Properties

Label 9025.2.a.bp.1.2
Level $9025$
Weight $2$
Character 9025.1
Self dual yes
Analytic conductor $72.065$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9025,2,Mod(1,9025)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9025, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9025.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 9025 = 5^{2} \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9025.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(72.0649878242\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.7537.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 5x^{2} + 4x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 95)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-2.04717\) of defining polynomial
Character \(\chi\) \(=\) 9025.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.19091 q^{2} +3.04717 q^{3} -0.581734 q^{4} -3.62891 q^{6} +0.609175 q^{7} +3.07461 q^{8} +6.28525 q^{9} +O(q^{10})\) \(q-1.19091 q^{2} +3.04717 q^{3} -0.581734 q^{4} -3.62891 q^{6} +0.609175 q^{7} +3.07461 q^{8} +6.28525 q^{9} +4.48517 q^{11} -1.77264 q^{12} +4.43800 q^{13} -0.725473 q^{14} -2.49812 q^{16} -2.90343 q^{17} -7.48517 q^{18} +1.85626 q^{21} -5.34143 q^{22} +2.84726 q^{23} +9.36887 q^{24} -5.28525 q^{26} +10.0107 q^{27} -0.354378 q^{28} -1.11630 q^{29} +6.22908 q^{31} -3.17419 q^{32} +13.6671 q^{33} +3.45773 q^{34} -3.65635 q^{36} -3.77264 q^{37} +13.5233 q^{39} +8.30369 q^{41} -2.21064 q^{42} +9.98877 q^{43} -2.60918 q^{44} -3.39082 q^{46} +5.88500 q^{47} -7.61219 q^{48} -6.62891 q^{49} -8.84726 q^{51} -2.58173 q^{52} +8.44872 q^{53} -11.9219 q^{54} +1.87298 q^{56} +1.32941 q^{58} -10.2359 q^{59} -4.98199 q^{61} -7.41827 q^{62} +3.82882 q^{63} +8.77641 q^{64} -16.2762 q^{66} +8.47616 q^{67} +1.68903 q^{68} +8.67608 q^{69} -11.6199 q^{71} +19.3247 q^{72} -3.72325 q^{73} +4.49288 q^{74} +2.73225 q^{77} -16.1051 q^{78} -9.03817 q^{79} +11.6486 q^{81} -9.88894 q^{82} +2.12178 q^{83} -1.07985 q^{84} -11.8957 q^{86} -3.40155 q^{87} +13.7901 q^{88} -7.93217 q^{89} +2.70352 q^{91} -1.65635 q^{92} +18.9811 q^{93} -7.00850 q^{94} -9.67231 q^{96} -9.67256 q^{97} +7.89443 q^{98} +28.1904 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + q^{2} + 3 q^{3} + 5 q^{4} + 2 q^{6} + 4 q^{7} + 12 q^{8} + q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + q^{2} + 3 q^{3} + 5 q^{4} + 2 q^{6} + 4 q^{7} + 12 q^{8} + q^{9} - 2 q^{11} + 6 q^{12} + 7 q^{13} + q^{14} + 7 q^{16} + q^{17} - 10 q^{18} + 4 q^{21} + 2 q^{22} - 2 q^{23} + 23 q^{24} + 3 q^{26} + 12 q^{27} + 19 q^{28} + q^{29} + 30 q^{32} + 19 q^{33} - 15 q^{34} - 7 q^{36} - 2 q^{37} + 15 q^{39} + 8 q^{41} + 15 q^{42} - q^{43} - 12 q^{44} - 12 q^{46} + 12 q^{47} + 23 q^{48} - 10 q^{49} - 22 q^{51} - 3 q^{52} - 5 q^{53} - 34 q^{54} + 41 q^{56} + 27 q^{58} + 5 q^{59} - 37 q^{62} + 3 q^{63} + 56 q^{64} - 31 q^{66} + 4 q^{67} - 16 q^{68} + 9 q^{69} - 20 q^{71} + 17 q^{72} + 20 q^{73} + 25 q^{74} - 14 q^{77} - 18 q^{78} - 17 q^{79} + 12 q^{81} - 21 q^{82} - q^{83} + 20 q^{84} - 8 q^{86} + 16 q^{87} - 7 q^{88} - 11 q^{89} - 6 q^{91} + q^{92} + 8 q^{93} + 31 q^{94} + 21 q^{96} + q^{97} + 9 q^{98} + 38 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.19091 −0.842100 −0.421050 0.907037i \(-0.638338\pi\)
−0.421050 + 0.907037i \(0.638338\pi\)
\(3\) 3.04717 1.75929 0.879643 0.475635i \(-0.157782\pi\)
0.879643 + 0.475635i \(0.157782\pi\)
\(4\) −0.581734 −0.290867
\(5\) 0 0
\(6\) −3.62891 −1.48149
\(7\) 0.609175 0.230247 0.115123 0.993351i \(-0.463274\pi\)
0.115123 + 0.993351i \(0.463274\pi\)
\(8\) 3.07461 1.08704
\(9\) 6.28525 2.09508
\(10\) 0 0
\(11\) 4.48517 1.35233 0.676164 0.736751i \(-0.263641\pi\)
0.676164 + 0.736751i \(0.263641\pi\)
\(12\) −1.77264 −0.511718
\(13\) 4.43800 1.23088 0.615439 0.788184i \(-0.288979\pi\)
0.615439 + 0.788184i \(0.288979\pi\)
\(14\) −0.725473 −0.193891
\(15\) 0 0
\(16\) −2.49812 −0.624529
\(17\) −2.90343 −0.704186 −0.352093 0.935965i \(-0.614530\pi\)
−0.352093 + 0.935965i \(0.614530\pi\)
\(18\) −7.48517 −1.76427
\(19\) 0 0
\(20\) 0 0
\(21\) 1.85626 0.405069
\(22\) −5.34143 −1.13880
\(23\) 2.84726 0.593694 0.296847 0.954925i \(-0.404065\pi\)
0.296847 + 0.954925i \(0.404065\pi\)
\(24\) 9.36887 1.91241
\(25\) 0 0
\(26\) −5.28525 −1.03652
\(27\) 10.0107 1.92656
\(28\) −0.354378 −0.0669712
\(29\) −1.11630 −0.207291 −0.103646 0.994614i \(-0.533051\pi\)
−0.103646 + 0.994614i \(0.533051\pi\)
\(30\) 0 0
\(31\) 6.22908 1.11877 0.559387 0.828906i \(-0.311036\pi\)
0.559387 + 0.828906i \(0.311036\pi\)
\(32\) −3.17419 −0.561123
\(33\) 13.6671 2.37913
\(34\) 3.45773 0.592995
\(35\) 0 0
\(36\) −3.65635 −0.609391
\(37\) −3.77264 −0.620219 −0.310109 0.950701i \(-0.600366\pi\)
−0.310109 + 0.950701i \(0.600366\pi\)
\(38\) 0 0
\(39\) 13.5233 2.16547
\(40\) 0 0
\(41\) 8.30369 1.29682 0.648409 0.761292i \(-0.275435\pi\)
0.648409 + 0.761292i \(0.275435\pi\)
\(42\) −2.21064 −0.341109
