06076 0.0396978
\(715\) 0 0
\(716\) 44.2888 1.65515
\(717\) −12.4838 −0.466216
\(718\) 0.303811 0.0113381
\(719\) −25.8925 −0.965628 −0.482814 0.875723i \(-0.660385\pi\)
−0.482814 + 0.875723i \(0.660385\pi\)
\(720\) 0 0
\(721\) 60.1021 2.23832
\(722\) 0 0
\(723\) −5.25426 −0.195408
\(724\) −30.3884 −1.12938
\(725\) 0 0
\(726\) 5.03248 0.186773
\(727\) 9.34885 0.346729 0.173365 0.984858i \(-0.444536\pi\)
0.173365 + 0.984858i \(0.444536\pi\)
\(728\) 14.0803 0.521850
\(729\) 14.5913 0.540419
\(730\) 0 0
\(731\) −6.36879 −0.235558
\(732\) 12.0285 0.444586
\(733\) 7.20434 0.266098 0.133049 0.991109i \(-0.457523\pi\)
0.133049 + 0.991109i \(0.457523\pi\)
\(734\) −3.06950 −0.113297
\(735\) 0 0
\(736\) 26.7864 0.987360
\(737\) −57.8701 −2.13167
\(738\) 4.10629 0.151155
\(739\) 12.9740 0.477258 0.238629 0.971111i \(-0.423302\pi\)
0.238629 + 0.971111i \(0.423302\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 7.26523 0.266715
\(743\) −9.23100 −0.338652 −0.169326 0.985560i \(-0.554159\pi\)
−0.169326 + 0.985560i \(0.554159\pi\)
\(744\) −5.75349 −0.210933
\(745\) 0 0
\(746\) −4.02950 −0.147530
\(747\) 10.6681 0.390326
\(748\) −9.92694 −0.362965
\(749\) 28.6523 1.04693
\(750\) 0 0
\(751\) −14.9226 −0.544534 −0.272267 0.962222i \(-0.587773\pi\)
−0.272267 + 0.962222i \(0.587773\pi\)
\(752\) −13.1714 −0.480310
\(753\) −26.1829 −0.954157
\(754\) 4.42736 0.161235
\(755\) 0 0
\(756\) 31.7583 1.15504
\(757\) 24.4976 0.890382 0.445191 0.895436i \(-0.353136\pi\)
0.445191 + 0.895436i \(0.353136\pi\)
\(758\) 1.62273 0.0589402
\(759\) −40.7860 −1.48044
\(760\) 0 0
\(761\) −15.8968 −0.576260 −0.288130 0.957591i \(-0.593034\pi\)
−0.288130 + 0.957591i \(0.593034\pi\)
\(762\) −1.07879 −0.0390805
\(763\) −19.9998 −0.724041
\(764\) 4.65525 0.168421
\(765\) 0 0
\(766\) 10.4319 0.376919
\(767\) 47.6231 1.71957
\(768\) −9.06916 −0.327255
\(769\) −29.5850 −1.06686 −0.533432 0.845843i \(-0.679098\pi\)
−0.533432 + 0.845843i \(0.679098\pi\)
\(770\) 0 0
\(771\) 19.0003 0.684280
\(772\) −36.2478 −1.30459
\(773\) −14.1310 −0.508257 −0.254129 0.967170i \(-0.581789\pi\)
−0.254129 + 0.967170i \(0.581789\pi\)
\(774\) 3.80743 0.136855
\(775\) 0 0
\(776\) 13.1451 0.471880
\(777\) 21.9191 0.786345
\(778\) −8.63032 −0.309412
\(779\) 0 0
\(780\) 0 0
\(781\) −2.35349 −0.0842145
\(782\) −2.40631 −0.0860494
\(783\) 20.4798 0.731887
\(784\) 12.8948 0.460529
\(785\) 0 0
\(786\) 0.775912 0.0276759
\(787\) −24.2465 −0.864293 −0.432146 0.901803i \(-0.642244\pi\)
−0.432146 + 0.901803i \(0.642244\pi\)
\(788\) 11.7718 0.419354
\(789\) −13.3370 −0.474809
\(790\) 0 0
\(791\) 33.9333 1.20653
\(792\) 12.1710 0.432477
