Properties

Label 9025.2.a.bl.1.3
Level $9025$
Weight $2$
Character 9025.1
Self dual yes
Analytic conductor $72.065$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 9025 = 5^{2} \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9025.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(72.0649878242\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{20})^+\)
Defining polynomial: \( x^{4} - 5x^{2} + 5 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1805)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(1.17557\) of defining polynomial
Character \(\chi\) \(=\) 9025.1

$q$-expansion

\(f(q)\) \(=\) \(q+1.17557 q^{2} +1.17557 q^{3} -0.618034 q^{4} +1.38197 q^{6} -0.236068 q^{7} -3.07768 q^{8} -1.61803 q^{9} +O(q^{10})\) \(q+1.17557 q^{2} +1.17557 q^{3} -0.618034 q^{4} +1.38197 q^{6} -0.236068 q^{7} -3.07768 q^{8} -1.61803 q^{9} +0.854102 q^{11} -0.726543 q^{12} +0.726543 q^{13} -0.277515 q^{14} -2.38197 q^{16} -0.763932 q^{17} -1.90211 q^{18} -0.277515 q^{21} +1.00406 q^{22} +7.09017 q^{23} -3.61803 q^{24} +0.854102 q^{26} -5.42882 q^{27} +0.145898 q^{28} +8.78402 q^{29} +1.17557 q^{31} +3.35520 q^{32} +1.00406 q^{33} -0.898056 q^{34} +1.00000 q^{36} -8.78402 q^{37} +0.854102 q^{39} -1.62460 q^{41} -0.326238 q^{42} -2.61803 q^{43} -0.527864 q^{44} +8.33499 q^{46} -7.47214 q^{47} -2.80017 q^{48} -6.94427 q^{49} -0.898056 q^{51} -0.449028 q^{52} +1.00406 q^{53} -6.38197 q^{54} +0.726543 q^{56} +10.3262 q^{58} +11.3067 q^{59} -13.9443 q^{61} +1.38197 q^{62} +0.381966 q^{63} +8.70820 q^{64} +1.18034 q^{66} -11.5842 q^{67} +0.472136 q^{68} +8.33499 q^{69} -13.0373 q^{71} +4.97980 q^{72} +1.00000 q^{73} -10.3262 q^{74} -0.201626 q^{77} +1.00406 q^{78} -8.50651 q^{79} -1.52786 q^{81} -1.90983 q^{82} +13.2361 q^{83} +0.171513 q^{84} -3.07768 q^{86} +10.3262 q^{87} -2.62866 q^{88} -8.33499 q^{89} -0.171513 q^{91} -4.38197 q^{92} +1.38197 q^{93} -8.78402 q^{94} +3.94427 q^{96} +4.25325 q^{97} -8.16348 q^{98} -1.38197 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{4} + 10 q^{6} + 8 q^{7} - 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 2 q^{4} + 10 q^{6} + 8 q^{7} - 2 q^{9} - 10 q^{11} - 14 q^{16} - 12 q^{17} + 6 q^{23} - 10 q^{24} - 10 q^{26} + 14 q^{28} + 4 q^{36} - 10 q^{39} + 30 q^{42} - 6 q^{43} - 20 q^{44} - 12 q^{47} + 8 q^{49} - 30 q^{54} + 10 q^{58} - 20 q^{61} + 10 q^{62} + 6 q^{63} + 8 q^{64} - 40 q^{66} - 16 q^{68} + 4 q^{73} - 10 q^{74} - 50 q^{77} - 24 q^{81} - 30 q^{82} + 44 q^{83} + 10 q^{87} - 22 q^{92} + 10 q^{93} - 20 q^{96} - 10 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.17557 0.831254 0.415627 0.909535i \(-0.363562\pi\)
0.415627 + 0.909535i \(0.363562\pi\)
\(3\) 1.17557 0.678716 0.339358 0.940657i \(-0.389790\pi\)
0.339358 + 0.940657i \(0.389790\pi\)
\(4\) −0.618034 −0.309017
\(5\) 0 0
\(6\) 1.38197 0.564185
\(7\) −0.236068 −0.0892253 −0.0446127 0.999004i \(-0.514205\pi\)
−0.0446127 + 0.999004i \(0.514205\pi\)
\(8\) −3.07768 −1.08813
\(9\) −1.61803 −0.539345
\(10\) 0 0
\(11\) 0.854102 0.257521 0.128761 0.991676i \(-0.458900\pi\)
0.128761 + 0.991676i \(0.458900\pi\)
\(12\) −0.726543 −0.209735
\(13\) 0.726543 0.201507 0.100753 0.994911i \(-0.467875\pi\)
0.100753 + 0.994911i \(0.467875\pi\)
\(14\) −0.277515 −0.0741689
\(15\) 0 0
\(16\) −2.38197 −0.595492
\(17\) −0.763932 −0.185281 −0.0926404 0.995700i \(-0.529531\pi\)
−0.0926404 + 0.995700i \(0.529531\pi\)
\(18\) −1.90211 −0.448332
\(19\) 0 0
\(20\) 0 0
\(21\) −0.277515 −0.0605586
\(22\) 1.00406 0.214066
\(23\) 7.09017 1.47840 0.739201 0.673485i \(-0.235203\pi\)
0.739201 + 0.673485i \(0.235203\pi\)
\(24\) −3.61803 −0.738528
\(25\) 0 0
\(26\) 0.854102 0.167503
\(27\) −5.42882 −1.04478
\(28\) 0.145898 0.0275721
\(29\) 8.78402 1.63115 0.815576 0.578650i \(-0.196420\pi\)
0.815576 + 0.578650i \(0.196420\pi\)
\(30\) 0 0
\(31\) 1.17557 0.211139 0.105569 0.994412i \(-0.466333\pi\)
0.105569 + 0.994412i \(0.466333\pi\)
\(32\) 3.35520 0.593121
\(33\) 1.00406 0.174784
\(34\) −0.898056 −0.154015
\(35\) 0 0
\(36\) 1.00000 0.166667
\(37\) −8.78402 −1.44408 −0.722042 0.691849i \(-0.756796\pi\)
−0.722042 + 0.691849i \(0.756796\pi\)
\(38\) 0 0
\(39\) 0.854102 0.136766
\(40\) 0 0
\(41\) −1.62460 −0.253720 −0.126860 0.991921i \(-0.540490\pi\)
−0.126860 + 0.991921i \(0.540490\pi\)
\(42\) −0.326238 −0.0503396
\(43\) −2.61803 −0.399246 −0.199623 0.979873i \(-0.563972\pi\)
−0.199623 + 0.979873i \(0.563972\pi\)
\(44\) −0.527864 −0.0795785
\(45\) 0 0
\(46\) 8.33499 1.22893
\(47\) −7.47214 −1.08992 −0.544962 0.838461i \(-0.683456\pi\)
−0.544962 + 0.838461i \(0.683456\pi\)
\(48\) −2.80017 −0.404170
\(49\) −6.94427 −0.992039
\(50\) 0 0
\(51\) −0.898056 −0.125753
\(52\) −0.449028 −0.0622690
\(53\) 1.00406 0.137918 0.0689589 0.997620i \(-0.478032\pi\)
0.0689589 + 0.997620i \(0.478032\pi\)