\(43\) 9.98877 1.52327 0.761637 0.648004i \(-0.224396\pi\)
0.761637 + 0.648004i \(0.224396\pi\)
\(44\) −2.60918 −0.393348
\(45\) 0 0
\(46\) −3.39082 −0.499950
\(47\) 5.88500 0.858415 0.429208 0.903206i \(-0.358793\pi\)
0.429208 + 0.903206i \(0.358793\pi\)
\(48\) −7.61219 −1.09872
\(49\) −6.62891 −0.946986
\(50\) 0 0
\(51\) −8.84726 −1.23886
\(52\) −2.58173 −0.358022
\(53\) 8.44872 1.16052 0.580261 0.814431i \(-0.302951\pi\)
0.580261 + 0.814431i \(0.302951\pi\)
\(54\) −11.9219 −1.62236
\(55\) 0 0
\(56\) 1.87298 0.250287
\(57\) 0 0
\(58\) 1.32941 0.174560
\(59\) −10.2359 −1.33259 −0.666297 0.745686i \(-0.732122\pi\)
−0.666297 + 0.745686i \(0.732122\pi\)
\(60\) 0 0
\(61\) −4.98199 −0.637878 −0.318939 0.947775i \(-0.603327\pi\)
−0.318939 + 0.947775i \(0.603327\pi\)
\(62\) −7.41827 −0.942121
\(63\) 3.82882 0.482386
\(64\) 8.77641 1.09705
\(65\) 0 0
\(66\) −16.2762 −2.00347
\(67\) 8.47616 1.03553 0.517764 0.855524i \(-0.326765\pi\)
0.517764 + 0.855524i \(0.326765\pi\)
\(68\) 1.68903 0.204825
\(69\) 8.67608 1.04448
\(70\) 0 0
\(71\) −11.6199 −1.37903 −0.689514 0.724272i \(-0.742176\pi\)
−0.689514 + 0.724272i \(0.742176\pi\)
\(72\) 19.3247 2.27744
\(73\) −3.72325 −0.435773 −0.217887 0.975974i \(-0.569916\pi\)
−0.217887 + 0.975974i \(0.569916\pi\)
\(74\) 4.49288 0.522286
\(75\) 0 0
\(76\) 0 0
\(77\) 2.73225 0.311369
\(78\) −16.1051 −1.82354
\(79\) −9.03817 −1.01687 −0.508437 0.861099i \(-0.669776\pi\)
−0.508437 + 0.861099i \(0.669776\pi\)
\(80\) 0 0
\(81\) 11.6486 1.29429
\(82\) −9.88894 −1.09205
\(83\) 2.12178 0.232896 0.116448 0.993197i \(-0.462849\pi\)
0.116448 + 0.993197i \(0.462849\pi\)
\(84\) −1.07985 −0.117821
\(85\) 0 0
\(86\) −11.8957 −1.28275
\(87\) −3.40155 −0.364684
\(88\) 13.7901 1.47003
\(89\) −7.93217 −0.840808 −0.420404 0.907337i \(-0.638112\pi\)
−0.420404 + 0.907337i \(0.638112\pi\)
\(90\) 0 0
\(91\) 2.70352 0.283406
\(92\) −1.65635 −0.172686
\(93\) 18.9811 1.96824
\(94\) −7.00850 −0.722872
\(95\) 0 0
\(96\) −9.67231 −0.987176
\(97\) −9.67256 −0.982099 −0.491050 0.871132i \(-0.663387\pi\)
−0.491050 + 0.871132i \(0.663387\pi\)
\(98\) 7.89443 0.797458
\(99\) 28.1904 2.83324
\(100\) 0 0
\(101\) −0.971265 −0.0966444 −0.0483222 0.998832i \(-0.515387\pi\)
−0.0483222 + 0.998832i \(0.515387\pi\)
\(102\) 10.5363 1.04325
\(103\) −3.34143 −0.329241 −0.164620 0.986357i \(-0.552640\pi\)
−0.164620 + 0.986357i \(0.552640\pi\)
\(104\) 13.6451 1.33801
\(105\) 0 0
\(106\) −10.0617 −0.977275
\(107\) 9.51655 0.920000 0.460000 0.887919i \(-0.347849\pi\)
0.460000 + 0.887919i \(0.347849\pi\)
\(108\) −5.82358 −0.560374
\(109\) −5.54357 −0.530978 −0.265489 0.964114i \(-0.585533\pi\)
−0.265489 + 0.964114i \(0.585533\pi\)
\(110\) 0 0
\(111\) −11.4959 −1.09114
\(112\) −1.52179 −0.143796
\(113\) 1.54134 0.144997 0.0724987 0.997369i \(-0.476903\pi\)
0.0724987 + 0.997369i \(0.476903\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0.649388 0.0602942
\(117\) 27.8939 2.57879
\(118\) 12.1900 1.12218
\(119\) −1.76870 −0.162136
\(120\) 0 0
\(121\) 9.11672 0.828793
\(122\) 5.93310 0.537158
\(123\) 25.3028 2.28147
\(124\) −3.62367 −0.325415
\(125\) 0 0
\(126\) −4.55978 −0.406217
\(127\) 2.30549 0.204579 0.102289 0.994755i \(-0.467383\pi\)
0.102289 + 0.994755i \(0.467383\pi\)
\(128\) −4.10353 −0.362704
\(129\) 30.4375 2.67987
\(130\) 0 0
\(131\) −12.9181 −1.12866 −0.564330 0.825549i \(-0.690865\pi\)
−0.564330 + 0.825549i \(0.690865\pi\)
\(132\) −7.95060 −0.692011
\(133\) 0 0
\(134\) −10.0943 −0.872018
\(135\) 0 0
\(136\) −8.92693 −0.765478
\(137\) 12.7335 1.08790 0.543950 0.839118i \(-0.316928\pi\)
0.543950 + 0.839118i \(0.316928\pi\)
\(138\) −10.3324 −0.879554
\(139\) 10.6087 0.899816 0.449908 0.893075i \(-0.351457\pi\)
0.449908 + 0.893075i \(0.351457\pi\)
\(140\) 0 0
\(141\) 17.9326 1.51020
\(142\) 13.8383 1.16128
\(143\) 19.9052 1.66455
\(144\) −15.7013 −1.30844
\(145\) 0 0
\(146\) 4.43405 0.366965
\(147\) −20.1994 −1.66602
\(148\) 2.19468 0.180401
\(149\) 3.77307 0.309102 0.154551 0.987985i \(-0.450607\pi\)
0.154551 + 0.987985i \(0.450607\pi\)
\(150\) 0 0
\(151\) 9.51562 0.774370 0.387185 0.922002i \(-0.373447\pi\)
0.387185 + 0.922002i \(0.373447\pi\)
\(152\) 0 0
\(153\) −18.2488 −1.47533
\(154\) −3.25387 −0.262204
\(155\) 0 0
\(156\) −7.86699 −0.629863
\(157\) 3.45643 0.275853 0.137927 0.990442i \(-0.455956\pi\)
0.137927 + 0.990442i \(0.455956\pi\)
\(158\) 10.7636 0.856309
\(159\) 25.7447 2.04169
\(160\) 0 0
\(161\) 1.73448 0.136696
\(162\) −13.8725 −1.08992
\(163\) −6.65283 −0.521090 −0.260545 0.965462i \(-0.583902\pi\)
−0.260545 + 0.965462i \(0.583902\pi\)
\(164\) −4.83054 −0.377202
\(165\) 0 0
\(166\) −2.52685 −0.196122
\(167\) −16.4555 −1.27336 −0.636682 0.771126i \(-0.719694\pi\)
−0.636682 + 0.771126i \(0.719694\pi\)
\(168\) 5.70728 0.440327
\(169\) 6.69581 0.515062
\(170\) 0 0
\(171\) 0 0
\(172\) −5.81081 −0.443070
\(173\) −22.7824 −1.73212 −0.866058 0.499943i \(-0.833354\pi\)
−0.866058 + 0.499943i \(0.833354\pi\)