\(793\) −21.6925 −0.770324
\(794\) 1.71091 0.0607180
\(795\) 0 0
\(796\) −13.7231 −0.486402
\(797\) 27.9258 0.989184 0.494592 0.869125i \(-0.335318\pi\)
0.494592 + 0.869125i \(0.335318\pi\)
\(798\) 0 0
\(799\) 3.87723 0.137166
\(800\) 0 0
\(801\) −13.8256 −0.488504
\(802\) −2.64849 −0.0935214
\(803\) −21.3633 −0.753893
\(804\) 21.9479 0.774043
\(805\) 0 0
\(806\) 5.05936 0.178208
\(807\) 0.161163 0.00567321
\(808\) −7.50476 −0.264017
\(809\) 8.78914 0.309010 0.154505 0.987992i \(-0.450622\pi\)
0.154505 + 0.987992i \(0.450622\pi\)
\(810\) 0 0
\(811\) 14.0993 0.495092 0.247546 0.968876i \(-0.420376\pi\)
0.247546 + 0.968876i \(0.420376\pi\)
\(812\) 25.1357 0.882091
\(813\) −28.6490 −1.00477
\(814\) 10.4318 0.365633
\(815\) 0 0
\(816\) 3.56370 0.124755
\(817\) 0 0
\(818\) −6.67967 −0.233549
\(819\) −22.4882 −0.785801
\(820\) 0 0
\(821\) −30.5326 −1.06559 −0.532797 0.846243i \(-0.678859\pi\)
−0.532797 + 0.846243i \(0.678859\pi\)
\(822\) −3.69060 −0.128725
\(823\) −14.3583 −0.500498 −0.250249 0.968182i \(-0.580512\pi\)
−0.250249 + 0.968182i \(0.580512\pi\)
\(824\) −22.2484 −0.775059
\(825\) 0 0
\(826\) −13.7499 −0.478420
\(827\) 8.27364 0.287703 0.143851 0.989599i \(-0.454051\pi\)
0.143851 + 0.989599i \(0.454051\pi\)
\(828\) −28.2873 −0.983052
\(829\) −13.1498 −0.456710 −0.228355 0.973578i \(-0.573335\pi\)
−0.228355 + 0.973578i \(0.573335\pi\)
\(830\) 0 0
\(831\) 0.539697 0.0187219
\(832\) 20.3948 0.707062
\(833\) −3.79582 −0.131517
\(834\) 2.26693 0.0784972
\(835\) 0 0
\(836\) 0 0
\(837\) 23.4032 0.808934
\(838\) 1.58472 0.0547431
\(839\) 8.41534 0.290530 0.145265 0.989393i \(-0.453597\pi\)
0.145265 + 0.989393i \(0.453597\pi\)
\(840\) 0 0
\(841\) −12.7909 −0.441064
\(842\) 1.76032 0.0606646
\(843\) −5.03410 −0.173384
\(844\) −37.3918 −1.28708
\(845\) 0 0
\(846\) −2.31791 −0.0796914
\(847\) −51.5262 −1.77046
\(848\) 24.4082 0.838181
\(849\) 18.4120 0.631899
\(850\) 0 0
\(851\) −49.7232 −1.70449
\(852\) 0.892589 0.0305796
\(853\) 52.0363 1.78169 0.890845 0.454308i \(-0.150113\pi\)
0.890845 + 0.454308i \(0.150113\pi\)
\(854\) 6.26314 0.214320
\(855\) 0 0
\(856\) −10.6064 −0.362520
\(857\) 21.4595 0.733043 0.366522 0.930410i \(-0.380549\pi\)
0.366522 + 0.930410i \(0.380549\pi\)
\(858\) 5.85259 0.199804
\(859\) 18.1479 0.619199 0.309599 0.950867i \(-0.399805\pi\)
0.309599 + 0.950867i \(0.399805\pi\)
\(860\) 0 0
\(861\) 22.9908 0.783525
\(862\) −11.9362 −0.406549
\(863\) 13.7867 0.469303 0.234652 0.972080i \(-0.424605\pi\)
0.234652 + 0.972080i \(0.424605\pi\)
\(864\) −17.7800 −0.604888
\(865\) 0 0
\(866\) 2.16609 0.0736066
\(867\) 16.4581 0.558948