\(54\) −6.38197 −0.868476
\(55\) 0 0
\(56\) 0.726543 0.0970883
\(57\) 0 0
\(58\) 10.3262 1.35590
\(59\) 11.3067 1.47200 0.736002 0.676979i \(-0.236711\pi\)
0.736002 + 0.676979i \(0.236711\pi\)
\(60\) 0 0
\(61\) −13.9443 −1.78538 −0.892691 0.450670i \(-0.851185\pi\)
−0.892691 + 0.450670i \(0.851185\pi\)
\(62\) 1.38197 0.175510
\(63\) 0.381966 0.0481232
\(64\) 8.70820 1.08853
\(65\) 0 0
\(66\) 1.18034 0.145290
\(67\) −11.5842 −1.41523 −0.707617 0.706596i \(-0.750230\pi\)
−0.707617 + 0.706596i \(0.750230\pi\)
\(68\) 0.472136 0.0572549
\(69\) 8.33499 1.00342
\(70\) 0 0
\(71\) −13.0373 −1.54724 −0.773620 0.633650i \(-0.781556\pi\)
−0.773620 + 0.633650i \(0.781556\pi\)
\(72\) 4.97980 0.586875
\(73\) 1.00000 0.117041 0.0585206 0.998286i \(-0.481362\pi\)
0.0585206 + 0.998286i \(0.481362\pi\)
\(74\) −10.3262 −1.20040
\(75\) 0 0
\(76\) 0 0
\(77\) −0.201626 −0.0229774
\(78\) 1.00406 0.113687
\(79\) −8.50651 −0.957057 −0.478528 0.878072i \(-0.658830\pi\)
−0.478528 + 0.878072i \(0.658830\pi\)
\(80\) 0 0
\(81\) −1.52786 −0.169763
\(82\) −1.90983 −0.210905
\(83\) 13.2361 1.45285 0.726424 0.687247i \(-0.241181\pi\)
0.726424 + 0.687247i \(0.241181\pi\)
\(84\) 0.171513 0.0187136
\(85\) 0 0
\(86\) −3.07768 −0.331875
\(87\) 10.3262 1.10709
\(88\) −2.62866 −0.280216
\(89\) −8.33499 −0.883508 −0.441754 0.897136i \(-0.645644\pi\)
−0.441754 + 0.897136i \(0.645644\pi\)
\(90\) 0 0
\(91\) −0.171513 −0.0179795
\(92\) −4.38197 −0.456852
\(93\) 1.38197 0.143303
\(94\) −8.78402 −0.906003
\(95\) 0 0
\(96\) 3.94427 0.402561
\(97\) 4.25325 0.431853 0.215926 0.976410i \(-0.430723\pi\)
0.215926 + 0.976410i \(0.430723\pi\)
\(98\) −8.16348 −0.824636
\(99\) −1.38197 −0.138893
\(100\) 0 0
\(101\) 16.7082 1.66253 0.831264 0.555878i \(-0.187618\pi\)
0.831264 + 0.555878i \(0.187618\pi\)
\(102\) −1.05573 −0.104533
\(103\) 1.34708 0.132732 0.0663661 0.997795i \(-0.478859\pi\)
0.0663661 + 0.997795i \(0.478859\pi\)
\(104\) −2.23607 −0.219265
\(105\) 0 0
\(106\) 1.18034 0.114645
\(107\) 7.77997 0.752118 0.376059 0.926596i \(-0.377279\pi\)
0.376059 + 0.926596i \(0.377279\pi\)
\(108\) 3.35520 0.322854
\(109\) −9.23305 −0.884366 −0.442183 0.896925i \(-0.645796\pi\)
−0.442183 + 0.896925i \(0.645796\pi\)
\(110\) 0 0
\(111\) −10.3262 −0.980123
\(112\) 0.562306 0.0531329
\(113\) 4.35926 0.410084 0.205042 0.978753i \(-0.434267\pi\)
0.205042 + 0.978753i \(0.434267\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −5.42882 −0.504054
\(117\) −1.17557 −0.108682
\(118\) 13.2918 1.22361
\(119\) 0.180340 0.0165317
\(120\) 0 0
\(121\) −10.2705 −0.933683
\(122\) −16.3925 −1.48410
\(123\) −1.90983 −0.172204
\(124\) −0.726543 −0.0652454
\(125\) 0 0
\(126\) 0.449028 0.0400026
\(127\) 2.17963 0.193411 0.0967053 0.995313i \(-0.469170\pi\)
0.0967053 + 0.995313i \(0.469170\pi\)
\(128\) 3.52671 0.311720
\(129\) −3.07768 −0.270975
\(130\) 0 0
\(131\) −13.3820 −1.16919 −0.584594 0.811326i \(-0.698746\pi\)
−0.584594 + 0.811326i \(0.698746\pi\)
\(132\) −0.620541 −0.0540112
\(133\) 0 0
\(134\) −13.6180 −1.17642
\(135\) 0 0
\(136\) 2.35114 0.201609
\(137\) −14.2361 −1.21627 −0.608135 0.793834i \(-0.708082\pi\)
−0.608135 + 0.793834i \(0.708082\pi\)
\(138\) 9.79837 0.834093
\(139\) −10.9098 −0.925360 −0.462680 0.886525i \(-0.653112\pi\)
−0.462680 + 0.886525i \(0.653112\pi\)
\(140\) 0 0
\(141\) −8.78402 −0.739748
\(142\) −15.3262 −1.28615
\(143\) 0.620541 0.0518923
\(144\) 3.85410 0.321175
\(145\) 0 0
\(146\) 1.17557 0.0972909
\(147\) −8.16348 −0.673313
\(148\) 5.42882 0.446247
\(149\) −4.09017 −0.335080 −0.167540 0.985865i \(-0.553582\pi\)
−0.167540 + 0.985865i \(0.553582\pi\)
\(150\) 0 0
\(151\) −18.0171 −1.46621 −0.733104 0.680116i \(-0.761929\pi\)
−0.733104 + 0.680116i \(0.761929\pi\)
\(152\) 0 0
\(153\) 1.23607 0.0999302
\(154\) −0.237026 −0.0191001
\(155\) 0 0
\(156\) −0.527864 −0.0422629
\(157\) −17.2705 −1.37834 −0.689168 0.724601i \(-0.742024\pi\)
−0.689168 + 0.724601i \(0.742024\pi\)
\(158\) −10.0000 −0.795557
\(159\) 1.18034 0.0936070
\(160\) 0 0
\(161\) −1.67376 −0.131911
\(162\) −1.79611 −0.141116
\(163\) 2.81966 0.220853 0.110426 0.993884i \(-0.464778\pi\)
0.110426 + 0.993884i \(0.464778\pi\)
\(164\) 1.00406 0.0784037
\(165\) 0 0
\(166\) 15.5599 1.20768
\(167\) 13.0373 1.00885 0.504427 0.863454i \(-0.331704\pi\)
0.504427 + 0.863454i \(0.331704\pi\)
\(168\) 0.854102 0.0658954
\(169\) −12.4721 −0.959395
\(170\) 0 0
\(171\) 0 0
\(172\) 1.61803 0.123374
\(173\) −12.8658 −0.978166 −0.489083 0.872237i \(-0.662668\pi\)
−0.489083 + 0.872237i \(0.662668\pi\)
\(174\) 12.1392 0.920272
\(175\) 0 0
\(176\) −2.03444 −0.153352
\(177\) 13.2918 0.999073
\(178\) −9.79837 −0.734419
\(179\) −12.1392 −0.907328 −0.453664 0.891173i \(-0.649883\pi\)
−0.453664 + 0.891173i \(0.649883\pi\)
\(180\) 0 0
\(181\) −14.6619 −1.08981 −0.544904 0.838498i \(-0.683434\pi\)