\(174\) 4.05094 0.307101
\(175\) 0 0
\(176\) −11.2045 −0.844569
\(177\) −31.1904 −2.34441
\(178\) 9.44650 0.708045
\(179\) 2.32916 0.174090 0.0870449 0.996204i \(-0.472258\pi\)
0.0870449 + 0.996204i \(0.472258\pi\)
\(180\) 0 0
\(181\) 22.3392 1.66046 0.830230 0.557421i \(-0.188209\pi\)
0.830230 + 0.557421i \(0.188209\pi\)
\(182\) −3.21965 −0.238656
\(183\) −15.1810 −1.12221
\(184\) 8.75421 0.645369
\(185\) 0 0
\(186\) −22.6047 −1.65746
\(187\) −13.0224 −0.952291
\(188\) −3.42350 −0.249685
\(189\) 6.09829 0.443585
\(190\) 0 0
\(191\) 2.23766 0.161911 0.0809556 0.996718i \(-0.474203\pi\)
0.0809556 + 0.996718i \(0.474203\pi\)
\(192\) 26.7432 1.93003
\(193\) −4.54306 −0.327017 −0.163508 0.986542i \(-0.552281\pi\)
−0.163508 + 0.986542i \(0.552281\pi\)
\(194\) 11.5191 0.827026
\(195\) 0 0
\(196\) 3.85626 0.275447
\(197\) 19.2236 1.36962 0.684812 0.728720i \(-0.259884\pi\)
0.684812 + 0.728720i \(0.259884\pi\)
\(198\) −33.5722 −2.38587
\(199\) −6.15094 −0.436029 −0.218014 0.975946i \(-0.569958\pi\)
−0.218014 + 0.975946i \(0.569958\pi\)
\(200\) 0 0
\(201\) 25.8283 1.82179
\(202\) 1.15669 0.0813843
\(203\) −0.680021 −0.0477281
\(204\) 5.14675 0.360345
\(205\) 0 0
\(206\) 3.97934 0.277254
\(207\) 17.8957 1.24384
\(208\) −11.0866 −0.768720
\(209\) 0 0
\(210\) 0 0
\(211\) −12.6932 −0.873837 −0.436919 0.899501i \(-0.643930\pi\)
−0.436919 + 0.899501i \(0.643930\pi\)
\(212\) −4.91491 −0.337557
\(213\) −35.4078 −2.42610
\(214\) −11.3334 −0.774732
\(215\) 0 0
\(216\) 30.7791 2.09425
\(217\) 3.79460 0.257594
\(218\) 6.60189 0.447136
\(219\) −11.3454 −0.766649
\(220\) 0 0
\(221\) −12.8854 −0.866767
\(222\) 13.6906 0.918851
\(223\) 22.5376 1.50923 0.754614 0.656169i \(-0.227824\pi\)
0.754614 + 0.656169i \(0.227824\pi\)
\(224\) −1.93364 −0.129197
\(225\) 0 0
\(226\) −1.83560 −0.122102
\(227\) 18.1124 1.20216 0.601080 0.799189i \(-0.294737\pi\)
0.601080 + 0.799189i \(0.294737\pi\)
\(228\) 0 0
\(229\) −9.41604 −0.622229 −0.311115 0.950372i \(-0.600702\pi\)
−0.311115 + 0.950372i \(0.600702\pi\)
\(230\) 0 0
\(231\) 8.32564 0.547787
\(232\) −3.43218 −0.225334
\(233\) −15.7000 −1.02854 −0.514271 0.857628i \(-0.671937\pi\)
−0.514271 + 0.857628i \(0.671937\pi\)
\(234\) −33.2191 −2.17160
\(235\) 0 0
\(236\) 5.95455 0.387608
\(237\) −27.5408 −1.78897
\(238\) 2.10636 0.136535
\(239\) −23.4610 −1.51757 −0.758783 0.651344i \(-0.774205\pi\)
−0.758783 + 0.651344i \(0.774205\pi\)
\(240\) 0 0
\(241\) −13.1694 −0.848314 −0.424157 0.905589i \(-0.639430\pi\)
−0.424157 + 0.905589i \(0.639430\pi\)
\(242\) −10.8572 −0.697927
\(243\) 5.46321 0.350465
\(244\) 2.89819 0.185538
\(245\) 0 0
\(246\) −30.1333 −1.92123
\(247\) 0 0
\(248\) 19.1520 1.21615
\(249\) 6.46544 0.409730
\(250\) 0 0
\(251\) −17.3251 −1.09355 −0.546776 0.837279i \(-0.684145\pi\)
−0.546776 + 0.837279i \(0.684145\pi\)
\(252\) −2.22736 −0.140310
\(253\) 12.7704 0.802869
\(254\) −2.74563 −0.172276
\(255\) 0 0
\(256\) −12.6659 −0.791618
\(257\) −5.67960 −0.354283 −0.177142 0.984185i \(-0.556685\pi\)
−0.177142 + 0.984185i \(0.556685\pi\)
\(258\) −36.2483 −2.25672
\(259\) −2.29820 −0.142803
\(260\) 0 0
\(261\) −7.01621 −0.434293
\(262\) 15.3843 0.950445
\(263\) −5.65764 −0.348865 −0.174433 0.984669i \(-0.555809\pi\)
−0.174433 + 0.984669i \(0.555809\pi\)
\(264\) 42.0209 2.58621
\(265\) 0 0
\(266\) 0 0
\(267\) −24.1707 −1.47922
\(268\) −4.93087 −0.301201
\(269\) 23.9918 1.46280 0.731402 0.681946i \(-0.238866\pi\)
0.731402 + 0.681946i \(0.238866\pi\)
\(270\) 0 0
\(271\) −21.2995 −1.29385 −0.646926 0.762553i \(-0.723946\pi\)
−0.646926 + 0.762553i \(0.723946\pi\)
\(272\) 7.25311 0.439785
\(273\) 8.23808 0.498591
\(274\) −15.1645 −0.916121
\(275\) 0 0
\(276\) −5.04717 −0.303804
\(277\) 0.821109 0.0493357 0.0246678 0.999696i \(-0.492147\pi\)
0.0246678 + 0.999696i \(0.492147\pi\)
\(278\) −12.6340 −0.757735
\(279\) 39.1513 2.34393
\(280\) 0 0
\(281\) 0.587479 0.0350461 0.0175230 0.999846i \(-0.494422\pi\)
0.0175230 + 0.999846i \(0.494422\pi\)
\(282\) −21.3561 −1.27174
\(283\) −30.9424 −1.83933 −0.919667 0.392699i \(-0.871541\pi\)
−0.919667 + 0.392699i \(0.871541\pi\)
\(284\) 6.75969 0.401114
\(285\) 0 0
\(286\) −23.7052 −1.40172
\(287\) 5.05840 0.298588
\(288\) −19.9506 −1.17560
\(289\) −8.57008 −0.504122
\(290\) 0 0
\(291\) −29.4739 −1.72779
\(292\) 2.16594 0.126752
\(293\) 3.76271 0.219820 0.109910 0.993942i \(-0.464944\pi\)
0.109910 + 0.993942i \(0.464944\pi\)
\(294\) 24.0557 1.40296
\(295\) 0 0
\(296\) −11.5994 −0.674202
\(297\) 44.8998 2.60535
\(298\) −4.49338 −0.260295
\(299\) 12.6361 0.730765
\(300\) 0 0
\(301\) 6.08491 0.350728
\(302\) −11.3322 −0.652097
\(303\) −2.95961 −0.170025
\(304\) 0 0
\(305\) 0 0
\(306\) 21.7327 1.24237
\(307\) 20.3419 1.16097 0.580485 0.814271i \(-0.302863\pi\)
0.580485 + 0.814271i \(0.302863\pi\)
\(308\) −1.58945 −0.0905670
\(309\) −10.1819 −0.579228
\(310\) 0 0
\(311\) −7.67830 −0.435397 −0.217698 0.976016i \(-0.569855\pi\)
