Properties

Label 9025.2.a.bp.1.4
Level $9025$
Weight $2$
Character 9025.1
Self dual yes
Analytic conductor $72.065$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9025,2,Mod(1,9025)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9025, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9025.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 9025 = 5^{2} \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9025.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(72.0649878242\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.7537.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 5x^{2} + 4x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 95)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-0.491918\) of defining polynomial
Character \(\chi\) \(=\) 9025.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.75802 q^{2} +1.49192 q^{3} +5.60665 q^{4} +4.11474 q^{6} +2.84864 q^{7} +9.94721 q^{8} -0.774179 q^{9} +O(q^{10})\) \(q+2.75802 q^{2} +1.49192 q^{3} +5.60665 q^{4} +4.11474 q^{6} +2.84864 q^{7} +9.94721 q^{8} -0.774179 q^{9} -0.864801 q^{11} +8.36467 q^{12} +0.643281 q^{13} +7.85659 q^{14} +16.2213 q^{16} -3.74185 q^{17} -2.13520 q^{18} +4.24993 q^{21} -2.38513 q^{22} -0.417460 q^{23} +14.8404 q^{24} +1.77418 q^{26} -5.63077 q^{27} +15.9713 q^{28} +9.70523 q^{29} -4.93349 q^{31} +24.8441 q^{32} -1.29021 q^{33} -10.3201 q^{34} -4.34056 q^{36} +6.36467 q^{37} +0.959723 q^{39} +4.01372 q^{41} +11.7214 q^{42} +2.05829 q^{43} -4.84864 q^{44} -1.15136 q^{46} +3.95396 q^{47} +24.2008 q^{48} +1.11474 q^{49} -5.58254 q^{51} +3.60665 q^{52} -10.9875 q^{53} -15.5297 q^{54} +28.3360 q^{56} +26.7672 q^{58} -2.45959 q^{59} +6.33479 q^{61} -13.6067 q^{62} -2.20536 q^{63} +36.0778 q^{64} -3.55843 q^{66} -2.53220 q^{67} -20.9793 q^{68} -0.622817 q^{69} +1.78213 q^{71} -7.70092 q^{72} +7.13090 q^{73} +17.5539 q^{74} -2.46350 q^{77} +2.64693 q^{78} -1.82452 q^{79} -6.07811 q^{81} +11.0699 q^{82} +7.43913 q^{83} +23.8279 q^{84} +5.67681 q^{86} +14.4794 q^{87} -8.60235 q^{88} -4.44588 q^{89} +1.83247 q^{91} -2.34056 q^{92} -7.36037 q^{93} +10.9051 q^{94} +37.0653 q^{96} -10.8541 q^{97} +3.07446 q^{98} +0.669511 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + q^{2} + 3 q^{3} + 5 q^{4} + 2 q^{6} + 4 q^{7} + 12 q^{8} + q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + q^{2} + 3 q^{3} + 5 q^{4} + 2 q^{6} + 4 q^{7} + 12 q^{8} + q^{9} - 2 q^{11} + 6 q^{12} + 7 q^{13} + q^{14} + 7 q^{16} + q^{17} - 10 q^{18} + 4 q^{21} + 2 q^{22} - 2 q^{23} + 23 q^{24} + 3 q^{26} + 12 q^{27} + 19 q^{28} + q^{29} + 30 q^{32} + 19 q^{33} - 15 q^{34} - 7 q^{36} - 2 q^{37} + 15 q^{39} + 8 q^{41} + 15 q^{42} - q^{43} - 12 q^{44} - 12 q^{46} + 12 q^{47} + 23 q^{48} - 10 q^{49} - 22 q^{51} - 3 q^{52} - 5 q^{53} - 34 q^{54} + 41 q^{56} + 27 q^{58} + 5 q^{59} - 37 q^{62} + 3 q^{63} + 56 q^{64} - 31 q^{66} + 4 q^{67} - 16 q^{68} + 9 q^{69} - 20 q^{71} + 17 q^{72} + 20 q^{73} + 25 q^{74} - 14 q^{77} - 18 q^{78} - 17 q^{79} + 12 q^{81} - 21 q^{82} - q^{83} + 20 q^{84} - 8 q^{86} + 16 q^{87} - 7 q^{88} - 11 q^{89} - 6 q^{91} + q^{92} + 8 q^{93} + 31 q^{94} + 21 q^{96} + q^{97} + 9 q^{98} + 38 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.75802 1.95021 0.975106 0.221739i \(-0.0711734\pi\)
0.975106 + 0.221739i \(0.0711734\pi\)
\(3\) 1.49192 0.861360 0.430680 0.902505i \(-0.358274\pi\)
0.430680 + 0.902505i \(0.358274\pi\)
\(4\) 5.60665 2.80333
\(5\) 0 0
\(6\) 4.11474 1.67983
\(7\) 2.84864 1.07668 0.538342 0.842727i \(-0.319051\pi\)
0.538342 + 0.842727i \(0.319051\pi\)
\(8\) 9.94721 3.51687
\(9\) −0.774179 −0.258060
\(10\) 0 0
\(11\) −0.864801 −0.260747 −0.130374 0.991465i \(-0.541618\pi\)
−0.130374 + 0.991465i \(0.541618\pi\)
\(12\) 8.36467 2.41467
\(13\) 0.643281 0.178414 0.0892070 0.996013i \(-0.471567\pi\)
0.0892070 + 0.996013i \(0.471567\pi\)
\(14\) 7.85659 2.09976
\(15\) 0 0
\(16\) 16.2213 4.05531
\(17\) −3.74185 −0.907533 −0.453766 0.891121i \(-0.649920\pi\)
−0.453766 + 0.891121i \(0.649920\pi\)
\(18\) −2.13520 −0.503271
\(19\) 0 0
\(20\) 0 0
\(21\) 4.24993 0.927412
\(22\) −2.38513 −0.508512
\(23\) −0.417460 −0.0870465 −0.0435233 0.999052i \(-0.513858\pi\)
−0.0435233 + 0.999052i \(0.513858\pi\)
\(24\) 14.8404 3.02929
\(25\) 0 0
\(26\) 1.77418 0.347945
\(27\) −5.63077 −1.08364
\(28\) 15.9713 3.01830
\(29\) 9.70523 1.80222 0.901108 0.433596i \(-0.142755\pi\)
0.901108 + 0.433596i \(0.142755\pi\)
\(30\) 0 0
\(31\) −4.93349 −0.886081 −0.443041 0.896501i \(-0.646100\pi\)
−0.443041 + 0.896501i \(0.646100\pi\)
\(32\) 24.8441 4.39185
\(33\) −1.29021 −0.224597
\(34\) −10.3201 −1.76988
\(35\) 0 0
\(36\) −4.34056 −0.723426
\(37\) 6.36467 1.04635 0.523173 0.852227i \(-0.324748\pi\)
0.523173 + 0.852227i \(0.324748\pi\)
\(38\) 0 0
\(39\) 0.959723 0.153679
\(40\) 0 0
\(41\) 4.01372 0.626837 0.313419 0.949615i \(-0.398526\pi\)
0.313419 + 0.949615i \(0.398526\pi\)
\(42\) 11.7214 1.80865