−0.544904 + 0.838498i \(0.683434\pi\)
\(182\) −0.201626 −0.0149455
\(183\) −16.3925 −1.21177
\(184\) −21.8213 −1.60869
\(185\) 0 0
\(186\) 1.62460 0.119121
\(187\) −0.652476 −0.0477138
\(188\) 4.61803 0.336805
\(189\) 1.28157 0.0932206
\(190\) 0 0
\(191\) 13.0000 0.940647 0.470323 0.882494i \(-0.344137\pi\)
0.470323 + 0.882494i \(0.344137\pi\)
\(192\) 10.2371 0.738800
\(193\) −6.15537 −0.443073 −0.221537 0.975152i \(-0.571107\pi\)
−0.221537 + 0.975152i \(0.571107\pi\)
\(194\) 5.00000 0.358979
\(195\) 0 0
\(196\) 4.29180 0.306557
\(197\) 20.8885 1.48825 0.744124 0.668042i \(-0.232867\pi\)
0.744124 + 0.668042i \(0.232867\pi\)
\(198\) −1.62460 −0.115455
\(199\) −13.4164 −0.951064 −0.475532 0.879698i \(-0.657744\pi\)
−0.475532 + 0.879698i \(0.657744\pi\)
\(200\) 0 0
\(201\) −13.6180 −0.960542
\(202\) 19.6417 1.38198
\(203\) −2.07363 −0.145540
\(204\) 0.555029 0.0388598
\(205\) 0 0
\(206\) 1.58359 0.110334
\(207\) −11.4721 −0.797369
\(208\) −1.73060 −0.119995
\(209\) 0 0
\(210\) 0 0
\(211\) −14.2128 −0.978453 −0.489226 0.872157i \(-0.662721\pi\)
−0.489226 + 0.872157i \(0.662721\pi\)
\(212\) −0.620541 −0.0426190
\(213\) −15.3262 −1.05014
\(214\) 9.14590 0.625201
\(215\) 0 0
\(216\) 16.7082 1.13685
\(217\) −0.277515 −0.0188389
\(218\) −10.8541 −0.735133
\(219\) 1.17557 0.0794377
\(220\) 0 0
\(221\) −0.555029 −0.0373353
\(222\) −12.1392 −0.814731
\(223\) −19.7477 −1.32240 −0.661201 0.750209i \(-0.729953\pi\)
−0.661201 + 0.750209i \(0.729953\pi\)
\(224\) −0.792055 −0.0529214
\(225\) 0 0
\(226\) 5.12461 0.340884
\(227\) −18.6376 −1.23702 −0.618511 0.785776i \(-0.712264\pi\)
−0.618511 + 0.785776i \(0.712264\pi\)
\(228\) 0 0
\(229\) −24.8541 −1.64241 −0.821203 0.570637i \(-0.806696\pi\)
−0.821203 + 0.570637i \(0.806696\pi\)
\(230\) 0 0
\(231\) −0.237026 −0.0155951
\(232\) −27.0344 −1.77490
\(233\) −6.23607 −0.408538 −0.204269 0.978915i \(-0.565482\pi\)
−0.204269 + 0.978915i \(0.565482\pi\)
\(234\) −1.38197 −0.0903419
\(235\) 0 0
\(236\) −6.98791 −0.454874
\(237\) −10.0000 −0.649570
\(238\) 0.212002 0.0137421
\(239\) 28.2148 1.82506 0.912531 0.409007i \(-0.134125\pi\)
0.912531 + 0.409007i \(0.134125\pi\)
\(240\) 0 0
\(241\) 14.4904 0.933406 0.466703 0.884414i \(-0.345442\pi\)
0.466703 + 0.884414i \(0.345442\pi\)
\(242\) −12.0737 −0.776127
\(243\) 14.4904 0.929557
\(244\) 8.61803 0.551713
\(245\) 0 0
\(246\) −2.24514 −0.143145
\(247\) 0 0
\(248\) −3.61803 −0.229745
\(249\) 15.5599 0.986071
\(250\) 0 0
\(251\) −3.00000 −0.189358 −0.0946792 0.995508i \(-0.530183\pi\)
−0.0946792 + 0.995508i \(0.530183\pi\)
\(252\) −0.236068 −0.0148709
\(253\) 6.05573 0.380720
\(254\) 2.56231 0.160773
\(255\) 0 0
\(256\) −13.2705 −0.829407
\(257\) −13.7638 −0.858563 −0.429282 0.903171i \(-0.641233\pi\)
−0.429282 + 0.903171i \(0.641233\pi\)
\(258\) −3.61803 −0.225249
\(259\) 2.07363 0.128849
\(260\) 0 0
\(261\) −14.2128 −0.879753
\(262\) −15.7314 −0.971892
\(263\) 6.00000 0.369976 0.184988 0.982741i \(-0.440775\pi\)
0.184988 + 0.982741i \(0.440775\pi\)
\(264\) −3.09017 −0.190187
\(265\) 0 0
\(266\) 0 0
\(267\) −9.79837 −0.599651
\(268\) 7.15942 0.437331
\(269\) −6.26137 −0.381762 −0.190881 0.981613i \(-0.561135\pi\)
−0.190881 + 0.981613i \(0.561135\pi\)
\(270\) 0 0
\(271\) 6.38197 0.387677 0.193838 0.981033i \(-0.437906\pi\)
0.193838 + 0.981033i \(0.437906\pi\)
\(272\) 1.81966 0.110333
\(273\) −0.201626 −0.0122030
\(274\) −16.7355 −1.01103
\(275\) 0 0
\(276\) −5.15131 −0.310072
\(277\) 28.8328 1.73240 0.866198 0.499701i \(-0.166557\pi\)
0.866198 + 0.499701i \(0.166557\pi\)
\(278\) −12.8253 −0.769209
\(279\) −1.90211 −0.113877
\(280\) 0 0
\(281\) 10.7921 0.643805 0.321902 0.946773i \(-0.395678\pi\)
0.321902 + 0.946773i \(0.395678\pi\)
\(282\) −10.3262 −0.614919
\(283\) −5.27051 −0.313299 −0.156650 0.987654i \(-0.550069\pi\)
−0.156650 + 0.987654i \(0.550069\pi\)
\(284\) 8.05748 0.478123
\(285\) 0 0
\(286\) 0.729490 0.0431357
\(287\) 0.383516 0.0226382
\(288\) −5.42882 −0.319897
\(289\) −16.4164 −0.965671
\(290\) 0 0
\(291\) 5.00000 0.293105
\(292\) −0.618034 −0.0361677
\(293\) 30.8828 1.80419 0.902097 0.431533i \(-0.142027\pi\)
0.902097 + 0.431533i \(0.142027\pi\)
\(294\) −9.59675 −0.559694
\(295\) 0 0
\(296\) 27.0344 1.57135
\(297\) −4.63677 −0.269053
\(298\) −4.80828 −0.278536
\(299\) 5.15131 0.297908
\(300\) 0 0
\(301\) 0.618034 0.0356229
\(302\) −21.1803 −1.21879
\(303\) 19.6417 1.12838
\(304\) 0 0
\(305\) 0 0
\(306\) 1.45309 0.0830673
\(307\) 25.4540 1.45274 0.726369 0.687305i \(-0.241207\pi\)
0.726369 + 0.687305i \(0.241207\pi\)
\(308\) 0.124612 0.00710042
\(309\) 1.58359 0.0900874
\(310\) 0 0
\(311\) −7.23607 −0.410320 −0.205160 0.978728i \(-0.565771\pi\)
−0.205160 + 0.978728i \(0.565771\pi\)
\(312\) −2.62866 −0.148818
\(313\) 30.2705 1.71099 0.855495 0.517811i \(-0.173253\pi\)