−0.217698 + 0.976016i \(0.569855\pi\)
\(312\) 41.5790 2.35395
\(313\) −23.9927 −1.35615 −0.678074 0.734993i \(-0.737185\pi\)
−0.678074 + 0.734993i \(0.737185\pi\)
\(314\) −4.11630 −0.232296
\(315\) 0 0
\(316\) 5.25781 0.295775
\(317\) 1.03904 0.0583580 0.0291790 0.999574i \(-0.490711\pi\)
0.0291790 + 0.999574i \(0.490711\pi\)
\(318\) −30.6596 −1.71931
\(319\) −5.00678 −0.280326
\(320\) 0 0
\(321\) 28.9986 1.61854
\(322\) −2.06561 −0.115112
\(323\) 0 0
\(324\) −6.77641 −0.376467
\(325\) 0 0
\(326\) 7.92292 0.438810
\(327\) −16.8922 −0.934141
\(328\) 25.5306 1.40969
\(329\) 3.58500 0.197647
\(330\) 0 0
\(331\) −30.8316 −1.69466 −0.847328 0.531069i \(-0.821790\pi\)
−0.847328 + 0.531069i \(0.821790\pi\)
\(332\) −1.23431 −0.0677418
\(333\) −23.7120 −1.29941
\(334\) 19.5970 1.07230
\(335\) 0 0
\(336\) −4.63716 −0.252978
\(337\) 20.7153 1.12843 0.564217 0.825627i \(-0.309178\pi\)
0.564217 + 0.825627i \(0.309178\pi\)
\(338\) −7.97410 −0.433734
\(339\) 4.69674 0.255092
\(340\) 0 0
\(341\) 27.9384 1.51295
\(342\) 0 0
\(343\) −8.30239 −0.448287
\(344\) 30.7116 1.65586
\(345\) 0 0
\(346\) 27.1318 1.45862
\(347\) −8.22136 −0.441346 −0.220673 0.975348i \(-0.570825\pi\)
−0.220673 + 0.975348i \(0.570825\pi\)
\(348\) 1.97880 0.106075
\(349\) 11.9216 0.638150 0.319075 0.947730i \(-0.396628\pi\)
0.319075 + 0.947730i \(0.396628\pi\)
\(350\) 0 0
\(351\) 44.4276 2.37137
\(352\) −14.2368 −0.758823
\(353\) 11.7983 0.627959 0.313980 0.949430i \(-0.398338\pi\)
0.313980 + 0.949430i \(0.398338\pi\)
\(354\) 37.1450 1.97423
\(355\) 0 0
\(356\) 4.61441 0.244563
\(357\) −5.38953 −0.285244
\(358\) −2.77382 −0.146601
\(359\) 0.110812 0.00584841 0.00292420 0.999996i \(-0.499069\pi\)
0.00292420 + 0.999996i \(0.499069\pi\)
\(360\) 0 0
\(361\) 0 0
\(362\) −26.6040 −1.39827
\(363\) 27.7802 1.45808
\(364\) −1.57273 −0.0824334
\(365\) 0 0
\(366\) 18.0792 0.945013
\(367\) −11.7397 −0.612808 −0.306404 0.951902i \(-0.599126\pi\)
−0.306404 + 0.951902i \(0.599126\pi\)
\(368\) −7.11278 −0.370779
\(369\) 52.1908 2.71694
\(370\) 0 0
\(371\) 5.14675 0.267206
\(372\) −11.0419 −0.572498
\(373\) 14.5190 0.751763 0.375882 0.926668i \(-0.377340\pi\)
0.375882 + 0.926668i \(0.377340\pi\)
\(374\) 15.5085 0.801924
\(375\) 0 0
\(376\) 18.0941 0.933131
\(377\) −4.95412 −0.255150
\(378\) −7.26251 −0.373543
\(379\) 6.59023 0.338518 0.169259 0.985572i \(-0.445863\pi\)
0.169259 + 0.985572i \(0.445863\pi\)
\(380\) 0 0
\(381\) 7.02522 0.359913
\(382\) −2.66485 −0.136345
\(383\) −2.86921 −0.146610 −0.0733049 0.997310i \(-0.523355\pi\)
−0.0733049 + 0.997310i \(0.523355\pi\)
\(384\) −12.5041 −0.638099
\(385\) 0 0
\(386\) 5.41038 0.275381
\(387\) 62.7819 3.19138
\(388\) 5.62686 0.285660
\(389\) −6.33149 −0.321019 −0.160510 0.987034i \(-0.551314\pi\)
−0.160510 + 0.987034i \(0.551314\pi\)
\(390\) 0 0
\(391\) −8.26682 −0.418071
\(392\) −20.3813 −1.02941
\(393\) −39.3637 −1.98563
\(394\) −22.8936 −1.15336
\(395\) 0 0
\(396\) −16.3993 −0.824097
\(397\) 30.5498 1.53325 0.766626 0.642094i \(-0.221934\pi\)
0.766626 + 0.642094i \(0.221934\pi\)
\(398\) 7.32522 0.367180
\(399\) 0 0
\(400\) 0 0
\(401\) −30.3422 −1.51522 −0.757609 0.652709i \(-0.773633\pi\)
−0.757609 + 0.652709i \(0.773633\pi\)
\(402\) −30.7592 −1.53413
\(403\) 27.6446 1.37708
\(404\) 0.565018 0.0281107
\(405\) 0 0
\(406\) 0.809843 0.0401919
\(407\) −16.9209 −0.838740
\(408\) −27.2019 −1.34669
\(409\) 14.9726 0.740345 0.370173 0.928963i \(-0.379299\pi\)
0.370173 + 0.928963i \(0.379299\pi\)
\(410\) 0 0
\(411\) 38.8013 1.91393
\(412\) 1.94382 0.0957653
\(413\) −6.23543 −0.306825
\(414\) −21.3122 −1.04744
\(415\) 0 0
\(416\) −14.0871 −0.690675
\(417\) 32.3264 1.58303
\(418\) 0 0
\(419\) −6.17419 −0.301629 −0.150815 0.988562i \(-0.548190\pi\)
−0.150815 + 0.988562i \(0.548190\pi\)
\(420\) 0 0
\(421\) 27.5428 1.34235 0.671177 0.741297i \(-0.265789\pi\)
0.671177 + 0.741297i \(0.265789\pi\)
\(422\) 15.1165 0.735858
\(423\) 36.9887 1.79845
\(424\) 25.9765 1.26153
\(425\) 0 0
\(426\) 42.1675 2.04302
\(427\) −3.03490 −0.146869
\(428\) −5.53610 −0.267598
\(429\) 60.6544 2.92842
\(430\) 0 0
\(431\) 15.0588 0.725358 0.362679 0.931914i \(-0.381862\pi\)
0.362679 + 0.931914i \(0.381862\pi\)
\(432\) −25.0080 −1.20320
\(433\) −0.970840 −0.0466556 −0.0233278 0.999728i \(-0.507426\pi\)
−0.0233278 + 0.999728i \(0.507426\pi\)
\(434\) −4.51902 −0.216920
\(435\) 0 0
\(436\) 3.22488 0.154444
\(437\) 0 0
\(438\) 13.5113 0.645596
\(439\) 27.4375 1.30952 0.654760 0.755837i \(-0.272770\pi\)
0.654760 + 0.755837i \(0.272770\pi\)
\(440\) 0 0
\(441\) −41.6643 −1.98402
\(442\) 15.3454 0.729905
\(443\) 8.76544 0.416459 0.208229 0.978080i \(-0.433230\pi\)
0.208229 + 0.978080i \(0.433230\pi\)
\(444\) 6.68755 0.317377
\(445\) 0 0
\(446\) −26.8402 −1.27092
\(447\) 11.4972 0.543798
\(448\) 5.34637 0.252592
\(449\) 9.63397 0.454655 0.227327 0.973818i \(-0.427001\pi\)
0.227327 + 0.973818i \(0.427001\pi\)
\(450\) 0 0
\(451\) 37.2434 1.75372
