Properties

Label 9025.2.a.be.1.3
Level $9025$
Weight $2$
Character 9025.1
Self dual yes
Analytic conductor $72.065$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9025,2,Mod(1,9025)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9025, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9025.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 9025 = 5^{2} \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9025.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(72.0649878242\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: \(\Q(\zeta_{14})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 2x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 475)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(1.80194\) of defining polynomial
Character \(\chi\) \(=\) 9025.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.80194 q^{2} +0.554958 q^{3} +5.85086 q^{4} +1.55496 q^{6} +3.04892 q^{7} +10.7899 q^{8} -2.69202 q^{9} +O(q^{10})\) \(q+2.80194 q^{2} +0.554958 q^{3} +5.85086 q^{4} +1.55496 q^{6} +3.04892 q^{7} +10.7899 q^{8} -2.69202 q^{9} -2.93900 q^{11} +3.24698 q^{12} +3.24698 q^{13} +8.54288 q^{14} +18.5308 q^{16} +2.15883 q^{17} -7.54288 q^{18} +1.69202 q^{21} -8.23490 q^{22} -1.19806 q^{23} +5.98792 q^{24} +9.09783 q^{26} -3.15883 q^{27} +17.8388 q^{28} +1.77479 q^{29} +9.34481 q^{31} +30.3424 q^{32} -1.63102 q^{33} +6.04892 q^{34} -15.7506 q^{36} -1.15883 q^{37} +1.80194 q^{39} -8.57002 q^{41} +4.74094 q^{42} -5.27413 q^{43} -17.1957 q^{44} -3.35690 q^{46} -2.35690 q^{47} +10.2838 q^{48} +2.29590 q^{49} +1.19806 q^{51} +18.9976 q^{52} +8.82371 q^{53} -8.85086 q^{54} +32.8974 q^{56} +4.97285 q^{58} +5.70171 q^{59} -9.96077 q^{61} +26.1836 q^{62} -8.20775 q^{63} +47.9560 q^{64} -4.57002 q^{66} +4.98254 q^{67} +12.6310 q^{68} -0.664874 q^{69} -2.70171 q^{71} -29.0465 q^{72} -13.7778 q^{73} -3.24698 q^{74} -8.96077 q^{77} +5.04892 q^{78} -5.66487 q^{79} +6.32304 q^{81} -24.0127 q^{82} +3.00969 q^{83} +9.89977 q^{84} -14.7778 q^{86} +0.984935 q^{87} -31.7114 q^{88} +10.2838 q^{89} +9.89977 q^{91} -7.00969 q^{92} +5.18598 q^{93} -6.60388 q^{94} +16.8388 q^{96} +3.24698 q^{97} +6.43296 q^{98} +7.91185 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 4 q^{2} + 2 q^{3} + 4 q^{4} + 5 q^{6} + 9 q^{8} - 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 3 q + 4 q^{2} + 2 q^{3} + 4 q^{4} + 5 q^{6} + 9 q^{8} - 3 q^{9} + q^{11} + 5 q^{12} + 5 q^{13} + 7 q^{14} + 18 q^{16} - 2 q^{17} - 4 q^{18} - q^{22} - 8 q^{23} - q^{24} + 9 q^{26} - q^{27} + 21 q^{28} + 7 q^{29} + 5 q^{31} + 27 q^{32} + 10 q^{33} + 9 q^{34} - 11 q^{36} + 5 q^{37} + q^{39} - q^{41} - 5 q^{43} - 15 q^{44} - 6 q^{46} - 3 q^{47} - 2 q^{48} - 7 q^{49} + 8 q^{51} + 16 q^{52} + 19 q^{53} - 13 q^{54} + 35 q^{56} + 21 q^{58} - 10 q^{59} - 17 q^{61} + 23 q^{62} - 7 q^{63} + 49 q^{64} + 11 q^{66} - q^{67} + 23 q^{68} - 3 q^{69} + 19 q^{71} - 37 q^{72} + q^{73} - 5 q^{74} - 14 q^{77} + 6 q^{78} - 18 q^{79} - q^{81} - 6 q^{82} - 13 q^{83} + 7 q^{84} - 2 q^{86} + 28 q^{87} - 46 q^{88} - 2 q^{89} + 7 q^{91} + q^{92} + q^{93} - 11 q^{94} + 18 q^{96} + 5 q^{97} + 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.80194 1.98127 0.990635 0.136540i \(-0.0435982\pi\)