0.855495 + 0.517811i \(0.173253\pi\)
\(314\) −20.3027 −1.14575
\(315\) 0 0
\(316\) 5.25731 0.295747
\(317\) −26.6296 −1.49567 −0.747833 0.663887i \(-0.768906\pi\)
−0.747833 + 0.663887i \(0.768906\pi\)
\(318\) 1.38757 0.0778112
\(319\) 7.50245 0.420057
\(320\) 0 0
\(321\) 9.14590 0.510474
\(322\) −1.96763 −0.109651
\(323\) 0 0
\(324\) 0.944272 0.0524596
\(325\) 0 0
\(326\) 3.31471 0.183585
\(327\) −10.8541 −0.600233
\(328\) 5.00000 0.276079
\(329\) 1.76393 0.0972487
\(330\) 0 0
\(331\) −1.79611 −0.0987232 −0.0493616 0.998781i \(-0.515719\pi\)
−0.0493616 + 0.998781i \(0.515719\pi\)
\(332\) −8.18034 −0.448954
\(333\) 14.2128 0.778859
\(334\) 15.3262 0.838614
\(335\) 0 0
\(336\) 0.661030 0.0360622
\(337\) 3.46120 0.188544 0.0942718 0.995547i \(-0.469948\pi\)
0.0942718 + 0.995547i \(0.469948\pi\)
\(338\) −14.6619 −0.797501
\(339\) 5.12461 0.278331
\(340\) 0 0
\(341\) 1.00406 0.0543727
\(342\) 0 0
\(343\) 3.29180 0.177740
\(344\) 8.05748 0.434430
\(345\) 0 0
\(346\) −15.1246 −0.813104
\(347\) −7.52786 −0.404117 −0.202058 0.979373i \(-0.564763\pi\)
−0.202058 + 0.979373i \(0.564763\pi\)
\(348\) −6.38197 −0.342109
\(349\) 17.5623 0.940089 0.470044 0.882643i \(-0.344238\pi\)
0.470044 + 0.882643i \(0.344238\pi\)
\(350\) 0 0
\(351\) −3.94427 −0.210530
\(352\) 2.86568 0.152741
\(353\) −19.3262 −1.02863 −0.514316 0.857601i \(-0.671954\pi\)
−0.514316 + 0.857601i \(0.671954\pi\)
\(354\) 15.6254 0.830483
\(355\) 0 0
\(356\) 5.15131 0.273019
\(357\) 0.212002 0.0112203
\(358\) −14.2705 −0.754220
\(359\) 9.61803 0.507620 0.253810 0.967254i \(-0.418316\pi\)
0.253810 + 0.967254i \(0.418316\pi\)
\(360\) 0 0
\(361\) 0 0
\(362\) −17.2361 −0.905908
\(363\) −12.0737 −0.633705
\(364\) 0.106001 0.00555597
\(365\) 0 0
\(366\) −19.2705 −1.00729
\(367\) 27.0689 1.41298 0.706492 0.707721i \(-0.250277\pi\)
0.706492 + 0.707721i \(0.250277\pi\)
\(368\) −16.8885 −0.880376
\(369\) 2.62866 0.136842
\(370\) 0 0
\(371\) −0.237026 −0.0123058
\(372\) −0.854102 −0.0442831
\(373\) 4.53077 0.234594 0.117297 0.993097i \(-0.462577\pi\)
0.117297 + 0.993097i \(0.462577\pi\)
\(374\) −0.767031 −0.0396622
\(375\) 0 0
\(376\) 22.9969 1.18597
\(377\) 6.38197 0.328688
\(378\) 1.50658 0.0774900
\(379\) −13.2088 −0.678490 −0.339245 0.940698i \(-0.610172\pi\)
−0.339245 + 0.940698i \(0.610172\pi\)
\(380\) 0 0
\(381\) 2.56231 0.131271
\(382\) 15.2824 0.781916
\(383\) −2.62866 −0.134318 −0.0671590 0.997742i \(-0.521393\pi\)
−0.0671590 + 0.997742i \(0.521393\pi\)
\(384\) 4.14590 0.211569
\(385\) 0 0
\(386\) −7.23607 −0.368306
\(387\) 4.23607 0.215331
\(388\) −2.62866 −0.133450
\(389\) −14.1459 −0.717226 −0.358613 0.933486i \(-0.616750\pi\)
−0.358613 + 0.933486i \(0.616750\pi\)
\(390\) 0 0
\(391\) −5.41641 −0.273920
\(392\) 21.3723 1.07946
\(393\) −15.7314 −0.793546
\(394\) 24.5560 1.23711
\(395\) 0 0
\(396\) 0.854102 0.0429202
\(397\) −29.8328 −1.49727 −0.748633 0.662985i \(-0.769289\pi\)
−0.748633 + 0.662985i \(0.769289\pi\)
\(398\) −15.7719 −0.790576
\(399\) 0 0
\(400\) 0 0
\(401\) 10.8576 0.542205 0.271103 0.962550i \(-0.412612\pi\)
0.271103 + 0.962550i \(0.412612\pi\)
\(402\) −16.0090 −0.798454
\(403\) 0.854102 0.0425458
\(404\) −10.3262 −0.513750
\(405\) 0 0
\(406\) −2.43769 −0.120981
\(407\) −7.50245 −0.371883
\(408\) 2.76393 0.136835
\(409\) −18.1231 −0.896128 −0.448064 0.894001i \(-0.647886\pi\)
−0.448064 + 0.894001i \(0.647886\pi\)
\(410\) 0 0
\(411\) −16.7355 −0.825501
\(412\) −0.832544 −0.0410165
\(413\) −2.66914 −0.131340
\(414\) −13.4863 −0.662816
\(415\) 0 0
\(416\) 2.43769 0.119518
\(417\) −12.8253 −0.628056
\(418\) 0 0
\(419\) 3.81966 0.186603 0.0933013 0.995638i \(-0.470258\pi\)
0.0933013 + 0.995638i \(0.470258\pi\)
\(420\) 0 0
\(421\) 5.98385 0.291635 0.145818 0.989311i \(-0.453419\pi\)
0.145818 + 0.989311i \(0.453419\pi\)
\(422\) −16.7082 −0.813343
\(423\) 12.0902 0.587844
\(424\) −3.09017 −0.150072
\(425\) 0 0
\(426\) −18.0171 −0.872930
\(427\) 3.29180 0.159301
\(428\) −4.80828 −0.232417
\(429\) 0.729490 0.0352201
\(430\) 0 0
\(431\) 1.62460 0.0782542 0.0391271 0.999234i \(-0.487542\pi\)
0.0391271 + 0.999234i \(0.487542\pi\)
\(432\) 12.9313 0.622156
\(433\) −22.5478 −1.08358 −0.541790 0.840514i \(-0.682253\pi\)
−0.541790 + 0.840514i \(0.682253\pi\)
\(434\) −0.326238 −0.0156599
\(435\) 0 0
\(436\) 5.70634 0.273284
\(437\) 0 0
\(438\) 1.38197 0.0660329
\(439\) 37.6587 1.79735 0.898677 0.438611i \(-0.144529\pi\)
0.898677 + 0.438611i \(0.144529\pi\)
\(440\) 0 0
\(441\) 11.2361 0.535051
\(442\) −0.652476 −0.0310351
\(443\) 36.7771 1.74733 0.873666 0.486526i \(-0.161736\pi\)
0.873666 + 0.486526i \(0.161736\pi\)
\(444\) 6.38197 0.302875
\(445\) 0 0
\(446\) −23.2148 −1.09925
\(447\) −4.80828 −0.227424
\(448\) −2.05573 −0.0971240
\(449\) 37.6587 1.77723 0.888613 0.458658i \(-0.151670\pi\)