\(452\) −0.896652 −0.0421750
\(453\) 28.9957 1.36234
\(454\) −21.5702 −1.01234
\(455\) 0 0
\(456\) 0 0
\(457\) 10.6708 0.499161 0.249580 0.968354i \(-0.419707\pi\)
0.249580 + 0.968354i \(0.419707\pi\)
\(458\) 11.2137 0.523980
\(459\) −29.0655 −1.35666
\(460\) 0 0
\(461\) 5.68680 0.264861 0.132430 0.991192i \(-0.457722\pi\)
0.132430 + 0.991192i \(0.457722\pi\)
\(462\) −9.91509 −0.461292
\(463\) −35.3550 −1.64309 −0.821543 0.570147i \(-0.806886\pi\)
−0.821543 + 0.570147i \(0.806886\pi\)
\(464\) 2.78864 0.129459
\(465\) 0 0
\(466\) 18.6973 0.866135
\(467\) 32.9071 1.52276 0.761380 0.648306i \(-0.224522\pi\)
0.761380 + 0.648306i \(0.224522\pi\)
\(468\) −16.2269 −0.750086
\(469\) 5.16347 0.238427
\(470\) 0 0
\(471\) 10.5323 0.485305
\(472\) −31.4713 −1.44858
\(473\) 44.8013 2.05997
\(474\) 32.7986 1.50649
\(475\) 0 0
\(476\) 1.02891 0.0471602
\(477\) 53.1023 2.43139
\(478\) 27.9399 1.27794
\(479\) −9.05721 −0.413835 −0.206917 0.978358i \(-0.566343\pi\)
−0.206917 + 0.978358i \(0.566343\pi\)
\(480\) 0 0
\(481\) −16.7430 −0.763414
\(482\) 15.6835 0.714366
\(483\) 5.28525 0.240487
\(484\) −5.30351 −0.241069
\(485\) 0 0
\(486\) −6.50619 −0.295127
\(487\) −16.5206 −0.748620 −0.374310 0.927304i \(-0.622120\pi\)
−0.374310 + 0.927304i \(0.622120\pi\)
\(488\) −15.3177 −0.693399
\(489\) −20.2723 −0.916745
\(490\) 0 0
\(491\) −1.39125 −0.0627862 −0.0313931 0.999507i \(-0.509994\pi\)
−0.0313931 + 0.999507i \(0.509994\pi\)
\(492\) −14.7195 −0.663605
\(493\) 3.24109 0.145972
\(494\) 0 0
\(495\) 0 0
\(496\) −15.5610 −0.698708
\(497\) −7.07856 −0.317517
\(498\) −7.69975 −0.345034
\(499\) −16.6651 −0.746033 −0.373016 0.927825i \(-0.621676\pi\)
−0.373016 + 0.927825i \(0.621676\pi\)
\(500\) 0 0
\(501\) −50.1427 −2.24021
\(502\) 20.6327 0.920881
\(503\) −15.6391 −0.697314 −0.348657 0.937250i \(-0.613362\pi\)
−0.348657 + 0.937250i \(0.613362\pi\)
\(504\) 11.7721 0.524373
\(505\) 0 0
\(506\) −15.2084 −0.676096
\(507\) 20.4033 0.906141
\(508\) −1.34118 −0.0595053
\(509\) 19.1540 0.848988 0.424494 0.905431i \(-0.360452\pi\)
0.424494 + 0.905431i \(0.360452\pi\)
\(510\) 0 0
\(511\) −2.26811 −0.100335
\(512\) 23.2910 1.02933
\(513\) 0 0
\(514\) 6.76389 0.298342
\(515\) 0 0
\(516\) −17.7065 −0.779487
\(517\) 26.3952 1.16086
\(518\) 2.73695 0.120255
\(519\) −69.4220 −3.04729
\(520\) 0 0
\(521\) 19.2394 0.842892 0.421446 0.906853i \(-0.361523\pi\)
0.421446 + 0.906853i \(0.361523\pi\)
\(522\) 8.35567 0.365718
\(523\) 6.63945 0.290323 0.145161 0.989408i \(-0.453630\pi\)
0.145161 + 0.989408i \(0.453630\pi\)
\(524\) 7.51490 0.328290
\(525\) 0 0
\(526\) 6.73774 0.293779
\(527\) −18.0857 −0.787825
\(528\) −34.1419 −1.48584
\(529\) −14.8931 −0.647528
\(530\) 0 0
\(531\) −64.3349 −2.79190
\(532\) 0 0
\(533\) 36.8517 1.59623
\(534\) 28.7851 1.24565
\(535\) 0 0
\(536\) 26.0609 1.12566
\(537\) 7.09736 0.306274
\(538\) −28.5720 −1.23183
\(539\) −29.7317 −1.28064
\(540\) 0 0
\(541\) 41.7511 1.79502 0.897510 0.440994i \(-0.145374\pi\)
0.897510 + 0.440994i \(0.145374\pi\)
\(542\) 25.3658 1.08955
\(543\) 68.0714 2.92122
\(544\) 9.21606 0.395135
\(545\) 0 0
\(546\) −9.81081 −0.419864
\(547\) 12.2052 0.521855 0.260927 0.965358i \(-0.415972\pi\)
0.260927 + 0.965358i \(0.415972\pi\)
\(548\) −7.40754 −0.316434
\(549\) −31.3131 −1.33641
\(550\) 0 0
\(551\) 0 0
\(552\) 26.6756 1.13539
\(553\) −5.50583 −0.234132
\(554\) −0.977867 −0.0415456
\(555\) 0 0
\(556\) −6.17143 −0.261727
\(557\) −35.1548 −1.48956 −0.744779 0.667311i \(-0.767445\pi\)
−0.744779 + 0.667311i \(0.767445\pi\)
\(558\) −46.6257 −1.97382
\(559\) 44.3301 1.87496
\(560\) 0 0
\(561\) −39.6814 −1.67535
\(562\) −0.699634 −0.0295123
\(563\) 17.8406 0.751891 0.375945 0.926642i \(-0.377318\pi\)
0.375945 + 0.926642i \(0.377318\pi\)
\(564\) −10.4320 −0.439267
\(565\) 0 0
\(566\) 36.8496 1.54890
\(567\) 7.09606 0.298007
\(568\) −35.7267 −1.49906
\(569\) −31.6042 −1.32492 −0.662459 0.749098i \(-0.730487\pi\)
−0.662459 + 0.749098i \(0.730487\pi\)
\(570\) 0 0
\(571\) −4.73053 −0.197967 −0.0989833 0.995089i \(-0.531559\pi\)
−0.0989833 + 0.995089i \(0.531559\pi\)
\(572\) −11.5795 −0.484164
\(573\) 6.81852 0.284848
\(574\) −6.02410 −0.251441
\(575\) 0 0
\(576\) 55.1620 2.29841
\(577\) −24.4074 −1.01609 −0.508047 0.861330i \(-0.669632\pi\)
−0.508047 + 0.861330i \(0.669632\pi\)
\(578\) 10.2062 0.424522
\(579\) −13.8435 −0.575316
\(580\) 0 0
\(581\) 1.29254 0.0536235
\(582\) 35.1008 1.45497
\(583\) 37.8939 1.56941
\(584\) −11.4475 −0.473703
\(585\) 0 0
\(586\) −4.48104 −0.185110
\(587\) 28.6154 1.18109 0.590543 0.807006i \(-0.298914\pi\)
0.590543 + 0.807006i \(0.298914\pi\)
\(588\) 11.7507 0.484590
\(589\) 0 0
\(590\) 0 0
\(591\) 58.5776 2.40956
\(592\) 9.42450 0.387345
\(593\) −3.71511 −0.152561 −0.0762807 0.997086i \(-0.524305\pi\)
−0.0762807 + 0.997086i \(0.524305\pi\)
\(594\) −53.4716 −2.19397
\(595\) 0 0
\(596\) −2.19492 −0.0899076
\(597\) −18.7430 −0.767099
\(598\) −15.0485 −0.615378