\(43\) 2.05829 0.313887 0.156944 0.987608i \(-0.449836\pi\)
0.156944 + 0.987608i \(0.449836\pi\)
\(44\) −4.84864 −0.730960
\(45\) 0 0
\(46\) −1.15136 −0.169759
\(47\) 3.95396 0.576744 0.288372 0.957518i \(-0.406886\pi\)
0.288372 + 0.957518i \(0.406886\pi\)
\(48\) 24.2008 3.49308
\(49\) 1.11474 0.159248
\(50\) 0 0
\(51\) −5.58254 −0.781712
\(52\) 3.60665 0.500153
\(53\) −10.9875 −1.50925 −0.754624 0.656158i \(-0.772181\pi\)
−0.754624 + 0.656158i \(0.772181\pi\)
\(54\) −15.5297 −2.11333
\(55\) 0 0
\(56\) 28.3360 3.78656
\(57\) 0 0
\(58\) 26.7672 3.51470
\(59\) −2.45959 −0.320212 −0.160106 0.987100i \(-0.551184\pi\)
−0.160106 + 0.987100i \(0.551184\pi\)
\(60\) 0 0
\(61\) 6.33479 0.811087 0.405543 0.914076i \(-0.367082\pi\)
0.405543 + 0.914076i \(0.367082\pi\)
\(62\) −13.6067 −1.72805
\(63\) −2.20536 −0.277849
\(64\) 36.0778 4.50973
\(65\) 0 0
\(66\) −3.55843 −0.438012
\(67\) −2.53220 −0.309357 −0.154678 0.987965i \(-0.549434\pi\)
−0.154678 + 0.987965i \(0.549434\pi\)
\(68\) −20.9793 −2.54411
\(69\) −0.622817 −0.0749783
\(70\) 0 0
\(71\) 1.78213 0.211500 0.105750 0.994393i \(-0.466276\pi\)
0.105750 + 0.994393i \(0.466276\pi\)
\(72\) −7.70092 −0.907563
\(73\) 7.13090 0.834609 0.417304 0.908767i \(-0.362975\pi\)
0.417304 + 0.908767i \(0.362975\pi\)
\(74\) 17.5539 2.04060
\(75\) 0 0
\(76\) 0 0
\(77\) −2.46350 −0.280742
\(78\) 2.64693 0.299706
\(79\) −1.82452 −0.205275 −0.102637 0.994719i \(-0.532728\pi\)
−0.102637 + 0.994719i \(0.532728\pi\)
\(80\) 0 0
\(81\) −6.07811 −0.675345
\(82\) 11.0699 1.22247
\(83\) 7.43913 0.816550 0.408275 0.912859i \(-0.366130\pi\)
0.408275 + 0.912859i \(0.366130\pi\)
\(84\) 23.8279 2.59984
\(85\) 0 0
\(86\) 5.67681 0.612146
\(87\) 14.4794 1.55236
\(88\) −8.60235 −0.917014
\(89\) −4.44588 −0.471262 −0.235631 0.971843i \(-0.575716\pi\)
−0.235631 + 0.971843i \(0.575716\pi\)
\(90\) 0 0
\(91\) 1.83247 0.192096
\(92\) −2.34056 −0.244020
\(93\) −7.36037 −0.763235
\(94\) 10.9051 1.12477
\(95\) 0 0
\(96\) 37.0653 3.78296
\(97\) −10.8541 −1.10207 −0.551036 0.834482i \(-0.685767\pi\)
−0.551036 + 0.834482i \(0.685767\pi\)
\(98\) 3.07446 0.310567
\(99\) 0.669511 0.0672884
\(100\) 0 0
\(101\) −5.29598 −0.526969 −0.263485 0.964664i \(-0.584872\pi\)
−0.263485 + 0.964664i \(0.584872\pi\)
\(102\) −15.3967 −1.52450
\(103\) −0.385134 −0.0379484 −0.0189742 0.999820i \(-0.506040\pi\)
−0.0189742 + 0.999820i \(0.506040\pi\)
\(104\) 6.39885 0.627459
\(105\) 0 0
\(106\) −30.3037 −2.94335
\(107\) −6.43336 −0.621937 −0.310968 0.950420i \(-0.600653\pi\)
−0.310968 + 0.950420i \(0.600653\pi\)
\(108\) −31.5698 −3.03780
\(109\) −6.56882 −0.629179 −0.314590 0.949228i \(-0.601867\pi\)
−0.314590 + 0.949228i \(0.601867\pi\)
\(110\) 0 0
\(111\) 9.49557 0.901279
\(112\) 46.2085 4.36629
\(113\) 0.294513 0.0277054 0.0138527 0.999904i \(-0.495590\pi\)
0.0138527 + 0.999904i \(0.495590\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 54.4138 5.05220
\(117\) −0.498015 −0.0460415
\(118\) −6.78360 −0.624481
\(119\) −10.6592 −0.977126
\(120\) 0 0
\(121\) −10.2521 −0.932011
\(122\) 17.4715 1.58179
\(123\) 5.98814 0.539932
\(124\) −27.6604 −2.48398
\(125\) 0 0
\(126\) −6.08241 −0.541864
\(127\) 8.83492 0.783972 0.391986 0.919971i \(-0.371788\pi\)
0.391986 + 0.919971i \(0.371788\pi\)
\(128\) 49.8151 4.40308
\(129\) 3.07081 0.270370
\(130\) 0 0
\(131\) 20.9128 1.82716 0.913578 0.406662i \(-0.133307\pi\)
0.913578 + 0.406662i \(0.133307\pi\)
\(132\) −7.23377 −0.629619
\(133\) 0 0
\(134\) −6.98384 −0.603312
\(135\) 0 0
\(136\) −37.2210 −3.19167
\(137\) −5.21477 −0.445528 −0.222764 0.974872i \(-0.571508\pi\)
−0.222764 + 0.974872i \(0.571508\pi\)
\(138\) −1.71774 −0.146224
\(139\) −10.7238 −0.909584 −0.454792 0.890598i \(-0.650286\pi\)
−0.454792 + 0.890598i \(0.650286\pi\)
\(140\) 0 0
\(141\) 5.89898 0.496784
\(142\) 4.91514 0.412470
\(143\) −0.556310 −0.0465210
\(144\) −12.5582 −1.04651
\(145\) 0 0
\(146\) 19.6671 1.62766
\(147\) 1.66309 0.137170
\(148\) 35.6845 2.93325
\(149\) −14.9116 −1.22160 −0.610801 0.791784i \(-0.709153\pi\)
−0.610801 + 0.791784i \(0.709153\pi\)
\(150\) 0 0
\(151\) −21.4589 −1.74630 −0.873152 0.487448i \(-0.837928\pi\)
−0.873152 + 0.487448i \(0.837928\pi\)
\(152\) 0 0
\(153\) 2.89687 0.234198
\(154\) −6.79438 −0.547507
\(155\) 0 0
\(156\) 5.38083 0.430811
\(157\) 2.43118 0.194029 0.0970145 0.995283i \(-0.469071\pi\)
0.0970145 + 0.995283i \(0.469071\pi\)
\(158\) −5.03207 −0.400330
\(159\) −16.3924 −1.30000
\(160\) 0 0
\(161\) −1.18919 −0.0937216
\(162\) −16.7635 −1.31707
\(163\) −17.8175 −1.39558 −0.697788 0.716305i \(-0.745832\pi\)
−0.697788 + 0.716305i \(0.745832\pi\)
\(164\) 22.5035 1.75723
\(165\) 0 0
\(166\) 20.5172 1.59245
\(167\) −0.405598 −0.0313861 −0.0156931 0.999877i \(-0.504995\pi\)
−0.0156931 + 0.999877i \(0.504995\pi\)
\(168\) 42.2750 3.26159
\(169\) −12.5862 −0.968168
\(170\) 0 0
\(171\) 0 0
\(172\) 11.5401 0.879928
\(173\) 18.0210 1.37011 0.685056 0.728490i \(-0.259778\pi\)