0.888613 + 0.458658i \(0.151670\pi\)
\(450\) 0 0
\(451\) −1.38757 −0.0653382
\(452\) −2.69417 −0.126723
\(453\) −21.1803 −0.995139
\(454\) −21.9098 −1.02828
\(455\) 0 0
\(456\) 0 0
\(457\) −0.763932 −0.0357352 −0.0178676 0.999840i \(-0.505688\pi\)
−0.0178676 + 0.999840i \(0.505688\pi\)
\(458\) −29.2177 −1.36526
\(459\) 4.14725 0.193577
\(460\) 0 0
\(461\) −8.00000 −0.372597 −0.186299 0.982493i \(-0.559649\pi\)
−0.186299 + 0.982493i \(0.559649\pi\)
\(462\) −0.278640 −0.0129635
\(463\) −6.85410 −0.318537 −0.159269 0.987235i \(-0.550914\pi\)
−0.159269 + 0.987235i \(0.550914\pi\)
\(464\) −20.9232 −0.971337
\(465\) 0 0
\(466\) −7.33094 −0.339599
\(467\) −13.1803 −0.609913 −0.304957 0.952366i \(-0.598642\pi\)
−0.304957 + 0.952366i \(0.598642\pi\)
\(468\) 0.726543 0.0335844
\(469\) 2.73466 0.126275
\(470\) 0 0
\(471\) −20.3027 −0.935499
\(472\) −34.7984 −1.60172
\(473\) −2.23607 −0.102815
\(474\) −11.7557 −0.539957
\(475\) 0 0
\(476\) −0.111456 −0.00510859
\(477\) −1.62460 −0.0743853
\(478\) 33.1685 1.51709
\(479\) −31.5623 −1.44212 −0.721059 0.692873i \(-0.756344\pi\)
−0.721059 + 0.692873i \(0.756344\pi\)
\(480\) 0 0
\(481\) −6.38197 −0.290993
\(482\) 17.0344 0.775898
\(483\) −1.96763 −0.0895301
\(484\) 6.34752 0.288524
\(485\) 0 0
\(486\) 17.0344 0.772698
\(487\) 34.0260 1.54187 0.770933 0.636916i \(-0.219790\pi\)
0.770933 + 0.636916i \(0.219790\pi\)
\(488\) 42.9161 1.94272
\(489\) 3.31471 0.149896
\(490\) 0 0
\(491\) 3.72949 0.168310 0.0841548 0.996453i \(-0.473181\pi\)
0.0841548 + 0.996453i \(0.473181\pi\)
\(492\) 1.18034 0.0532138
\(493\) −6.71040 −0.302221
\(494\) 0 0
\(495\) 0 0
\(496\) −2.80017 −0.125731
\(497\) 3.07768 0.138053
\(498\) 18.2918 0.819675
\(499\) −38.4721 −1.72225 −0.861125 0.508394i \(-0.830239\pi\)
−0.861125 + 0.508394i \(0.830239\pi\)
\(500\) 0 0
\(501\) 15.3262 0.684726
\(502\) −3.52671 −0.157405
\(503\) −0.347524 −0.0154953 −0.00774767 0.999970i \(-0.502466\pi\)
−0.00774767 + 0.999970i \(0.502466\pi\)
\(504\) −1.17557 −0.0523641
\(505\) 0 0
\(506\) 7.11894 0.316475
\(507\) −14.6619 −0.651157
\(508\) −1.34708 −0.0597672
\(509\) 10.7516 0.476558 0.238279 0.971197i \(-0.423417\pi\)
0.238279 + 0.971197i \(0.423417\pi\)
\(510\) 0 0
\(511\) −0.236068 −0.0104430
\(512\) −22.6538 −1.00117
\(513\) 0 0
\(514\) −16.1803 −0.713684
\(515\) 0 0
\(516\) 1.90211 0.0837359
\(517\) −6.38197 −0.280679
\(518\) 2.43769 0.107106
\(519\) −15.1246 −0.663897
\(520\) 0 0
\(521\) 6.08985 0.266801 0.133401 0.991062i \(-0.457410\pi\)
0.133401 + 0.991062i \(0.457410\pi\)
\(522\) −16.7082 −0.731298
\(523\) 27.6992 1.21120 0.605600 0.795769i \(-0.292933\pi\)
0.605600 + 0.795769i \(0.292933\pi\)
\(524\) 8.27051 0.361299
\(525\) 0 0
\(526\) 7.05342 0.307544
\(527\) −0.898056 −0.0391199
\(528\) −2.39163 −0.104082
\(529\) 27.2705 1.18567
\(530\) 0 0
\(531\) −18.2946 −0.793917
\(532\) 0 0
\(533\) −1.18034 −0.0511262
\(534\) −11.5187 −0.498462
\(535\) 0 0
\(536\) 35.6525 1.53995
\(537\) −14.2705 −0.615818
\(538\) −7.36068 −0.317341
\(539\) −5.93112 −0.255471
\(540\) 0 0
\(541\) 24.5967 1.05750 0.528748 0.848779i \(-0.322662\pi\)
0.528748 + 0.848779i \(0.322662\pi\)
\(542\) 7.50245 0.322258
\(543\) −17.2361 −0.739670
\(544\) −2.56314 −0.109894
\(545\) 0 0
\(546\) −0.237026 −0.0101438
\(547\) −13.1433 −0.561966 −0.280983 0.959713i \(-0.590660\pi\)
−0.280983 + 0.959713i \(0.590660\pi\)
\(548\) 8.79837 0.375848
\(549\) 22.5623 0.962936
\(550\) 0 0
\(551\) 0 0
\(552\) −25.6525 −1.09184
\(553\) 2.00811 0.0853937
\(554\) 33.8950 1.44006
\(555\) 0 0
\(556\) 6.74265 0.285952
\(557\) −27.0689 −1.14695 −0.573473 0.819225i \(-0.694404\pi\)
−0.573473 + 0.819225i \(0.694404\pi\)
\(558\) −2.23607 −0.0946603
\(559\) −1.90211 −0.0804508
\(560\) 0 0
\(561\) −0.767031 −0.0323841
\(562\) 12.6869 0.535165
\(563\) 18.4661 0.778253 0.389127 0.921184i \(-0.372777\pi\)
0.389127 + 0.921184i \(0.372777\pi\)
\(564\) 5.42882 0.228595
\(565\) 0 0
\(566\) −6.19586 −0.260431
\(567\) 0.360680 0.0151471
\(568\) 40.1246 1.68359
\(569\) 7.71445 0.323407 0.161703 0.986839i \(-0.448301\pi\)
0.161703 + 0.986839i \(0.448301\pi\)
\(570\) 0 0
\(571\) −19.1459 −0.801231 −0.400615 0.916246i \(-0.631204\pi\)
−0.400615 + 0.916246i \(0.631204\pi\)
\(572\) −0.383516 −0.0160356
\(573\) 15.2824 0.638432
\(574\) 0.450850 0.0188181
\(575\) 0 0
\(576\) −14.0902 −0.587090
\(577\) −17.4721 −0.727375 −0.363687 0.931521i \(-0.618482\pi\)
−0.363687 + 0.931521i \(0.618482\pi\)
\(578\) −19.2986 −0.802718
\(579\) −7.23607 −0.300721
\(580\) 0 0
\(581\) −3.12461 −0.129631
\(582\) 5.87785 0.243645
\(583\) 0.857567 0.0355168
\(584\) −3.07768 −0.127355
\(585\) 0 0
\(586\) 36.3050 1.49974
\(587\) −9.58359 −0.395557 −0.197779 0.980247i \(-0.563373\pi\)
−0.197779 + 0.980247i \(0.563373\pi\)
\(588\) 5.04531 0.208065