\(599\) −7.09940 −0.290074 −0.145037 0.989426i \(-0.546330\pi\)
−0.145037 + 0.989426i \(0.546330\pi\)
\(600\) 0 0
\(601\) 11.0596 0.451131 0.225566 0.974228i \(-0.427577\pi\)
0.225566 + 0.974228i \(0.427577\pi\)
\(602\) −7.24658 −0.295349
\(603\) 53.2748 2.16952
\(604\) −5.53556 −0.225239
\(605\) 0 0
\(606\) 3.52463 0.143178
\(607\) 27.1193 1.10074 0.550369 0.834921i \(-0.314487\pi\)
0.550369 + 0.834921i \(0.314487\pi\)
\(608\) 0 0
\(609\) −2.07214 −0.0839673
\(610\) 0 0
\(611\) 26.1176 1.05660
\(612\) 10.6160 0.429125
\(613\) −41.8312 −1.68954 −0.844772 0.535126i \(-0.820264\pi\)
−0.844772 + 0.535126i \(0.820264\pi\)
\(614\) −24.2253 −0.977654
\(615\) 0 0
\(616\) 8.40062 0.338471
\(617\) 17.7052 0.712786 0.356393 0.934336i \(-0.384006\pi\)
0.356393 + 0.934336i \(0.384006\pi\)
\(618\) 12.1257 0.487768
\(619\) −39.8064 −1.59995 −0.799976 0.600032i \(-0.795155\pi\)
−0.799976 + 0.600032i \(0.795155\pi\)
\(620\) 0 0
\(621\) 28.5031 1.14379
\(622\) 9.14416 0.366648
\(623\) −4.83208 −0.193593
\(624\) −33.7829 −1.35240
\(625\) 0 0
\(626\) 28.5732 1.14201
\(627\) 0 0
\(628\) −2.01072 −0.0802366
\(629\) 10.9536 0.436749
\(630\) 0 0
\(631\) 46.1980 1.83911 0.919557 0.392956i \(-0.128547\pi\)
0.919557 + 0.392956i \(0.128547\pi\)
\(632\) −27.7889 −1.10538
\(633\) −38.6784 −1.53733
\(634\) −1.23740 −0.0491433
\(635\) 0 0
\(636\) −14.9766 −0.593860
\(637\) −29.4191 −1.16563
\(638\) 5.96262 0.236062
\(639\) −73.0340 −2.88918
\(640\) 0 0
\(641\) −6.61348 −0.261217 −0.130608 0.991434i \(-0.541693\pi\)
−0.130608 + 0.991434i \(0.541693\pi\)
\(642\) −34.5347 −1.36297
\(643\) 30.6152 1.20735 0.603673 0.797232i \(-0.293703\pi\)
0.603673 + 0.797232i \(0.293703\pi\)
\(644\) −1.00901 −0.0397604
\(645\) 0 0
\(646\) 0 0
\(647\) 11.8979 0.467753 0.233877 0.972266i \(-0.424859\pi\)
0.233877 + 0.972266i \(0.424859\pi\)
\(648\) 35.8150 1.40695
\(649\) −45.9095 −1.80211
\(650\) 0 0
\(651\) 11.5628 0.453182
\(652\) 3.87018 0.151568
\(653\) 1.42899 0.0559207 0.0279604 0.999609i \(-0.491099\pi\)
0.0279604 + 0.999609i \(0.491099\pi\)
\(654\) 20.1171 0.786640
\(655\) 0 0
\(656\) −20.7436 −0.809901
\(657\) −23.4015 −0.912981
\(658\) −4.26941 −0.166439
\(659\) 24.4970 0.954268 0.477134 0.878831i \(-0.341676\pi\)
0.477134 + 0.878831i \(0.341676\pi\)
\(660\) 0 0
\(661\) 3.22606 0.125479 0.0627396 0.998030i \(-0.480016\pi\)
0.0627396 + 0.998030i \(0.480016\pi\)
\(662\) 36.7176 1.42707
\(663\) −39.2641 −1.52489
\(664\) 6.52366 0.253167
\(665\) 0 0
\(666\) 28.2389 1.09423
\(667\) −3.17838 −0.123068
\(668\) 9.57273 0.370380
\(669\) 68.6759 2.65516
\(670\) 0 0
\(671\) −22.3451 −0.862621
\(672\) −5.89213 −0.227294
\(673\) 37.1424 1.43173 0.715866 0.698237i \(-0.246032\pi\)
0.715866 + 0.698237i \(0.246032\pi\)
\(674\) −24.6700 −0.950254
\(675\) 0 0
\(676\) −3.89518 −0.149815
\(677\) −24.7550 −0.951412 −0.475706 0.879604i \(-0.657807\pi\)
−0.475706 + 0.879604i \(0.657807\pi\)
\(678\) −5.59339 −0.214813
\(679\) −5.89228 −0.226125
\(680\) 0 0
\(681\) 55.1914 2.11494
\(682\) −33.2722 −1.27406
\(683\) 40.1153 1.53497 0.767484 0.641068i \(-0.221508\pi\)
0.767484 + 0.641068i \(0.221508\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 9.88740 0.377503
\(687\) −28.6923 −1.09468
\(688\) −24.9531 −0.951328
\(689\) 37.4954 1.42846
\(690\) 0 0
\(691\) 39.4963 1.50251 0.751254 0.660013i \(-0.229449\pi\)
0.751254 + 0.660013i \(0.229449\pi\)
\(692\) 13.2533 0.503816
\(693\) 17.1729 0.652344
\(694\) 9.79090 0.371658
\(695\) 0 0
\(696\) −10.4584 −0.396426
\(697\) −24.1092 −0.913201
\(698\) −14.1976 −0.537386
\(699\) −47.8406 −1.80950
\(700\) 0 0
\(701\) 0.0219552 0.000829236 0 0.000414618 1.00000i \(-0.499868\pi\)
0.000414618 1.00000i \(0.499868\pi\)
\(702\) −52.9092 −1.99693
\(703\) 0 0
\(704\) 39.3637 1.48357
\(705\) 0 0
\(706\) −14.0507 −0.528805
\(707\) −0.591670 −0.0222521
\(708\) 18.1445 0.681913
\(709\) −17.8017 −0.668558 −0.334279 0.942474i \(-0.608493\pi\)
−0.334279 + 0.942474i \(0.608493\pi\)
\(710\) 0 0
\(711\) −56.8071 −2.13043
\(712\) −24.3883 −0.913992
\(713\) 17.7358 0.664210
\(714\) 6.41844 0.240204
\(715\) 0 0
\(716\) −1.35495 −0.0506370
\(717\) −71.4896 −2.66983
\(718\) −0.131967 −0.00492495
\(719\) 18.8103 0.701506 0.350753 0.936468i \(-0.385926\pi\)
0.350753 + 0.936468i \(0.385926\pi\)
\(720\) 0 0
\(721\) −2.03552 −0.0758066
\(722\) 0 0
\(723\) −40.1294 −1.49243
\(724\) −12.9955 −0.482973
\(725\) 0 0
\(726\) −33.0837 −1.22785
\(727\) −5.00301 −0.185552 −0.0927758 0.995687i \(-0.529574\pi\)
−0.0927758 + 0.995687i \(0.529574\pi\)
\(728\) 8.31227 0.308073
\(729\) −18.2986 −0.677725
\(730\) 0 0
\(731\) −29.0017 −1.07267
\(732\) 8.83129 0.326414
\(733\) 23.5259 0.868950 0.434475 0.900684i \(-0.356934\pi\)
0.434475 + 0.900684i \(0.356934\pi\)
\(734\) 13.9809 0.516046
\(735\) 0 0
\(736\) −9.03774 −0.333136
\(737\) 38.0170 1.40037
\(738\) −62.1545 −2.28794
\(739\) −37.3836 −1.37518 −0.687590 0.726099i \(-0.741331\pi\)