0.685056 + 0.728490i \(0.259778\pi\)
\(174\) 39.9344 3.02742
\(175\) 0 0
\(176\) −14.0282 −1.05741
\(177\) −3.66951 −0.275817
\(178\) −12.2618 −0.919061
\(179\) −20.1523 −1.50625 −0.753127 0.657875i \(-0.771455\pi\)
−0.753127 + 0.657875i \(0.771455\pi\)
\(180\) 0 0
\(181\) 17.1108 1.27184 0.635919 0.771756i \(-0.280621\pi\)
0.635919 + 0.771756i \(0.280621\pi\)
\(182\) 5.05399 0.374627
\(183\) 9.45099 0.698637
\(184\) −4.15257 −0.306131
\(185\) 0 0
\(186\) −20.3000 −1.48847
\(187\) 3.23596 0.236637
\(188\) 22.1685 1.61680
\(189\) −16.0400 −1.16674
\(190\) 0 0
\(191\) 5.28080 0.382105 0.191053 0.981580i \(-0.438810\pi\)
0.191053 + 0.981580i \(0.438810\pi\)
\(192\) 53.8252 3.88450
\(193\) 18.0036 1.29593 0.647966 0.761670i \(-0.275620\pi\)
0.647966 + 0.761670i \(0.275620\pi\)
\(194\) −29.9359 −2.14927
\(195\) 0 0
\(196\) 6.24993 0.446424
\(197\) −8.07785 −0.575523 −0.287761 0.957702i \(-0.592911\pi\)
−0.287761 + 0.957702i \(0.592911\pi\)
\(198\) 1.84652 0.131227
\(199\) 1.40374 0.0995088 0.0497544 0.998761i \(-0.484156\pi\)
0.0497544 + 0.998761i \(0.484156\pi\)
\(200\) 0 0
\(201\) −3.77783 −0.266468
\(202\) −14.6064 −1.02770
\(203\) 27.6467 1.94042
\(204\) −31.2994 −2.19139
\(205\) 0 0
\(206\) −1.06221 −0.0740074
\(207\) 0.323189 0.0224632
\(208\) 10.4348 0.723525
\(209\) 0 0
\(210\) 0 0
\(211\) −18.9163 −1.30226 −0.651128 0.758968i \(-0.725704\pi\)
−0.651128 + 0.758968i \(0.725704\pi\)
\(212\) −61.6030 −4.23091
\(213\) 2.65879 0.182178
\(214\) −17.7433 −1.21291
\(215\) 0 0
\(216\) −56.0104 −3.81103
\(217\) −14.0537 −0.954030
\(218\) −18.1169 −1.22703
\(219\) 10.6387 0.718898
\(220\) 0 0
\(221\) −2.40706 −0.161917
\(222\) 26.1889 1.75769
\(223\) −16.1480 −1.08135 −0.540675 0.841231i \(-0.681831\pi\)
−0.540675 + 0.841231i \(0.681831\pi\)
\(224\) 70.7718 4.72864
\(225\) 0 0
\(226\) 0.812271 0.0540315
\(227\) 26.3186 1.74683 0.873414 0.486978i \(-0.161901\pi\)
0.873414 + 0.486978i \(0.161901\pi\)
\(228\) 0 0
\(229\) −13.3323 −0.881026 −0.440513 0.897746i \(-0.645203\pi\)
−0.440513 + 0.897746i \(0.645203\pi\)
\(230\) 0 0
\(231\) −3.67535 −0.241820
\(232\) 96.5399 6.33816
\(233\) −25.3094 −1.65808 −0.829038 0.559192i \(-0.811111\pi\)
−0.829038 + 0.559192i \(0.811111\pi\)
\(234\) −1.37353 −0.0897907
\(235\) 0 0
\(236\) −13.7901 −0.897658
\(237\) −2.72204 −0.176815
\(238\) −29.3982 −1.90560
\(239\) −23.5500 −1.52332 −0.761660 0.647977i \(-0.775615\pi\)
−0.761660 + 0.647977i \(0.775615\pi\)
\(240\) 0 0
\(241\) −8.38415 −0.540071 −0.270035 0.962850i \(-0.587035\pi\)
−0.270035 + 0.962850i \(0.587035\pi\)
\(242\) −28.2755 −1.81762
\(243\) 7.82426 0.501927
\(244\) 35.5170 2.27374
\(245\) 0 0
\(246\) 16.5154 1.05298
\(247\) 0 0
\(248\) −49.0745 −3.11623
\(249\) 11.0986 0.703343
\(250\) 0 0
\(251\) 18.2478 1.15179 0.575896 0.817523i \(-0.304653\pi\)
0.575896 + 0.817523i \(0.304653\pi\)
\(252\) −12.3647 −0.778901
\(253\) 0.361020 0.0226971
\(254\) 24.3669 1.52891
\(255\) 0 0
\(256\) 65.2353 4.07720
\(257\) 14.0998 0.879520 0.439760 0.898115i \(-0.355064\pi\)
0.439760 + 0.898115i \(0.355064\pi\)
\(258\) 8.46934 0.527278
\(259\) 18.1306 1.12658
\(260\) 0 0
\(261\) −7.51359 −0.465079
\(262\) 57.6778 3.56334
\(263\) 6.41071 0.395301 0.197651 0.980273i \(-0.436669\pi\)
0.197651 + 0.980273i \(0.436669\pi\)
\(264\) −12.8340 −0.789879
\(265\) 0 0
\(266\) 0 0
\(267\) −6.63288 −0.405926
\(268\) −14.1971 −0.867229
\(269\) −17.9911 −1.09694 −0.548469 0.836171i \(-0.684789\pi\)
−0.548469 + 0.836171i \(0.684789\pi\)
\(270\) 0 0
\(271\) 11.8819 0.721774 0.360887 0.932609i \(-0.382474\pi\)
0.360887 + 0.932609i \(0.382474\pi\)
\(272\) −60.6976 −3.68033
\(273\) 2.73390 0.165463
\(274\) −14.3824 −0.868874
\(275\) 0 0
\(276\) −3.49192 −0.210189
\(277\) −23.6240 −1.41943 −0.709715 0.704489i \(-0.751176\pi\)
−0.709715 + 0.704489i \(0.751176\pi\)
\(278\) −29.5765 −1.77388
\(279\) 3.81941 0.228662
\(280\) 0 0
\(281\) −13.8093 −0.823794 −0.411897 0.911230i \(-0.635134\pi\)
−0.411897 + 0.911230i \(0.635134\pi\)
\(282\) 16.2695 0.968834
\(283\) 11.7574 0.698903 0.349451 0.936954i \(-0.386368\pi\)
0.349451 + 0.936954i \(0.386368\pi\)
\(284\) 9.99179 0.592904
\(285\) 0 0
\(286\) −1.53431 −0.0907257
\(287\) 11.4336 0.674905
\(288\) −19.2338 −1.13336
\(289\) −2.99854 −0.176384
\(290\) 0 0
\(291\) −16.1935 −0.949279
\(292\) 39.9805 2.33968
\(293\) −27.0576 −1.58072 −0.790362 0.612640i \(-0.790108\pi\)
−0.790362 + 0.612640i \(0.790108\pi\)
\(294\) 4.58684 0.267510
\(295\) 0 0
\(296\) 63.3107 3.67986
\(297\) 4.86949 0.282557
\(298\) −41.1263 −2.38238
\(299\) −0.268544 −0.0155303
\(300\) 0 0
\(301\) 5.86334 0.337957
\(302\) −59.1841 −3.40566
\(303\) −7.90117 −0.453910
\(304\) 0 0
\(305\) 0 0
\(306\) 7.98960 0.456735
\(307\) 8.83824 0.504425 0.252212 0.967672i \(-0.418842\pi\)
0.252212 + 0.967672i \(0.418842\pi\)
\(308\) −13.8120 −0.787012
\(309\) −0.574589 −0.0326872
\(310\) 0 0
\(311\) −0.651493 −0.0369428 −0.0184714 0.999829i \(-0.505880\pi\)