\(589\) 0 0
\(590\) 0 0
\(591\) 24.5560 1.01010
\(592\) 20.9232 0.859940
\(593\) −7.29180 −0.299438 −0.149719 0.988729i \(-0.547837\pi\)
−0.149719 + 0.988729i \(0.547837\pi\)
\(594\) −5.45085 −0.223651
\(595\) 0 0
\(596\) 2.52786 0.103545
\(597\) −15.7719 −0.645502
\(598\) 6.05573 0.247637
\(599\) 10.3431 0.422608 0.211304 0.977420i \(-0.432229\pi\)
0.211304 + 0.977420i \(0.432229\pi\)
\(600\) 0 0
\(601\) 17.0130 0.693975 0.346988 0.937870i \(-0.387205\pi\)
0.346988 + 0.937870i \(0.387205\pi\)
\(602\) 0.726543 0.0296117
\(603\) 18.7436 0.763299
\(604\) 11.1352 0.453083
\(605\) 0 0
\(606\) 23.0902 0.937974
\(607\) 20.5397 0.833682 0.416841 0.908979i \(-0.363137\pi\)
0.416841 + 0.908979i \(0.363137\pi\)
\(608\) 0 0
\(609\) −2.43769 −0.0987803
\(610\) 0 0
\(611\) −5.42882 −0.219627
\(612\) −0.763932 −0.0308801
\(613\) −35.4721 −1.43271 −0.716353 0.697738i \(-0.754190\pi\)
−0.716353 + 0.697738i \(0.754190\pi\)
\(614\) 29.9230 1.20759
\(615\) 0 0
\(616\) 0.620541 0.0250023
\(617\) −19.3820 −0.780289 −0.390144 0.920754i \(-0.627575\pi\)
−0.390144 + 0.920754i \(0.627575\pi\)
\(618\) 1.86162 0.0748855
\(619\) −27.5410 −1.10697 −0.553484 0.832860i \(-0.686702\pi\)
−0.553484 + 0.832860i \(0.686702\pi\)
\(620\) 0 0
\(621\) −38.4913 −1.54460
\(622\) −8.50651 −0.341080
\(623\) 1.96763 0.0788312
\(624\) −2.03444 −0.0814429
\(625\) 0 0
\(626\) 35.5851 1.42227
\(627\) 0 0
\(628\) 10.6738 0.425929
\(629\) 6.71040 0.267561
\(630\) 0 0
\(631\) −18.8197 −0.749199 −0.374599 0.927187i \(-0.622220\pi\)
−0.374599 + 0.927187i \(0.622220\pi\)
\(632\) 26.1803 1.04140
\(633\) −16.7082 −0.664091
\(634\) −31.3050 −1.24328
\(635\) 0 0
\(636\) −0.729490 −0.0289262
\(637\) −5.04531 −0.199902
\(638\) 8.81966 0.349174
\(639\) 21.0948 0.834496
\(640\) 0 0
\(641\) −38.4508 −1.51872 −0.759358 0.650673i \(-0.774487\pi\)
−0.759358 + 0.650673i \(0.774487\pi\)
\(642\) 10.7516 0.424334
\(643\) 29.5279 1.16447 0.582233 0.813022i \(-0.302179\pi\)
0.582233 + 0.813022i \(0.302179\pi\)
\(644\) 1.03444 0.0407627
\(645\) 0 0
\(646\) 0 0
\(647\) −17.4721 −0.686901 −0.343450 0.939171i \(-0.611596\pi\)
−0.343450 + 0.939171i \(0.611596\pi\)
\(648\) 4.70228 0.184723
\(649\) 9.65706 0.379073
\(650\) 0 0
\(651\) −0.326238 −0.0127863
\(652\) −1.74265 −0.0682473
\(653\) −10.7984 −0.422573 −0.211287 0.977424i \(-0.567765\pi\)
−0.211287 + 0.977424i \(0.567765\pi\)
\(654\) −12.7598 −0.498946
\(655\) 0 0
\(656\) 3.86974 0.151088
\(657\) −1.61803 −0.0631255
\(658\) 2.07363 0.0808384
\(659\) 30.7768 1.19890 0.599448 0.800414i \(-0.295387\pi\)
0.599448 + 0.800414i \(0.295387\pi\)
\(660\) 0 0
\(661\) 13.4208 0.522008 0.261004 0.965338i \(-0.415946\pi\)
0.261004 + 0.965338i \(0.415946\pi\)
\(662\) −2.11146 −0.0820641
\(663\) −0.652476 −0.0253401
\(664\) −40.7364 −1.58088
\(665\) 0 0
\(666\) 16.7082 0.647430
\(667\) 62.2802 2.41150
\(668\) −8.05748 −0.311753
\(669\) −23.2148 −0.897535
\(670\) 0 0
\(671\) −11.9098 −0.459774
\(672\) −0.931116 −0.0359186
\(673\) 34.9646 1.34779 0.673893 0.738829i \(-0.264621\pi\)
0.673893 + 0.738829i \(0.264621\pi\)
\(674\) 4.06888 0.156728
\(675\) 0 0
\(676\) 7.70820 0.296469
\(677\) 16.0494 0.616830 0.308415 0.951252i \(-0.400201\pi\)
0.308415 + 0.951252i \(0.400201\pi\)
\(678\) 6.02434 0.231363
\(679\) −1.00406 −0.0385322
\(680\) 0 0
\(681\) −21.9098 −0.839587
\(682\) 1.18034 0.0451976
\(683\) 32.6134 1.24792 0.623959 0.781457i \(-0.285523\pi\)
0.623959 + 0.781457i \(0.285523\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 3.86974 0.147747
\(687\) −29.2177 −1.11473
\(688\) 6.23607 0.237748
\(689\) 0.729490 0.0277914
\(690\) 0 0
\(691\) −7.76393 −0.295354 −0.147677 0.989036i \(-0.547180\pi\)
−0.147677 + 0.989036i \(0.547180\pi\)
\(692\) 7.95148 0.302270
\(693\) 0.326238 0.0123928
\(694\) −8.84953 −0.335924
\(695\) 0 0
\(696\) −31.7809 −1.20465
\(697\) 1.24108 0.0470094
\(698\) 20.6457 0.781452
\(699\) −7.33094 −0.277282
\(700\) 0 0
\(701\) −43.0902 −1.62749 −0.813747 0.581220i \(-0.802576\pi\)
−0.813747 + 0.581220i \(0.802576\pi\)
\(702\) −4.63677 −0.175004
\(703\) 0 0
\(704\) 7.43769 0.280319
\(705\) 0 0
\(706\) −22.7194 −0.855054
\(707\) −3.94427 −0.148340
\(708\) −8.21478 −0.308730
\(709\) 13.8197 0.519008 0.259504 0.965742i \(-0.416441\pi\)
0.259504 + 0.965742i \(0.416441\pi\)
\(710\) 0 0
\(711\) 13.7638 0.516184
\(712\) 25.6525 0.961367
\(713\) 8.33499 0.312148
\(714\) 0.249224 0.00932696
\(715\) 0 0
\(716\) 7.50245 0.280380
\(717\) 33.1685 1.23870
\(718\) 11.3067 0.421961
\(719\) −42.0902 −1.56970 −0.784849 0.619687i \(-0.787260\pi\)
−0.784849 + 0.619687i \(0.787260\pi\)
\(720\) 0 0
\(721\) −0.318003 −0.0118431
\(722\) 0 0
\(723\) 17.0344 0.633518
\(724\) 9.06154 0.336769
\(725\) 0 0
\(726\) −14.1935 −0.526770
\(727\) 10.3607 0.384256 0.192128 0.981370i \(-0.438461\pi\)