\(868\) 28.7238 0.974951
\(869\) 14.9264 0.506343
\(870\) 0 0
\(871\) −39.5815 −1.34117
\(872\) 7.40345 0.250712
\(873\) −20.9945 −0.710557
\(874\) 0 0
\(875\) 0 0
\(876\) 8.10226 0.273750
\(877\) 21.1937 0.715660 0.357830 0.933787i \(-0.383517\pi\)
0.357830 + 0.933787i \(0.383517\pi\)
\(878\) 2.96390 0.100027
\(879\) 7.47041 0.251971
\(880\) 0 0
\(881\) 44.5944 1.50242 0.751212 0.660061i \(-0.229469\pi\)
0.751212 + 0.660061i \(0.229469\pi\)
\(882\) 2.26924 0.0764093
\(883\) 1.69355 0.0569924 0.0284962 0.999594i \(-0.490928\pi\)
0.0284962 + 0.999594i \(0.490928\pi\)
\(884\) −6.78974 −0.228364
\(885\) 0 0
\(886\) −10.7966 −0.362720
\(887\) −48.4354 −1.62630 −0.813151 0.582053i \(-0.802250\pi\)
−0.813151 + 0.582053i \(0.802250\pi\)
\(888\) −8.11394 −0.272286
\(889\) 11.0455 0.370453
\(890\) 0 0
\(891\) −2.99611 −0.100374
\(892\) −21.5706 −0.722238
\(893\) 0 0
\(894\) 4.08481 0.136617
\(895\) 0 0
\(896\) −28.8204 −0.962822
\(897\) −27.8965 −0.931436
\(898\) −2.75090 −0.0917988
\(899\) 18.5230 0.617776
\(900\) 0 0
\(901\) −7.18499 −0.239367
\(902\) 10.9418 0.364322
\(903\) 21.3175 0.709402
\(904\) −12.5613 −0.417783
\(905\) 0 0
\(906\) 6.29122 0.209012
\(907\) −27.9388 −0.927692 −0.463846 0.885916i \(-0.653531\pi\)
−0.463846 + 0.885916i \(0.653531\pi\)
\(908\) −21.1958 −0.703408
\(909\) 11.9862 0.397556
\(910\) 0 0
\(911\) −45.0862 −1.49377 −0.746887 0.664951i \(-0.768452\pi\)
−0.746887 + 0.664951i \(0.768452\pi\)
\(912\) 0 0
\(913\) 28.4267 0.940787
\(914\) −0.206886 −0.00684318
\(915\) 0 0
\(916\) −6.68448 −0.220861
\(917\) −7.94436 −0.262346
\(918\) 1.59723 0.0527166
\(919\) −5.86849 −0.193584 −0.0967918 0.995305i \(-0.530858\pi\)
−0.0967918 + 0.995305i \(0.530858\pi\)
\(920\) 0 0
\(921\) 14.8093 0.487984
\(922\) 12.3010 0.405111
\(923\) −1.60972 −0.0529846
\(924\) 33.2273 1.09310
\(925\) 0 0
\(926\) 4.84651 0.159266
\(927\) 35.5338 1.16708
\(928\) −14.0723 −0.461947
\(929\) 46.6314 1.52993 0.764963 0.644075i \(-0.222757\pi\)
0.764963 + 0.644075i \(0.222757\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −11.7808 −0.385894
\(933\) −8.78026 −0.287453
\(934\) −12.7666 −0.417735
\(935\) 0 0
\(936\) 8.32460 0.272098
\(937\) −51.2940 −1.67570 −0.837850 0.545900i \(-0.816188\pi\)
−0.837850 + 0.545900i \(0.816188\pi\)
\(938\) 11.4281 0.373140
\(939\) 21.9992 0.717916
\(940\) 0 0
\(941\) 11.3486 0.369954 0.184977 0.982743i \(-0.440779\pi\)
0.184977 + 0.982743i \(0.440779\pi\)
\(942\) 0.988367 0.0322027
\(943\) −52.1543 −1.69838
\(944\) −46.1940 −1.50349
\(945\) 0 0
\(946\) 10.1454 0.329857
\(947\) −7.20935 −0.234272 −0.117136 0.993116i \(-0.537371\pi\)