−0.687590 + 0.726099i \(0.741331\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −6.12932 −0.225014
\(743\) 10.3886 0.381121 0.190560 0.981675i \(-0.438970\pi\)
0.190560 + 0.981675i \(0.438970\pi\)
\(744\) 58.3594 2.13956
\(745\) 0 0
\(746\) −17.2908 −0.633060
\(747\) 13.3359 0.487937
\(748\) 7.57556 0.276990
\(749\) 5.79725 0.211827
\(750\) 0 0
\(751\) 31.2825 1.14152 0.570758 0.821119i \(-0.306650\pi\)
0.570758 + 0.821119i \(0.306650\pi\)
\(752\) −14.7014 −0.536105
\(753\) −52.7927 −1.92387
\(754\) 5.89991 0.214862
\(755\) 0 0
\(756\) −3.54758 −0.129024
\(757\) 12.6241 0.458830 0.229415 0.973329i \(-0.426319\pi\)
0.229415 + 0.973329i \(0.426319\pi\)
\(758\) −7.84837 −0.285066
\(759\) 38.9137 1.41248
\(760\) 0 0
\(761\) 11.5495 0.418668 0.209334 0.977844i \(-0.432870\pi\)
0.209334 + 0.977844i \(0.432870\pi\)
\(762\) −8.36640 −0.303083
\(763\) −3.37701 −0.122256
\(764\) −1.30172 −0.0470946
\(765\) 0 0
\(766\) 3.41697 0.123460
\(767\) −45.4267 −1.64026
\(768\) −38.5951 −1.39268
\(769\) −26.9207 −0.970784 −0.485392 0.874297i \(-0.661323\pi\)
−0.485392 + 0.874297i \(0.661323\pi\)
\(770\) 0 0
\(771\) −17.3067 −0.623286
\(772\) 2.64286 0.0951184
\(773\) 21.3331 0.767299 0.383649 0.923479i \(-0.374667\pi\)
0.383649 + 0.923479i \(0.374667\pi\)
\(774\) −74.7676 −2.68747
\(775\) 0 0
\(776\) −29.7394 −1.06758
\(777\) −7.00301 −0.251232
\(778\) 7.54024 0.270331
\(779\) 0 0
\(780\) 0 0
\(781\) −52.1172 −1.86490
\(782\) 9.84503 0.352058
\(783\) −11.1749 −0.399360
\(784\) 16.5598 0.591421
\(785\) 0 0
\(786\) 46.8786 1.67210
\(787\) 3.52489 0.125649 0.0628243 0.998025i \(-0.479989\pi\)
0.0628243 + 0.998025i \(0.479989\pi\)
\(788\) −11.1830 −0.398379
\(789\) −17.2398 −0.613753
\(790\) 0 0
\(791\) 0.938948 0.0333852
\(792\) 86.6746 3.07985
\(793\) −22.1100 −0.785151
\(794\) −36.3821 −1.29115
\(795\) 0 0
\(796\) 3.57821 0.126826
\(797\) −39.0084 −1.38175 −0.690875 0.722974i \(-0.742774\pi\)
−0.690875 + 0.722974i \(0.742774\pi\)
\(798\) 0 0
\(799\) −17.0867 −0.604484
\(800\) 0 0
\(801\) −49.8557 −1.76156
\(802\) 36.1348 1.27597
\(803\) −16.6994 −0.589309
\(804\) −15.0252 −0.529899
\(805\) 0 0
\(806\) −32.9222 −1.15964
\(807\) 73.1071 2.57349
\(808\) −2.98626 −0.105056
\(809\) 50.7196 1.78321 0.891604 0.452816i \(-0.149581\pi\)
0.891604 + 0.452816i \(0.149581\pi\)
\(810\) 0 0
\(811\) −29.0376 −1.01965 −0.509824 0.860279i \(-0.670289\pi\)
−0.509824 + 0.860279i \(0.670289\pi\)
\(812\) 0.395591 0.0138825
\(813\) −64.9032 −2.27625
\(814\) 20.1513 0.706303
\(815\) 0 0
\(816\) 22.1015 0.773706
\(817\) 0 0
\(818\) −17.8310 −0.623445
\(819\) 16.9923 0.593759
\(820\) 0 0
\(821\) 32.9878 1.15128 0.575640 0.817703i \(-0.304753\pi\)
0.575640 + 0.817703i \(0.304753\pi\)
\(822\) −46.2088 −1.61172
\(823\) 26.5533 0.925591 0.462796 0.886465i \(-0.346846\pi\)
0.462796 + 0.886465i \(0.346846\pi\)
\(824\) −10.2736 −0.357898
\(825\) 0 0
\(826\) 7.42583 0.258378
\(827\) −32.7666 −1.13941 −0.569703 0.821851i \(-0.692942\pi\)
−0.569703 + 0.821851i \(0.692942\pi\)
\(828\) −10.4106 −0.361792
\(829\) −32.4548 −1.12720 −0.563601 0.826047i \(-0.690584\pi\)
−0.563601 + 0.826047i \(0.690584\pi\)
\(830\) 0 0
\(831\) 2.50206 0.0867955
\(832\) 38.9497 1.35034
\(833\) 19.2466 0.666854
\(834\) −38.4979 −1.33307
\(835\) 0 0
\(836\) 0 0
\(837\) 62.3576 2.15539
\(838\) 7.35291 0.254002
\(839\) 35.2098 1.21558 0.607788 0.794099i \(-0.292057\pi\)
0.607788 + 0.794099i \(0.292057\pi\)
\(840\) 0 0
\(841\) −27.7539 −0.957030
\(842\) −32.8010 −1.13040
\(843\) 1.79015 0.0616560
\(844\) 7.38408 0.254171
\(845\) 0 0
\(846\) −44.0502 −1.51448
\(847\) 5.55368 0.190827
\(848\) −21.1059 −0.724779
\(849\) −94.2867 −3.23591
\(850\) 0 0
\(851\) −10.7417 −0.368220
\(852\) 20.5979 0.705674
\(853\) 1.78825 0.0612286 0.0306143 0.999531i \(-0.490254\pi\)
0.0306143 + 0.999531i \(0.490254\pi\)
\(854\) 3.61430 0.123679
\(855\) 0 0
\(856\) 29.2597 1.00008
\(857\) 3.61379 0.123445 0.0617224 0.998093i \(-0.480341\pi\)
0.0617224 + 0.998093i \(0.480341\pi\)
\(858\) −72.2339 −2.46603
\(859\) −25.3648 −0.865437 −0.432719 0.901529i \(-0.642446\pi\)
−0.432719 + 0.901529i \(0.642446\pi\)
\(860\) 0 0
\(861\) 15.4138 0.525301
\(862\) −17.9337 −0.610824
\(863\) −29.9878 −1.02080 −0.510398 0.859939i \(-0.670502\pi\)
−0.510398 + 0.859939i \(0.670502\pi\)
\(864\) −31.7760 −1.08104
\(865\) 0 0
\(866\) 1.15618 0.0392887
\(867\) −26.1145 −0.886895
\(868\) −2.20745 −0.0749257
\(869\) −40.5377 −1.37515
\(870\) 0 0
\(871\) 37.6172 1.27461
\(872\) −17.0443 −0.577194
\(873\) −60.7945 −2.05758
\(874\) 0 0
\(875\) 0 0
\(876\) 6.59999 0.222993
\(877\) 10.6478 0.359550 0.179775 0.983708i \(-0.442463\pi\)
0.179775 + 0.983708i \(0.442463\pi\)
\(878\) −32.6756 −1.10275
\(879\) 11.4656 0.386726
\(880\) 0 0
\(881\) −31.5797 −1.06395 −0.531973 0.846761i \(-0.678549\pi\)
−0.531973 + 0.846761i \(0.678549\pi\)
\(882\) 49.6185 1.67074
\(883\) −17.0174 −0.572682 −0.286341 0.958128i \(-0.592439\pi\)