−0.0184714 + 0.999829i \(0.505880\pi\)
\(312\) 9.54656 0.540468
\(313\) 2.96556 0.167623 0.0838116 0.996482i \(-0.473291\pi\)
0.0838116 + 0.996482i \(0.473291\pi\)
\(314\) 6.70523 0.378398
\(315\) 0 0
\(316\) −10.2295 −0.575453
\(317\) −10.3799 −0.582991 −0.291495 0.956572i \(-0.594153\pi\)
−0.291495 + 0.956572i \(0.594153\pi\)
\(318\) −45.2106 −2.53528
\(319\) −8.39309 −0.469923
\(320\) 0 0
\(321\) −9.59805 −0.535711
\(322\) −3.27981 −0.182777
\(323\) 0 0
\(324\) −34.0778 −1.89321
\(325\) 0 0
\(326\) −49.1410 −2.72167
\(327\) −9.80015 −0.541949
\(328\) 39.9253 2.20450
\(329\) 11.2634 0.620971
\(330\) 0 0
\(331\) −15.0922 −0.829543 −0.414772 0.909926i \(-0.636139\pi\)
−0.414772 + 0.909926i \(0.636139\pi\)
\(332\) 41.7086 2.28906
\(333\) −4.92740 −0.270020
\(334\) −1.11865 −0.0612096
\(335\) 0 0
\(336\) 68.9393 3.76095
\(337\) 15.7974 0.860541 0.430271 0.902700i \(-0.358418\pi\)
0.430271 + 0.902700i \(0.358418\pi\)
\(338\) −34.7129 −1.88813
\(339\) 0.439389 0.0238643
\(340\) 0 0
\(341\) 4.26649 0.231043
\(342\) 0 0
\(343\) −16.7650 −0.905224
\(344\) 20.4743 1.10390
\(345\) 0 0
\(346\) 49.7023 2.67201
\(347\) 21.3522 1.14624 0.573122 0.819470i \(-0.305732\pi\)
0.573122 + 0.819470i \(0.305732\pi\)
\(348\) 81.1810 4.35176
\(349\) −32.3897 −1.73378 −0.866891 0.498497i \(-0.833885\pi\)
−0.866891 + 0.498497i \(0.833885\pi\)
\(350\) 0 0
\(351\) −3.62217 −0.193337
\(352\) −21.4852 −1.14516
\(353\) −0.730583 −0.0388850 −0.0194425 0.999811i \(-0.506189\pi\)
−0.0194425 + 0.999811i \(0.506189\pi\)
\(354\) −10.1206 −0.537902
\(355\) 0 0
\(356\) −24.9265 −1.32110
\(357\) −15.9026 −0.841657
\(358\) −55.5804 −2.93751
\(359\) −26.8496 −1.41707 −0.708533 0.705677i \(-0.750643\pi\)
−0.708533 + 0.705677i \(0.750643\pi\)
\(360\) 0 0
\(361\) 0 0
\(362\) 47.1919 2.48035
\(363\) −15.2953 −0.802796
\(364\) 10.2740 0.538506
\(365\) 0 0
\(366\) 26.0660 1.36249
\(367\) 22.9643 1.19873 0.599364 0.800477i \(-0.295420\pi\)
0.599364 + 0.800477i \(0.295420\pi\)
\(368\) −6.77173 −0.353001
\(369\) −3.10734 −0.161761
\(370\) 0 0
\(371\) −31.2994 −1.62498
\(372\) −41.2670 −2.13960
\(373\) 29.5305 1.52903 0.764515 0.644606i \(-0.222979\pi\)
0.764515 + 0.644606i \(0.222979\pi\)
\(374\) 8.92482 0.461492
\(375\) 0 0
\(376\) 39.3308 2.02833
\(377\) 6.24319 0.321541
\(378\) −44.2386 −2.27539
\(379\) −17.5117 −0.899517 −0.449759 0.893150i \(-0.648490\pi\)
−0.449759 + 0.893150i \(0.648490\pi\)
\(380\) 0 0
\(381\) 13.1810 0.675282
\(382\) 14.5645 0.745186
\(383\) 8.10652 0.414224 0.207112 0.978317i \(-0.433594\pi\)
0.207112 + 0.978317i \(0.433594\pi\)
\(384\) 74.3201 3.79263
\(385\) 0 0
\(386\) 49.6544 2.52734
\(387\) −1.59349 −0.0810016
\(388\) −60.8554 −3.08947
\(389\) 17.3078 0.877542 0.438771 0.898599i \(-0.355414\pi\)
0.438771 + 0.898599i \(0.355414\pi\)
\(390\) 0 0
\(391\) 1.56208 0.0789976
\(392\) 11.0885 0.560054
\(393\) 31.2001 1.57384
\(394\) −22.2788 −1.12239
\(395\) 0 0
\(396\) 3.75372 0.188631
\(397\) 11.3894 0.571619 0.285810 0.958286i \(-0.407737\pi\)
0.285810 + 0.958286i \(0.407737\pi\)
\(398\) 3.87155 0.194063
\(399\) 0 0
\(400\) 0 0
\(401\) 8.93861 0.446373 0.223186 0.974776i \(-0.428354\pi\)
0.223186 + 0.974776i \(0.428354\pi\)
\(402\) −10.4193 −0.519668
\(403\) −3.17362 −0.158089
\(404\) −29.6927 −1.47727
\(405\) 0 0
\(406\) 76.2500 3.78422
\(407\) −5.50417 −0.272832
\(408\) −55.5307 −2.74918
\(409\) 6.54471 0.323615 0.161808 0.986822i \(-0.448268\pi\)
0.161808 + 0.986822i \(0.448268\pi\)
\(410\) 0 0
\(411\) −7.78001 −0.383760
\(412\) −2.15931 −0.106382
\(413\) −7.00649 −0.344767
\(414\) 0.891361 0.0438080
\(415\) 0 0
\(416\) 15.9817 0.783568
\(417\) −15.9991 −0.783479
\(418\) 0 0
\(419\) 21.8441 1.06715 0.533576 0.845752i \(-0.320848\pi\)
0.533576 + 0.845752i \(0.320848\pi\)
\(420\) 0 0
\(421\) 29.3434 1.43011 0.715054 0.699069i \(-0.246402\pi\)
0.715054 + 0.699069i \(0.246402\pi\)
\(422\) −52.1716 −2.53967
\(423\) −3.06107 −0.148834
\(424\) −109.295 −5.30783
\(425\) 0 0
\(426\) 7.33299 0.355285
\(427\) 18.0455 0.873284
\(428\) −36.0696 −1.74349
\(429\) −0.829969 −0.0400713
\(430\) 0 0
\(431\) 12.8867 0.620732 0.310366 0.950617i \(-0.399548\pi\)
0.310366 + 0.950617i \(0.399548\pi\)
\(432\) −91.3381 −4.39451
\(433\) −13.8429 −0.665246 −0.332623 0.943060i \(-0.607934\pi\)
−0.332623 + 0.943060i \(0.607934\pi\)
\(434\) −38.7604 −1.86056
\(435\) 0 0
\(436\) −36.8291 −1.76379
\(437\) 0 0
\(438\) 29.3418 1.40200
\(439\) 0.0708081 0.00337948 0.00168974 0.999999i \(-0.499462\pi\)
0.00168974 + 0.999999i \(0.499462\pi\)
\(440\) 0 0
\(441\) −0.863005 −0.0410955
\(442\) −6.63872 −0.315772
\(443\) 3.78914 0.180027 0.0900137 0.995941i \(-0.471309\pi\)
0.0900137 + 0.995941i \(0.471309\pi\)
\(444\) 53.2384 2.52658
\(445\) 0 0
\(446\) −44.5365 −2.10886
\(447\) −22.2468 −1.05224
\(448\) 102.773 4.85555
\(449\) 26.5765 1.25422 0.627112 0.778929i \(-0.284237\pi\)
0.627112 + 0.778929i \(0.284237\pi\)
\(450\) 0 0