0.192128 + 0.981370i \(0.438461\pi\)
\(728\) 0.527864 0.0195639
\(729\) 21.6180 0.800668
\(730\) 0 0
\(731\) 2.00000 0.0739727
\(732\) 10.1311 0.374456
\(733\) 11.0000 0.406294 0.203147 0.979148i \(-0.434883\pi\)
0.203147 + 0.979148i \(0.434883\pi\)
\(734\) 31.8214 1.17455
\(735\) 0 0
\(736\) 23.7889 0.876871
\(737\) −9.89408 −0.364453
\(738\) 3.09017 0.113751
\(739\) −32.2361 −1.18582 −0.592911 0.805268i \(-0.702022\pi\)
−0.592911 + 0.805268i \(0.702022\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −0.278640 −0.0102292
\(743\) 11.5842 0.424983 0.212491 0.977163i \(-0.431842\pi\)
0.212491 + 0.977163i \(0.431842\pi\)
\(744\) −4.25325 −0.155932
\(745\) 0 0
\(746\) 5.32624 0.195007
\(747\) −21.4164 −0.783585
\(748\) 0.403252 0.0147444
\(749\) −1.83660 −0.0671079
\(750\) 0 0
\(751\) 41.7000 1.52165 0.760827 0.648954i \(-0.224793\pi\)
0.760827 + 0.648954i \(0.224793\pi\)
\(752\) 17.7984 0.649040
\(753\) −3.52671 −0.128521
\(754\) 7.50245 0.273223
\(755\) 0 0
\(756\) −0.792055 −0.0288068
\(757\) 43.9787 1.59843 0.799217 0.601043i \(-0.205248\pi\)
0.799217 + 0.601043i \(0.205248\pi\)
\(758\) −15.5279 −0.563997
\(759\) 7.11894 0.258401
\(760\) 0 0
\(761\) −41.1803 −1.49279 −0.746393 0.665505i \(-0.768216\pi\)
−0.746393 + 0.665505i \(0.768216\pi\)
\(762\) 3.01217 0.109119
\(763\) 2.17963 0.0789078
\(764\) −8.03444 −0.290676
\(765\) 0 0
\(766\) −3.09017 −0.111652
\(767\) 8.21478 0.296619
\(768\) −15.6004 −0.562932
\(769\) 20.2705 0.730973 0.365487 0.930817i \(-0.380903\pi\)
0.365487 + 0.930817i \(0.380903\pi\)
\(770\) 0 0
\(771\) −16.1803 −0.582721
\(772\) 3.80423 0.136917
\(773\) 6.94742 0.249881 0.124941 0.992164i \(-0.460126\pi\)
0.124941 + 0.992164i \(0.460126\pi\)
\(774\) 4.97980 0.178995
\(775\) 0 0
\(776\) −13.0902 −0.469910
\(777\) 2.43769 0.0874518
\(778\) −16.6295 −0.596196
\(779\) 0 0
\(780\) 0 0
\(781\) −11.1352 −0.398447
\(782\) −6.36737 −0.227697
\(783\) −47.6869 −1.70419
\(784\) 16.5410 0.590751
\(785\) 0 0
\(786\) −18.4934 −0.659639
\(787\) −43.9856 −1.56792 −0.783959 0.620812i \(-0.786803\pi\)
−0.783959 + 0.620812i \(0.786803\pi\)
\(788\) −12.9098 −0.459894
\(789\) 7.05342 0.251109
\(790\) 0 0
\(791\) −1.02908 −0.0365899
\(792\) 4.25325 0.151133
\(793\) −10.1311 −0.359766
\(794\) −35.0706 −1.24461
\(795\) 0 0
\(796\) 8.29180 0.293895
\(797\) 4.14725 0.146903 0.0734516 0.997299i \(-0.476599\pi\)
0.0734516 + 0.997299i \(0.476599\pi\)
\(798\) 0 0
\(799\) 5.70820 0.201942
\(800\) 0 0
\(801\) 13.4863 0.476515
\(802\) 12.7639 0.450710
\(803\) 0.854102 0.0301406
\(804\) 8.41641 0.296824
\(805\) 0 0
\(806\) 1.00406 0.0353664
\(807\) −7.36068 −0.259108
\(808\) −51.4226 −1.80904
\(809\) −1.78522 −0.0627649 −0.0313825 0.999507i \(-0.509991\pi\)
−0.0313825 + 0.999507i \(0.509991\pi\)
\(810\) 0 0
\(811\) −21.2663 −0.746760 −0.373380 0.927679i \(-0.621801\pi\)
−0.373380 + 0.927679i \(0.621801\pi\)
\(812\) 1.28157 0.0449743
\(813\) 7.50245 0.263122
\(814\) −8.81966 −0.309129
\(815\) 0 0
\(816\) 2.13914 0.0748848
\(817\) 0 0
\(818\) −21.3050 −0.744910
\(819\) 0.277515 0.00969714
\(820\) 0 0
\(821\) 28.4508 0.992942 0.496471 0.868053i \(-0.334629\pi\)
0.496471 + 0.868053i \(0.334629\pi\)
\(822\) −19.6738 −0.686201
\(823\) 21.2361 0.740243 0.370121 0.928983i \(-0.379316\pi\)
0.370121 + 0.928983i \(0.379316\pi\)
\(824\) −4.14590 −0.144429
\(825\) 0 0
\(826\) −3.13777 −0.109177
\(827\) −2.17963 −0.0757931 −0.0378965 0.999282i \(-0.512066\pi\)
−0.0378965 + 0.999282i \(0.512066\pi\)
\(828\) 7.09017 0.246400
\(829\) −20.7517 −0.720737 −0.360369 0.932810i \(-0.617349\pi\)
−0.360369 + 0.932810i \(0.617349\pi\)
\(830\) 0 0
\(831\) 33.8950 1.17580
\(832\) 6.32688 0.219345
\(833\) 5.30495 0.183806
\(834\) −15.0770 −0.522074
\(835\) 0 0
\(836\) 0 0
\(837\) −6.38197 −0.220593
\(838\) 4.49028 0.155114
\(839\) −10.4086 −0.359346 −0.179673 0.983726i \(-0.557504\pi\)
−0.179673 + 0.983726i \(0.557504\pi\)
\(840\) 0 0
\(841\) 48.1591 1.66066
\(842\) 7.03444 0.242423
\(843\) 12.6869 0.436961
\(844\) 8.78402 0.302359
\(845\) 0 0
\(846\) 14.2128 0.488648
\(847\) 2.42454 0.0833081
\(848\) −2.39163 −0.0821289
\(849\) −6.19586 −0.212641
\(850\) 0 0
\(851\) −62.2802 −2.13494
\(852\) 9.47214 0.324510
\(853\) 6.52786 0.223510 0.111755 0.993736i \(-0.464353\pi\)
0.111755 + 0.993736i \(0.464353\pi\)
\(854\) 3.86974 0.132420
\(855\) 0 0
\(856\) −23.9443 −0.818398
\(857\) 35.5851 1.21556 0.607782 0.794104i \(-0.292059\pi\)
0.607782 + 0.794104i \(0.292059\pi\)
\(858\) 0.857567 0.0292769
\(859\) −27.2361 −0.929283 −0.464641 0.885499i \(-0.653817\pi\)
−0.464641 + 0.885499i \(0.653817\pi\)
\(860\) 0 0
\(861\) 0.450850 0.0153649
\(862\) 1.90983 0.0650491
\(863\) 24.8335 0.845341 0.422671 0.906283i \(-0.361093\pi\)
0.422671 + 0.906283i \(0.361093\pi\)
\(864\) −18.2148 −0.619679
\(865\) 0 0