−0.117136 + 0.993116i \(0.537371\pi\)
\(948\) −5.66101 −0.183861
\(949\) −14.6119 −0.474321
\(950\) 0 0
\(951\) 28.9309 0.938150
\(952\) 4.02041 0.130302
\(953\) −20.5394 −0.665338 −0.332669 0.943044i \(-0.607949\pi\)
−0.332669 + 0.943044i \(0.607949\pi\)
\(954\) 4.29538 0.139068
\(955\) 0 0
\(956\) −23.0710 −0.746170
\(957\) 21.4271 0.692639
\(958\) 7.32930 0.236799
\(959\) 37.7871 1.22021
\(960\) 0 0
\(961\) −9.83289 −0.317190
\(962\) 7.13504 0.230043
\(963\) 16.9400 0.545882
\(964\) −9.71026 −0.312746
\(965\) 0 0
\(966\) 8.05436 0.259145
\(967\) −17.0669 −0.548835 −0.274417 0.961611i \(-0.588485\pi\)
−0.274417 + 0.961611i \(0.588485\pi\)
\(968\) 19.0738 0.613055
\(969\) 0 0
\(970\) 0 0
\(971\) 3.48171 0.111733 0.0558667 0.998438i \(-0.482208\pi\)
0.0558667 + 0.998438i \(0.482208\pi\)
\(972\) 30.1801 0.968028
\(973\) −23.2104 −0.744093
\(974\) −7.44065 −0.238414
\(975\) 0 0
\(976\) 21.0416 0.673524
\(977\) −21.9600 −0.702562 −0.351281 0.936270i \(-0.614254\pi\)
−0.351281 + 0.936270i \(0.614254\pi\)
\(978\) −7.19984 −0.230226
\(979\) −36.8403 −1.17742
\(980\) 0 0
\(981\) −11.8244 −0.377523
\(982\) −5.08583 −0.162295
\(983\) 5.49704 0.175328 0.0876641 0.996150i \(-0.472060\pi\)
0.0876641 + 0.996150i \(0.472060\pi\)
\(984\) −8.51065 −0.271310
\(985\) 0 0
\(986\) 1.26416 0.0402592
\(987\) −12.9778 −0.413088
\(988\) 0 0
\(989\) −48.3584 −1.53771
\(990\) 0 0
\(991\) 29.4970 0.937003 0.468502 0.883463i \(-0.344794\pi\)
0.468502 + 0.883463i \(0.344794\pi\)
\(992\) −16.0812 −0.510577
\(993\) 15.6252 0.495850
\(994\) 0.464764 0.0147414
\(995\) 0 0
\(996\) −10.7812 −0.341614
\(997\) −7.26449 −0.230069 −0.115034 0.993362i \(-0.536698\pi\)
−0.115034 + 0.993362i \(0.536698\pi\)
\(998\) 9.97749 0.315832
\(999\) 33.0048 1.04422
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9025.2.a.bs.1.3 6
5.4 even 2 9025.2.a.by.1.4 6
19.8 odd 6 475.2.e.f.26.3 12
19.12 odd 6 475.2.e.f.201.3 yes 12
19.18 odd 2 9025.2.a.bz.1.4 6
95.8 even 12 475.2.j.d.349.6 24
95.12 even 12 475.2.j.d.49.6 24
95.27 even 12 475.2.j.d.349.7 24
95.69 odd 6 475.2.e.h.201.4 yes 12
95.84 odd 6 475.2.e.h.26.4 yes 12
95.88 even 12 475.2.j.d.49.7 24
95.94 odd 2 9025.2.a.br.1.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
475.2.e.f.26.3 12 19.8 odd 6
475.2.e.f.201.3 yes 12 19.12 odd 6
475.2.e.h.26.4 yes 12 95.84 odd 6
475.2.e.h.201.4 yes 12 95.69 odd 6
475.2.j.d.49.6 24 95.12 even 12
475.2.j.d.49.7 24 95.88 even 12
475.2.j.d.349.6 24 95.8 even 12
475.2.j.d.349.7 24 95.27 even 12
9025.2.a.br.1.3 6 95.94 odd 2
9025.2.a.bs.1.3 6 1.1 even 1 trivial
9025.2.a.by.1.4 6 5.4 even 2
9025.2.a.bz.1.4 6 19.18 odd 2