\(451\) −3.47106 −0.163446
\(452\) 1.65123 0.0776674
\(453\) −32.0150 −1.50420
\(454\) 72.5872 3.40669
\(455\) 0 0
\(456\) 0 0
\(457\) 33.1523 1.55080 0.775400 0.631471i \(-0.217548\pi\)
0.775400 + 0.631471i \(0.217548\pi\)
\(458\) −36.7708 −1.71819
\(459\) 21.0695 0.983440
\(460\) 0 0
\(461\) −19.2536 −0.896729 −0.448364 0.893851i \(-0.647993\pi\)
−0.448364 + 0.893851i \(0.647993\pi\)
\(462\) −10.1367 −0.471600
\(463\) −39.1713 −1.82044 −0.910222 0.414120i \(-0.864089\pi\)
−0.910222 + 0.414120i \(0.864089\pi\)
\(464\) 157.431 7.30855
\(465\) 0 0
\(466\) −69.8038 −3.23360
\(467\) 39.0650 1.80771 0.903856 0.427836i \(-0.140724\pi\)
0.903856 + 0.427836i \(0.140724\pi\)
\(468\) −2.79220 −0.129069
\(469\) −7.21331 −0.333080
\(470\) 0 0
\(471\) 3.62712 0.167129
\(472\) −24.4661 −1.12614
\(473\) −1.78001 −0.0818452
\(474\) −7.50743 −0.344828
\(475\) 0 0
\(476\) −59.7623 −2.73920
\(477\) 8.50629 0.389476
\(478\) −64.9512 −2.97080
\(479\) −24.7550 −1.13109 −0.565543 0.824718i \(-0.691334\pi\)
−0.565543 + 0.824718i \(0.691334\pi\)
\(480\) 0 0
\(481\) 4.09427 0.186683
\(482\) −23.1236 −1.05325
\(483\) −1.77418 −0.0807280
\(484\) −57.4801 −2.61273
\(485\) 0 0
\(486\) 21.5794 0.978863
\(487\) 21.8871 0.991797 0.495899 0.868380i \(-0.334839\pi\)
0.495899 + 0.868380i \(0.334839\pi\)
\(488\) 63.0135 2.85249
\(489\) −26.5823 −1.20209
\(490\) 0 0
\(491\) 9.39553 0.424014 0.212007 0.977268i \(-0.432000\pi\)
0.212007 + 0.977268i \(0.432000\pi\)
\(492\) 33.5734 1.51361
\(493\) −36.3155 −1.63557
\(494\) 0 0
\(495\) 0 0
\(496\) −80.0275 −3.59334
\(497\) 5.07664 0.227719
\(498\) 30.6100 1.37167
\(499\) 24.9115 1.11519 0.557596 0.830112i \(-0.311724\pi\)
0.557596 + 0.830112i \(0.311724\pi\)
\(500\) 0 0
\(501\) −0.605119 −0.0270347
\(502\) 50.3278 2.24624
\(503\) 31.3180 1.39640 0.698200 0.715903i \(-0.253985\pi\)
0.698200 + 0.715903i \(0.253985\pi\)
\(504\) −21.9371 −0.977158
\(505\) 0 0
\(506\) 0.995699 0.0442642
\(507\) −18.7776 −0.833941
\(508\) 49.5343 2.19773
\(509\) 9.66619 0.428446 0.214223 0.976785i \(-0.431278\pi\)
0.214223 + 0.976785i \(0.431278\pi\)
\(510\) 0 0
\(511\) 20.3133 0.898609
\(512\) 80.2896 3.54833
\(513\) 0 0
\(514\) 38.8874 1.71525
\(515\) 0 0
\(516\) 17.2170 0.757934
\(517\) −3.41938 −0.150384
\(518\) 50.0046 2.19708
\(519\) 26.8859 1.18016
\(520\) 0 0
\(521\) 0.982633 0.0430499 0.0215250 0.999768i \(-0.493148\pi\)
0.0215250 + 0.999768i \(0.493148\pi\)
\(522\) −20.7226 −0.907003
\(523\) 39.7209 1.73687 0.868436 0.495801i \(-0.165125\pi\)
0.868436 + 0.495801i \(0.165125\pi\)
\(524\) 117.251 5.12212
\(525\) 0 0
\(526\) 17.6809 0.770922
\(527\) 18.4604 0.804148
\(528\) −20.9289 −0.910812
\(529\) −22.8257 −0.992423
\(530\) 0 0
\(531\) 1.90417 0.0826337
\(532\) 0 0
\(533\) 2.58195 0.111837
\(534\) −18.2936 −0.791642
\(535\) 0 0
\(536\) −25.1883 −1.08797
\(537\) −30.0656 −1.29743
\(538\) −49.6198 −2.13926
\(539\) −0.964024 −0.0415234
\(540\) 0 0
\(541\) 30.7775 1.32323 0.661614 0.749845i \(-0.269872\pi\)
0.661614 + 0.749845i \(0.269872\pi\)
\(542\) 32.7705 1.40761
\(543\) 25.5280 1.09551
\(544\) −92.9629 −3.98575
\(545\) 0 0
\(546\) 7.54015 0.322688
\(547\) −17.8657 −0.763884 −0.381942 0.924186i \(-0.624745\pi\)
−0.381942 + 0.924186i \(0.624745\pi\)
\(548\) −29.2374 −1.24896
\(549\) −4.90426 −0.209309
\(550\) 0 0
\(551\) 0 0
\(552\) −6.19529 −0.263689
\(553\) −5.19741 −0.221016
\(554\) −65.1554 −2.76819
\(555\) 0 0
\(556\) −60.1248 −2.54986
\(557\) 10.6576 0.451575 0.225787 0.974177i \(-0.427505\pi\)
0.225787 + 0.974177i \(0.427505\pi\)
\(558\) 10.5340 0.445939
\(559\) 1.32406 0.0560019
\(560\) 0 0
\(561\) 4.82778 0.203829
\(562\) −38.0863 −1.60657
\(563\) 7.75961 0.327029 0.163514 0.986541i \(-0.447717\pi\)
0.163514 + 0.986541i \(0.447717\pi\)
\(564\) 33.0735 1.39265
\(565\) 0 0
\(566\) 32.4270 1.36301
\(567\) −17.3143 −0.727133
\(568\) 17.7272 0.743818
\(569\) −5.72754 −0.240111 −0.120056 0.992767i \(-0.538307\pi\)
−0.120056 + 0.992767i \(0.538307\pi\)
\(570\) 0 0
\(571\) −20.8347 −0.871903 −0.435952 0.899970i \(-0.643588\pi\)
−0.435952 + 0.899970i \(0.643588\pi\)
\(572\) −3.11904 −0.130413
\(573\) 7.87852 0.329130
\(574\) 31.5341 1.31621
\(575\) 0 0
\(576\) −27.9307 −1.16378
\(577\) 5.11190 0.212811 0.106406 0.994323i \(-0.466066\pi\)
0.106406 + 0.994323i \(0.466066\pi\)
\(578\) −8.27001 −0.343987
\(579\) 26.8600 1.11626
\(580\) 0 0
\(581\) 21.1914 0.879167
\(582\) −44.6619 −1.85130
\(583\) 9.50199 0.393532
\(584\) 70.9325 2.93521
\(585\) 0 0
\(586\) −74.6254 −3.08275
\(587\) 10.6692 0.440367 0.220184 0.975458i \(-0.429334\pi\)
0.220184 + 0.975458i \(0.429334\pi\)
\(588\) 9.32439 0.384531
\(589\) 0 0
\(590\) 0 0
\(591\) −12.0515 −0.495732
\(592\) 103.243 4.24326
\(593\) 17.0027 0.698216 0.349108 0.937083i \(-0.386485\pi\)
0.349108 + 0.937083i \(0.386485\pi\)
\(594\) 13.4301 0.551045
\(595\) 0 0
\(596\) −83.6040 −3.42455
\(597\) 2.09427 0.0857128
\(598\) −0.740650 −0.0302874