−0.286341 + 0.958128i \(0.592439\pi\)
\(884\) 7.49589 0.252114
\(885\) 0 0
\(886\) −10.4388 −0.350700
\(887\) −13.2290 −0.444187 −0.222093 0.975025i \(-0.571289\pi\)
−0.222093 + 0.975025i \(0.571289\pi\)
\(888\) −35.3454 −1.18611
\(889\) 1.40445 0.0471036
\(890\) 0 0
\(891\) 52.2461 1.75031
\(892\) −13.1109 −0.438985
\(893\) 0 0
\(894\) −13.6921 −0.457933
\(895\) 0 0
\(896\) −2.49977 −0.0835113
\(897\) 38.5044 1.28562
\(898\) −11.4732 −0.382865
\(899\) −6.95350 −0.231912
\(900\) 0 0
\(901\) −24.5303 −0.817222
\(902\) −44.3536 −1.47681
\(903\) 18.5418 0.617031
\(904\) 4.73903 0.157618
\(905\) 0 0
\(906\) −34.5313 −1.14723
\(907\) −14.8904 −0.494428 −0.247214 0.968961i \(-0.579515\pi\)
−0.247214 + 0.968961i \(0.579515\pi\)
\(908\) −10.5366 −0.349669
\(909\) −6.10464 −0.202478
\(910\) 0 0
\(911\) 49.5480 1.64160 0.820800 0.571216i \(-0.193528\pi\)
0.820800 + 0.571216i \(0.193528\pi\)
\(912\) 0 0
\(913\) 9.51655 0.314952
\(914\) −12.7080 −0.420343
\(915\) 0 0
\(916\) 5.47763 0.180986
\(917\) −7.86939 −0.259870
\(918\) 34.6143 1.14244
\(919\) 27.3835 0.903300 0.451650 0.892195i \(-0.350836\pi\)
0.451650 + 0.892195i \(0.350836\pi\)
\(920\) 0 0
\(921\) 61.9851 2.04248
\(922\) −6.77247 −0.223039
\(923\) −51.5691 −1.69742
\(924\) −4.84331 −0.159333
\(925\) 0 0
\(926\) 42.1046 1.38364
\(927\) −21.0017 −0.689787
\(928\) 3.54334 0.116316
\(929\) 52.1894 1.71228 0.856139 0.516745i \(-0.172857\pi\)
0.856139 + 0.516745i \(0.172857\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 9.13323 0.299169
\(933\) −23.3971 −0.765987
\(934\) −39.1894 −1.28232
\(935\) 0 0
\(936\) 85.7630 2.80325
\(937\) −15.5798 −0.508968 −0.254484 0.967077i \(-0.581906\pi\)
−0.254484 + 0.967077i \(0.581906\pi\)
\(938\) −6.14922 −0.200779
\(939\) −73.1099 −2.38585
\(940\) 0 0
\(941\) 58.6553 1.91211 0.956055 0.293189i \(-0.0947164\pi\)
0.956055 + 0.293189i \(0.0947164\pi\)
\(942\) −12.5431 −0.408675
\(943\) 23.6427 0.769913
\(944\) 25.5704 0.832244
\(945\) 0 0
\(946\) −53.3543 −1.73470
\(947\) −12.3065 −0.399908 −0.199954 0.979805i \(-0.564079\pi\)
−0.199954 + 0.979805i \(0.564079\pi\)
\(948\) 16.0214 0.520352
\(949\) −16.5238 −0.536384
\(950\) 0 0
\(951\) 3.16612 0.102668
\(952\) −5.43807 −0.176249
\(953\) 8.26997 0.267891 0.133945 0.990989i \(-0.457235\pi\)
0.133945 + 0.990989i \(0.457235\pi\)
\(954\) −63.2401 −2.04747
\(955\) 0 0
\(956\) 13.6481 0.441410
\(957\) −15.2565 −0.493173
\(958\) 10.7863 0.348490
\(959\) 7.75696 0.250485
\(960\) 0 0
\(961\) 7.80138 0.251657
\(962\) 19.9394 0.642871
\(963\) 59.8139 1.92748
\(964\) 7.66108 0.246747
\(965\) 0 0
\(966\) −6.29426 −0.202514
\(967\) −14.2247 −0.457436 −0.228718 0.973493i \(-0.573453\pi\)
−0.228718 + 0.973493i \(0.573453\pi\)
\(968\) 28.0304 0.900931
\(969\) 0 0
\(970\) 0 0
\(971\) −9.73861 −0.312527 −0.156263 0.987715i \(-0.549945\pi\)
−0.156263 + 0.987715i \(0.549945\pi\)
\(972\) −3.17814 −0.101939
\(973\) 6.46254 0.207180
\(974\) 19.6745 0.630413
\(975\) 0 0
\(976\) 12.4456 0.398374
\(977\) −6.35308 −0.203253 −0.101627 0.994823i \(-0.532405\pi\)
−0.101627 + 0.994823i \(0.532405\pi\)
\(978\) 24.1425 0.771991
\(979\) −35.5771 −1.13705
\(980\) 0 0
\(981\) −34.8427 −1.11244
\(982\) 1.65685 0.0528723
\(983\) 9.88087 0.315151 0.157575 0.987507i \(-0.449632\pi\)
0.157575 + 0.987507i \(0.449632\pi\)
\(984\) 77.7962 2.48005
\(985\) 0 0
\(986\) −3.85985 −0.122923
\(987\) 10.9241 0.347718
\(988\) 0 0
\(989\) 28.4406 0.904358
\(990\) 0 0
\(991\) −37.3350 −1.18599 −0.592993 0.805208i \(-0.702054\pi\)
−0.592993 + 0.805208i \(0.702054\pi\)
\(992\) −19.7723 −0.627771
\(993\) −93.9491 −2.98138
\(994\) 8.42992 0.267381
\(995\) 0 0
\(996\) −3.76117 −0.119177
\(997\) 43.6948 1.38383 0.691914 0.721980i \(-0.256768\pi\)
0.691914 + 0.721980i \(0.256768\pi\)
\(998\) 19.8466 0.628234
\(999\) −37.7669 −1.19489
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9025.2.a.bp.1.2 4
5.4 even 2 1805.2.a.i.1.3 4
19.8 odd 6 475.2.e.e.26.2 8
19.12 odd 6 475.2.e.e.201.2 8
19.18 odd 2 9025.2.a.bg.1.3 4
95.8 even 12 475.2.j.c.349.3 16
95.12 even 12 475.2.j.c.49.3 16
95.27 even 12 475.2.j.c.349.6 16
95.69 odd 6 95.2.e.c.11.3 8
95.84 odd 6 95.2.e.c.26.3 yes 8
95.88 even 12 475.2.j.c.49.6 16
95.94 odd 2 1805.2.a.o.1.2 4
285.164 even 6 855.2.k.h.676.2 8
285.179 even 6 855.2.k.h.406.2 8
380.179 even 6 1520.2.q.o.881.4 8
380.259 even 6 1520.2.q.o.961.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
95.2.e.c.11.3 8 95.69 odd 6
95.2.e.c.26.3 yes 8 95.84 odd 6
475.2.e.e.26.2 8 19.8 odd 6
475.2.e.e.201.2 8 19.12 odd 6
475.2.j.c.49.3 16 95.12 even 12
475.2.j.c.49.6 16 95.88 even 12
475.2.j.c.349.3 16 95.8 even 12
475.2.j.c.349.6 16 95.27 even 12
855.2.k.h.406.2 8 285.179 even 6
855.2.k.h.676.2 8 285.164 even 6
1520.2.q.o.881.4 8 380.179 even 6
1520.2.q.o.961.4 8 380.259 even 6
1805.2.a.i.1.3 4 5.4 even 2
1805.2.a.o.1.2 4 95.94 odd 2
9025.2.a.bg.1.3 4 19.18 odd 2
9025.2.a.bp.1.2 4 1.1 even 1 trivial