\(866\) −26.5066 −0.900730
\(867\) −19.2986 −0.655416
\(868\) 0.171513 0.00582154
\(869\) −7.26543 −0.246463
\(870\) 0 0
\(871\) −8.41641 −0.285179
\(872\) 28.4164 0.962301
\(873\) −6.88191 −0.232917
\(874\) 0 0
\(875\) 0 0
\(876\) −0.726543 −0.0245476
\(877\) 23.1684 0.782341 0.391170 0.920318i \(-0.372070\pi\)
0.391170 + 0.920318i \(0.372070\pi\)
\(878\) 44.2705 1.49406
\(879\) 36.3050 1.22454
\(880\) 0 0
\(881\) −5.32624 −0.179446 −0.0897228 0.995967i \(-0.528598\pi\)
−0.0897228 + 0.995967i \(0.528598\pi\)
\(882\) 13.2088 0.444763
\(883\) 57.2148 1.92543 0.962715 0.270516i \(-0.0871944\pi\)
0.962715 + 0.270516i \(0.0871944\pi\)
\(884\) 0.343027 0.0115372
\(885\) 0 0
\(886\) 43.2341 1.45248
\(887\) 19.3642 0.650185 0.325092 0.945682i \(-0.394605\pi\)
0.325092 + 0.945682i \(0.394605\pi\)
\(888\) 31.7809 1.06650
\(889\) −0.514540 −0.0172571
\(890\) 0 0
\(891\) −1.30495 −0.0437175
\(892\) 12.2047 0.408645
\(893\) 0 0
\(894\) −5.65248 −0.189047
\(895\) 0 0
\(896\) −0.832544 −0.0278133
\(897\) 6.05573 0.202195
\(898\) 44.2705 1.47733
\(899\) 10.3262 0.344399
\(900\) 0 0
\(901\) −0.767031 −0.0255535
\(902\) −1.63119 −0.0543127
\(903\) 0.726543 0.0241778
\(904\) −13.4164 −0.446223
\(905\) 0 0
\(906\) −24.8990 −0.827213
\(907\) −41.5035 −1.37810 −0.689050 0.724714i \(-0.741972\pi\)
−0.689050 + 0.724714i \(0.741972\pi\)
\(908\) 11.5187 0.382261
\(909\) −27.0344 −0.896676
\(910\) 0 0
\(911\) −12.9718 −0.429774 −0.214887 0.976639i \(-0.568938\pi\)
−0.214887 + 0.976639i \(0.568938\pi\)
\(912\) 0 0
\(913\) 11.3050 0.374139
\(914\) −0.898056 −0.0297051
\(915\) 0 0
\(916\) 15.3607 0.507531
\(917\) 3.15905 0.104321
\(918\) 4.87539 0.160912
\(919\) −37.3607 −1.23242 −0.616208 0.787584i \(-0.711332\pi\)
−0.616208 + 0.787584i \(0.711332\pi\)
\(920\) 0 0
\(921\) 29.9230 0.985996
\(922\) −9.40456 −0.309723
\(923\) −9.47214 −0.311779
\(924\) 0.146490 0.00481917
\(925\) 0 0
\(926\) −8.05748 −0.264785
\(927\) −2.17963 −0.0715884
\(928\) 29.4721 0.967470
\(929\) 17.4377 0.572112 0.286056 0.958213i \(-0.407656\pi\)
0.286056 + 0.958213i \(0.407656\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 3.85410 0.126245
\(933\) −8.50651 −0.278491
\(934\) −15.4944 −0.506993
\(935\) 0 0
\(936\) 3.61803 0.118259
\(937\) −47.7984 −1.56150 −0.780752 0.624841i \(-0.785164\pi\)
−0.780752 + 0.624841i \(0.785164\pi\)
\(938\) 3.21478 0.104966
\(939\) 35.5851 1.16128
\(940\) 0 0
\(941\) 39.6013 1.29097 0.645484 0.763774i \(-0.276656\pi\)
0.645484 + 0.763774i \(0.276656\pi\)
\(942\) −23.8673 −0.777637
\(943\) −11.5187 −0.375100
\(944\) −26.9321 −0.876566
\(945\) 0 0
\(946\) −2.62866 −0.0854650
\(947\) 25.4164 0.825922 0.412961 0.910749i \(-0.364495\pi\)
0.412961 + 0.910749i \(0.364495\pi\)
\(948\) 6.18034 0.200728
\(949\) 0.726543 0.0235846
\(950\) 0 0
\(951\) −31.3050 −1.01513
\(952\) −0.555029 −0.0179886
\(953\) −55.0148 −1.78210 −0.891052 0.453901i \(-0.850032\pi\)
−0.891052 + 0.453901i \(0.850032\pi\)
\(954\) −1.90983 −0.0618330
\(955\) 0 0
\(956\) −17.4377 −0.563975
\(957\) 8.81966 0.285099
\(958\) −37.1037 −1.19877
\(959\) 3.36068 0.108522
\(960\) 0 0
\(961\) −29.6180 −0.955420
\(962\) −7.50245 −0.241889
\(963\) −12.5882 −0.405651
\(964\) −8.95554 −0.288438
\(965\) 0 0
\(966\) −2.31308 −0.0744222
\(967\) 46.9443 1.50963 0.754813 0.655940i \(-0.227728\pi\)
0.754813 + 0.655940i \(0.227728\pi\)
\(968\) 31.6094 1.01596
\(969\) 0 0
\(970\) 0 0
\(971\) 14.5964 0.468420 0.234210 0.972186i \(-0.424750\pi\)
0.234210 + 0.972186i \(0.424750\pi\)
\(972\) −8.95554 −0.287249
\(973\) 2.57546 0.0825655
\(974\) 40.0000 1.28168
\(975\) 0 0
\(976\) 33.2148 1.06318
\(977\) 4.31877 0.138170 0.0690848 0.997611i \(-0.477992\pi\)
0.0690848 + 0.997611i \(0.477992\pi\)
\(978\) 3.89667 0.124602
\(979\) −7.11894 −0.227522
\(980\) 0 0
\(981\) 14.9394 0.476978
\(982\) 4.38428 0.139908
\(983\) −6.26137 −0.199707 −0.0998533 0.995002i \(-0.531837\pi\)
−0.0998533 + 0.995002i \(0.531837\pi\)
\(984\) 5.87785 0.187379
\(985\) 0 0
\(986\) −7.88854 −0.251222
\(987\) 2.07363 0.0660043
\(988\) 0 0
\(989\) −18.5623 −0.590247
\(990\) 0 0
\(991\) 17.2500 0.547966 0.273983 0.961735i \(-0.411659\pi\)
0.273983 + 0.961735i \(0.411659\pi\)
\(992\) 3.94427 0.125231
\(993\) −2.11146 −0.0670050
\(994\) 3.61803 0.114757
\(995\) 0 0
\(996\) −9.61657 −0.304713
\(997\) 19.0557 0.603501 0.301750 0.953387i \(-0.402429\pi\)
0.301750 + 0.953387i \(0.402429\pi\)
\(998\) −45.2267 −1.43163
\(999\) 47.6869 1.50875
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9025.2.a.bl.1.3 4
5.4 even 2 1805.2.a.l.1.2 4
19.18 odd 2 inner 9025.2.a.bl.1.2 4
95.94 odd 2 1805.2.a.l.1.3 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1805.2.a.l.1.2 4 5.4 even 2
1805.2.a.l.1.3 yes 4 95.94 odd 2
9025.2.a.bl.1.2 4 19.18 odd 2 inner
9025.2.a.bl.1.3 4 1.1 even 1 trivial