\(599\) −28.6751 −1.17163 −0.585816 0.810444i \(-0.699226\pi\)
−0.585816 + 0.810444i \(0.699226\pi\)
\(600\) 0 0
\(601\) −27.4370 −1.11918 −0.559590 0.828770i \(-0.689041\pi\)
−0.559590 + 0.828770i \(0.689041\pi\)
\(602\) 16.1712 0.659088
\(603\) 1.96037 0.0798326
\(604\) −120.313 −4.89546
\(605\) 0 0
\(606\) −21.7915 −0.885221
\(607\) −17.7547 −0.720639 −0.360320 0.932829i \(-0.617332\pi\)
−0.360320 + 0.932829i \(0.617332\pi\)
\(608\) 0 0
\(609\) 41.2466 1.67140
\(610\) 0 0
\(611\) 2.54351 0.102899
\(612\) 16.2417 0.656533
\(613\) −34.6391 −1.39906 −0.699530 0.714603i \(-0.746607\pi\)
−0.699530 + 0.714603i \(0.746607\pi\)
\(614\) 24.3760 0.983736
\(615\) 0 0
\(616\) −24.5050 −0.987334
\(617\) −4.46569 −0.179782 −0.0898909 0.995952i \(-0.528652\pi\)
−0.0898909 + 0.995952i \(0.528652\pi\)
\(618\) −1.58472 −0.0637470
\(619\) −17.9112 −0.719913 −0.359957 0.932969i \(-0.617209\pi\)
−0.359957 + 0.932969i \(0.617209\pi\)
\(620\) 0 0
\(621\) 2.35062 0.0943272
\(622\) −1.79683 −0.0720463
\(623\) −12.6647 −0.507400
\(624\) 15.5679 0.623215
\(625\) 0 0
\(626\) 8.17906 0.326901
\(627\) 0 0
\(628\) 13.6308 0.543927
\(629\) −23.8157 −0.949593
\(630\) 0 0
\(631\) 4.96881 0.197805 0.0989026 0.995097i \(-0.468467\pi\)
0.0989026 + 0.995097i \(0.468467\pi\)
\(632\) −18.1489 −0.721925
\(633\) −28.2216 −1.12171
\(634\) −28.6278 −1.13696
\(635\) 0 0
\(636\) −91.9067 −3.64434
\(637\) 0.717088 0.0284121
\(638\) −23.1483 −0.916449
\(639\) −1.37969 −0.0545796
\(640\) 0 0
\(641\) 37.9521 1.49902 0.749508 0.661995i \(-0.230290\pi\)
0.749508 + 0.661995i \(0.230290\pi\)
\(642\) −26.4716 −1.04475
\(643\) −35.2502 −1.39013 −0.695067 0.718945i \(-0.744625\pi\)
−0.695067 + 0.718945i \(0.744625\pi\)
\(644\) −6.66740 −0.262732
\(645\) 0 0
\(646\) 0 0
\(647\) −35.5219 −1.39651 −0.698254 0.715850i \(-0.746040\pi\)
−0.698254 + 0.715850i \(0.746040\pi\)
\(648\) −60.4602 −2.37510
\(649\) 2.12706 0.0834943
\(650\) 0 0
\(651\) −20.9670 −0.821762
\(652\) −99.8966 −3.91225
\(653\) −8.02411 −0.314008 −0.157004 0.987598i \(-0.550184\pi\)
−0.157004 + 0.987598i \(0.550184\pi\)
\(654\) −27.0290 −1.05692
\(655\) 0 0
\(656\) 65.1075 2.54202
\(657\) −5.52059 −0.215379
\(658\) 31.0646 1.21102
\(659\) 47.2195 1.83941 0.919706 0.392608i \(-0.128427\pi\)
0.919706 + 0.392608i \(0.128427\pi\)
\(660\) 0 0
\(661\) 26.1159 1.01579 0.507896 0.861418i \(-0.330423\pi\)
0.507896 + 0.861418i \(0.330423\pi\)
\(662\) −41.6246 −1.61778
\(663\) −3.59114 −0.139468
\(664\) 73.9986 2.87170
\(665\) 0 0
\(666\) −13.5898 −0.526596
\(667\) −4.05155 −0.156877
\(668\) −2.27405 −0.0879856
\(669\) −24.0915 −0.931431
\(670\) 0 0
\(671\) −5.47833 −0.211489
\(672\) 105.586 4.07306
\(673\) 15.3820 0.592931 0.296466 0.955044i \(-0.404192\pi\)
0.296466 + 0.955044i \(0.404192\pi\)
\(674\) 43.5696 1.67824
\(675\) 0 0
\(676\) −70.5664 −2.71409
\(677\) 24.4763 0.940701 0.470350 0.882480i \(-0.344128\pi\)
0.470350 + 0.882480i \(0.344128\pi\)
\(678\) 1.21184 0.0465405
\(679\) −30.9195 −1.18658
\(680\) 0 0
\(681\) 39.2652 1.50465
\(682\) 11.7670 0.450583
\(683\) −17.8502 −0.683018 −0.341509 0.939879i \(-0.610938\pi\)
−0.341509 + 0.939879i \(0.610938\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −46.2381 −1.76538
\(687\) −19.8908 −0.758880
\(688\) 33.3881 1.27291
\(689\) −7.06804 −0.269271
\(690\) 0 0
\(691\) −9.27242 −0.352739 −0.176370 0.984324i \(-0.556435\pi\)
−0.176370 + 0.984324i \(0.556435\pi\)
\(692\) 101.038 3.84087
\(693\) 1.90719 0.0724483
\(694\) 58.8896 2.23542
\(695\) 0 0
\(696\) 144.030 5.45943
\(697\) −15.0187 −0.568875
\(698\) −89.3314 −3.38124
\(699\) −37.7596 −1.42820
\(700\) 0 0
\(701\) −7.68906 −0.290412 −0.145206 0.989401i \(-0.546384\pi\)
−0.145206 + 0.989401i \(0.546384\pi\)
\(702\) −9.98999 −0.377048
\(703\) 0 0
\(704\) −31.2001 −1.17590
\(705\) 0 0
\(706\) −2.01496 −0.0758340
\(707\) −15.0863 −0.567379
\(708\) −20.5737 −0.773206
\(709\) 24.4375 0.917769 0.458885 0.888496i \(-0.348249\pi\)
0.458885 + 0.888496i \(0.348249\pi\)
\(710\) 0 0
\(711\) 1.41251 0.0529732
\(712\) −44.2241 −1.65737
\(713\) 2.05954 0.0771303
\(714\) −43.8597 −1.64141
\(715\) 0 0
\(716\) −112.987 −4.22252
\(717\) −35.1346 −1.31213
\(718\) −74.0516 −2.76358
\(719\) −22.1126 −0.824662 −0.412331 0.911034i \(-0.635285\pi\)
−0.412331 + 0.911034i \(0.635285\pi\)
\(720\) 0 0
\(721\) −1.09711 −0.0408584
\(722\) 0 0
\(723\) −12.5085 −0.465195
\(724\) 95.9345 3.56538
\(725\) 0 0
\(726\) −42.1848 −1.56562
\(727\) 29.0494 1.07738 0.538692 0.842503i \(-0.318919\pi\)
0.538692 + 0.842503i \(0.318919\pi\)
\(728\) 18.2280 0.675575
\(729\) 29.9075 1.10768
\(730\) 0 0
\(731\) −7.70184 −0.284863
\(732\) 52.9884 1.95851
\(733\) −14.5428 −0.537151 −0.268576 0.963259i \(-0.586553\pi\)
−0.268576 + 0.963259i \(0.586553\pi\)
\(734\) 63.3360 2.33777
\(735\) 0 0
\(736\) −10.3714 −0.382296
\(737\) 2.18984 0.0806640
\(738\) −8.57009 −0.315469
\(739\) −4.75596 −0.174951 −0.0874754 0.996167i \(-0.527880\pi\)
−0.0874754 + 0.996167i \(0.527880\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −86.3242 −3.16906
\(743\) 5.87705 0.215608 0.107804 0.994172i \(-0.465618\pi\)
0.107804 + 0.994172i \(0.465618\pi\)
\(744\) −73.2151 −2.68420
\(745\) 0 0
\(746\) 81.4455 2.98193
\(747\) −5.75922 −0.210719
\(748\) 18.1429 0.663370
\(749\) −18.3263 −0.669629
\(750\) 0 0
\(751\) −1.62096 −0.0591498 −0.0295749 0.999563i \(-0.509415\pi\)
−0.0295749 + 0.999563i \(0.509415\pi\)
\(752\) 64.1382 2.33888
\(753\) 27.2243 0.992107
\(754\) 17.2188 0.627072
\(755\) 0 0
\(756\) −89.9308 −3.27075
\(757\) 28.1135 1.02180 0.510901 0.859639i \(-0.329312\pi\)
0.510901 + 0.859639i \(0.329312\pi\)
\(758\) −48.2976 −1.75425
\(759\) 0.538612 0.0195504
\(760\) 0 0
\(761\) 20.1663 0.731027 0.365514 0.930806i \(-0.380893\pi\)
0.365514 + 0.930806i \(0.380893\pi\)
\(762\) 36.3534 1.31694
\(763\) −18.7122 −0.677427
\(764\) 29.6076 1.07117
\(765\) 0 0
\(766\) 22.3579 0.807825
\(767\) −1.58221 −0.0571303
\(768\) 97.3257 3.51194
\(769\) 45.3047 1.63373 0.816865 0.576829i \(-0.195710\pi\)
0.816865 + 0.576829i \(0.195710\pi\)
\(770\) 0 0
\(771\) 21.0357 0.757583
\(772\) 100.940 3.63292
\(773\) −20.1762 −0.725686 −0.362843 0.931850i \(-0.618194\pi\)
−0.362843 + 0.931850i \(0.618194\pi\)
\(774\) −4.39487 −0.157970
\(775\) 0 0
\(776\) −107.968 −3.87584
\(777\) 27.0494 0.970393
\(778\) 47.7353 1.71139
\(779\) 0 0
\(780\) 0 0
\(781\) −1.54119 −0.0551480
\(782\) 4.30823 0.154062
\(783\) −54.6479 −1.95296
\(784\) 18.0824 0.645800
\(785\) 0 0
\(786\) 86.0505 3.06932
\(787\) −46.1385 −1.64466 −0.822331 0.569010i \(-0.807327\pi\)
−0.822331 + 0.569010i \(0.807327\pi\)
\(788\) −45.2897 −1.61338
\(789\) 9.56426 0.340497
\(790\) 0 0
\(791\) 0.838961 0.0298300
\(792\) 6.65976 0.236644
\(793\) 4.07505 0.144709
\(794\) 31.4122 1.11478
\(795\) 0 0
\(796\) 7.87031 0.278956
\(797\) −1.86497 −0.0660606 −0.0330303 0.999454i \(-0.510516\pi\)
−0.0330303 + 0.999454i \(0.510516\pi\)
\(798\) 0 0
\(799\) −14.7951 −0.523414
\(800\) 0 0
\(801\) 3.44191 0.121614
\(802\) 24.6528 0.870522
\(803\) −6.16681 −0.217622
\(804\) −21.1810 −0.746996
\(805\) 0 0
\(806\) −8.75290 −0.308308
\(807\) −26.8413 −0.944859
\(808\) −52.6802 −1.85328
\(809\) 18.2267 0.640816 0.320408 0.947280i \(-0.396180\pi\)
0.320408 + 0.947280i \(0.396180\pi\)
\(810\) 0 0
\(811\) 20.9779 0.736634 0.368317 0.929700i \(-0.379934\pi\)
0.368317 + 0.929700i \(0.379934\pi\)
\(812\) 155.005 5.43962
\(813\) 17.7268 0.621707
\(814\) −15.1806 −0.532079
\(815\) 0 0
\(816\) −90.5558 −3.17009
\(817\) 0 0
\(818\) 18.0504 0.631118
\(819\) −1.41866 −0.0495721
\(820\) 0 0
\(821\) −22.0867 −0.770829 −0.385415 0.922743i \(-0.625942\pi\)
−0.385415 + 0.922743i \(0.625942\pi\)
\(822\) −21.4574 −0.748413
\(823\) −15.9769 −0.556921 −0.278461 0.960448i \(-0.589824\pi\)
−0.278461 + 0.960448i \(0.589824\pi\)
\(824\) −3.83101 −0.133460
\(825\) 0 0
\(826\) −19.3240 −0.672368
\(827\) 49.2009 1.71088 0.855441 0.517901i \(-0.173286\pi\)
0.855441 + 0.517901i \(0.173286\pi\)
\(828\) 1.81201 0.0629717
\(829\) 35.8564 1.24534 0.622672 0.782483i \(-0.286047\pi\)
0.622672 + 0.782483i \(0.286047\pi\)
\(830\) 0 0
\(831\) −35.2451 −1.22264
\(832\) 23.2082 0.804599
\(833\) −4.17118 −0.144523
\(834\) −44.1257 −1.52795
\(835\) 0 0
\(836\) 0 0
\(837\) 27.7794 0.960195
\(838\) 60.2463 2.08117
\(839\) 25.4830 0.879770 0.439885 0.898054i \(-0.355019\pi\)
0.439885 + 0.898054i \(0.355019\pi\)
\(840\) 0 0
\(841\) 65.1914 2.24798
\(842\) 80.9294 2.78901
\(843\) −20.6024 −0.709583
\(844\) −106.057 −3.65065
\(845\) 0 0
\(846\) −8.44249 −0.290259
\(847\) −29.2046 −1.00348
\(848\) −178.231 −6.12047
\(849\) 17.5410 0.602007
\(850\) 0 0
\(851\) −2.65700 −0.0910807
\(852\) 14.9069 0.510703
\(853\) 57.1622 1.95720 0.978598 0.205782i \(-0.0659737\pi\)
0.978598 + 0.205782i \(0.0659737\pi\)
\(854\) 49.7698 1.70309
\(855\) 0 0
\(856\) −63.9940 −2.18727
\(857\) 26.1974 0.894885 0.447442 0.894313i \(-0.352335\pi\)
0.447442 + 0.894313i \(0.352335\pi\)
\(858\) −2.28907 −0.0781475
\(859\) −17.7449 −0.605449 −0.302724 0.953078i \(-0.597896\pi\)
−0.302724 + 0.953078i \(0.597896\pi\)
\(860\) 0 0
\(861\) 17.0580 0.581336
\(862\) 35.5418 1.21056
\(863\) 25.0867 0.853960 0.426980 0.904261i \(-0.359578\pi\)
0.426980 + 0.904261i \(0.359578\pi\)
\(864\) −139.891 −4.75920
\(865\) 0 0
\(866\) −38.1789 −1.29737
\(867\) −4.47357 −0.151930
\(868\) −78.7944 −2.67446
\(869\) 1.57785 0.0535249
\(870\) 0 0
\(871\) −1.62891 −0.0551936
\(872\) −65.3415 −2.21274
\(873\) 8.40305 0.284400
\(874\) 0 0
\(875\) 0 0
\(876\) 59.6476 2.01531
\(877\) 10.0157 0.338205 0.169103 0.985598i \(-0.445913\pi\)
0.169103 + 0.985598i \(0.445913\pi\)
\(878\) 0.195290 0.00659071
\(879\) −40.3678 −1.36157
\(880\) 0 0
\(881\) 33.3473 1.12350 0.561750 0.827307i \(-0.310128\pi\)
0.561750 + 0.827307i \(0.310128\pi\)
\(882\) −2.38018 −0.0801449
\(883\) 27.3570 0.920638 0.460319 0.887754i \(-0.347735\pi\)
0.460319 + 0.887754i \(0.347735\pi\)
\(884\) −13.4956 −0.453905
\(885\) 0 0
\(886\) 10.4505 0.351092
\(887\) 17.1634 0.576292 0.288146 0.957586i \(-0.406961\pi\)
0.288146 + 0.957586i \(0.406961\pi\)
\(888\) 94.4544 3.16968
\(889\) 25.1675 0.844090
\(890\) 0 0
\(891\) 5.25635 0.176094
\(892\) −90.5363 −3.03138
\(893\) 0 0
\(894\) −61.3571 −2.05209
\(895\) 0 0
\(896\) 141.905 4.74072
\(897\) −0.400646 −0.0133772
\(898\) 73.2985 2.44600
\(899\) −47.8807 −1.59691
\(900\) 0 0
\(901\) 41.1136 1.36969
\(902\) −9.57325 −0.318754
\(903\) 8.74762 0.291103
\(904\) 2.92958 0.0974364
\(905\) 0 0
\(906\) −88.2979 −2.93350
\(907\) 3.02106 0.100313 0.0501563 0.998741i \(-0.484028\pi\)
0.0501563 + 0.998741i \(0.484028\pi\)
\(908\) 147.559 4.89693
\(909\) 4.10004 0.135990
\(910\) 0 0
\(911\) 19.5682 0.648324 0.324162 0.946002i \(-0.394918\pi\)
0.324162 + 0.946002i \(0.394918\pi\)
\(912\) 0 0
\(913\) −6.43336 −0.212913
\(914\) 91.4346 3.02439
\(915\) 0 0
\(916\) −74.7498 −2.46980
\(917\) 59.5729 1.96727
\(918\) 58.1100 1.91792
\(919\) −1.81420 −0.0598448 −0.0299224 0.999552i \(-0.509526\pi\)
−0.0299224 + 0.999552i \(0.509526\pi\)
\(920\) 0 0
\(921\) 13.1859 0.434491
\(922\) −53.1017 −1.74881
\(923\) 1.14641 0.0377346
\(924\) −20.6064 −0.677901
\(925\) 0 0
\(926\) −108.035 −3.55025
\(927\) 0.298163 0.00979295
\(928\) 241.117 7.91507
\(929\) −22.4754 −0.737395 −0.368698 0.929549i \(-0.620196\pi\)
−0.368698 + 0.929549i \(0.620196\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −141.901 −4.64813
\(933\) −0.971975 −0.0318210
\(934\) 107.742 3.52542
\(935\) 0 0
\(936\) −4.95386 −0.161922
\(937\) −55.0385 −1.79803 −0.899015 0.437918i \(-0.855716\pi\)
−0.899015 + 0.437918i \(0.855716\pi\)
\(938\) −19.8944 −0.649576
\(939\) 4.42437 0.144384
\(940\) 0 0
\(941\) 12.1956 0.397566 0.198783 0.980044i \(-0.436301\pi\)
0.198783 + 0.980044i \(0.436301\pi\)
\(942\) 10.0036 0.325937
\(943\) −1.67557 −0.0545640
\(944\) −39.8977 −1.29856
\(945\) 0 0
\(946\) −4.90931 −0.159615
\(947\) −30.4307 −0.988863 −0.494432 0.869216i \(-0.664624\pi\)
−0.494432 + 0.869216i \(0.664624\pi\)
\(948\) −15.2615 −0.495672
\(949\) 4.58717 0.148906
\(950\) 0 0
\(951\) −15.4859 −0.502164
\(952\) −106.029 −3.43642
\(953\) 15.7378 0.509798 0.254899 0.966968i \(-0.417958\pi\)
0.254899 + 0.966968i \(0.417958\pi\)
\(954\) 23.4605 0.759561
\(955\) 0 0
\(956\) −132.036 −4.27036
\(957\) −12.5218 −0.404772
\(958\) −68.2748 −2.20586
\(959\) −14.8550 −0.479693
\(960\) 0 0
\(961\) −6.66065 −0.214860
\(962\) 11.2921 0.364071
\(963\) 4.98058 0.160497
\(964\) −47.0070 −1.51399
\(965\) 0 0
\(966\) −4.89322 −0.157437
\(967\) −30.6373 −0.985228 −0.492614 0.870248i \(-0.663958\pi\)
−0.492614 + 0.870248i \(0.663958\pi\)
\(968\) −101.980 −3.27776
\(969\) 0 0
\(970\) 0 0
\(971\) −16.4765 −0.528755 −0.264378 0.964419i \(-0.585167\pi\)
−0.264378 + 0.964419i \(0.585167\pi\)
\(972\) 43.8679 1.40706
\(973\) −30.5483 −0.979334
\(974\) 60.3649 1.93422
\(975\) 0 0
\(976\) 102.758 3.28921
\(977\) −2.77995 −0.0889383 −0.0444692 0.999011i \(-0.514160\pi\)
−0.0444692 + 0.999011i \(0.514160\pi\)
\(978\) −73.3144 −2.34433
\(979\) 3.84480 0.122880
\(980\) 0 0
\(981\) 5.08545 0.162366
\(982\) 25.9130 0.826918
\(983\) −1.71171 −0.0545951 −0.0272976 0.999627i \(-0.508690\pi\)
−0.0272976 + 0.999627i \(0.508690\pi\)
\(984\) 59.5653 1.89887
\(985\) 0 0
\(986\) −100.159 −3.18971
\(987\) 16.8041 0.534879
\(988\) 0 0
\(989\) −0.859257 −0.0273228
\(990\) 0 0
\(991\) 9.67421 0.307311 0.153656 0.988124i \(-0.450895\pi\)
0.153656 + 0.988124i \(0.450895\pi\)
\(992\) −122.568 −3.89154
\(993\) −22.5164 −0.714535
\(994\) 14.0015 0.444099
\(995\) 0 0
\(996\) 62.2259 1.97170
\(997\) −22.7311 −0.719902 −0.359951 0.932971i \(-0.617207\pi\)
−0.359951 + 0.932971i \(0.617207\pi\)
\(998\) 68.7064 2.17486
\(999\) −35.8380 −1.13386
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9025.2.a.bp.1.4 4
5.4 even 2 1805.2.a.i.1.1 4
19.8 odd 6 475.2.e.e.26.4 8
19.12 odd 6 475.2.e.e.201.4 8
19.18 odd 2 9025.2.a.bg.1.1 4
95.8 even 12 475.2.j.c.349.8 16
95.12 even 12 475.2.j.c.49.8 16
95.27 even 12 475.2.j.c.349.1 16
95.69 odd 6 95.2.e.c.11.1 8
95.84 odd 6 95.2.e.c.26.1 yes 8
95.88 even 12 475.2.j.c.49.1 16
95.94 odd 2 1805.2.a.o.1.4 4
285.164 even 6 855.2.k.h.676.4 8
285.179 even 6 855.2.k.h.406.4 8
380.179 even 6 1520.2.q.o.881.3 8
380.259 even 6 1520.2.q.o.961.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
95.2.e.c.11.1 8 95.69 odd 6
95.2.e.c.26.1 yes 8 95.84 odd 6
475.2.e.e.26.4 8 19.8 odd 6
475.2.e.e.201.4 8 19.12 odd 6
475.2.j.c.49.1 16 95.88 even 12
475.2.j.c.49.8 16 95.12 even 12
475.2.j.c.349.1 16 95.27 even 12
475.2.j.c.349.8 16 95.8 even 12
855.2.k.h.406.4 8 285.179 even 6
855.2.k.h.676.4 8 285.164 even 6
1520.2.q.o.881.3 8 380.179 even 6
1520.2.q.o.961.3 8 380.259 even 6
1805.2.a.i.1.1 4 5.4 even 2
1805.2.a.o.1.4 4 95.94 odd 2
9025.2.a.bg.1.1 4 19.18 odd 2
9025.2.a.bp.1.4 4 1.1 even 1 trivial