0.990635 + 0.136540i \(0.0435982\pi\)
\(3\) 0.554958 0.320405 0.160203 0.987084i \(-0.448785\pi\)
0.160203 + 0.987084i \(0.448785\pi\)
\(4\) 5.85086 2.92543
\(5\) 0 0
\(6\) 1.55496 0.634809
\(7\) 3.04892 1.15238 0.576191 0.817315i \(-0.304538\pi\)
0.576191 + 0.817315i \(0.304538\pi\)
\(8\) 10.7899 3.81479
\(9\) −2.69202 −0.897340
\(10\) 0 0
\(11\) −2.93900 −0.886142 −0.443071 0.896486i \(-0.646111\pi\)
−0.443071 + 0.896486i \(0.646111\pi\)
\(12\) 3.24698 0.937322
\(13\) 3.24698 0.900550 0.450275 0.892890i \(-0.351326\pi\)
0.450275 + 0.892890i \(0.351326\pi\)
\(14\) 8.54288 2.28318
\(15\) 0 0
\(16\) 18.5308 4.63270
\(17\) 2.15883 0.523594 0.261797 0.965123i \(-0.415685\pi\)
0.261797 + 0.965123i \(0.415685\pi\)
\(18\) −7.54288 −1.77787
\(19\) 0 0
\(20\) 0 0
\(21\) 1.69202 0.369229
\(22\) −8.23490 −1.75569
\(23\) −1.19806 −0.249813 −0.124907 0.992169i \(-0.539863\pi\)
−0.124907 + 0.992169i \(0.539863\pi\)
\(24\) 5.98792 1.22228
\(25\) 0 0
\(26\) 9.09783 1.78423
\(27\) −3.15883 −0.607918
\(28\) 17.8388 3.37121
\(29\) 1.77479 0.329570 0.164785 0.986329i \(-0.447307\pi\)
0.164785 + 0.986329i \(0.447307\pi\)
\(30\) 0 0
\(31\) 9.34481 1.67838 0.839189 0.543840i \(-0.183030\pi\)
0.839189 + 0.543840i \(0.183030\pi\)
\(32\) 30.3424 5.36383
\(33\) −1.63102 −0.283925
\(34\) 6.04892 1.03738
\(35\) 0 0
\(36\) −15.7506 −2.62510
\(37\) −1.15883 −0.190511 −0.0952555 0.995453i \(-0.530367\pi\)
−0.0952555 + 0.995453i \(0.530367\pi\)
\(38\) 0 0
\(39\) 1.80194 0.288541
\(40\) 0 0
\(41\) −8.57002 −1.33841 −0.669206 0.743077i \(-0.733366\pi\)
−0.669206 + 0.743077i \(0.733366\pi\)
\(42\) 4.74094 0.731543
\(43\) −5.27413 −0.804297 −0.402148 0.915575i \(-0.631736\pi\)
−0.402148 + 0.915575i \(0.631736\pi\)
\(44\) −17.1957 −2.59234
\(45\) 0 0
\(46\) −3.35690 −0.494947
\(47\) −2.35690 −0.343789 −0.171894 0.985115i \(-0.554989\pi\)
−0.171894 + 0.985115i \(0.554989\pi\)
\(48\) 10.2838 1.48434
\(49\) 2.29590 0.327985
\(50\) 0 0
\(51\) 1.19806 0.167762
\(52\) 18.9976 2.63449
\(53\) 8.82371 1.21203 0.606015 0.795453i \(-0.292767\pi\)
0.606015 + 0.795453i \(0.292767\pi\)
\(54\) −8.85086 −1.20445
\(55\) 0 0
\(56\) 32.8974 4.39610
\(57\) 0 0
\(58\) 4.97285 0.652968
\(59\) 5.70171 0.742299 0.371150 0.928573i \(-0.378964\pi\)
0.371150 + 0.928573i \(0.378964\pi\)
\(60\) 0 0
\(61\) −9.96077 −1.27535 −0.637673 0.770307i \(-0.720103\pi\)
−0.637673 + 0.770307i \(0.720103\pi\)
\(62\) 26.1836 3.32532
\(63\) −8.20775 −1.03408
\(64\) 47.9560 5.99450
\(65\) 0 0
\(66\) −4.57002 −0.562531
\(67\) 4.98254 0.608714 0.304357 0.952558i \(-0.401558\pi\)
0.304357 + 0.952558i \(0.401558\pi\)
\(68\) 12.6310 1.53174
\(69\) −0.664874 −0.0800415
\(70\) 0 0
\(71\) −2.70171 −0.320634 −0.160317 0.987066i \(-0.551252\pi\)
−0.160317 + 0.987066i \(0.551252\pi\)
\(72\) −29.0465 −3.42317
\(73\) −13.7778 −1.61257 −0.806283 0.591530i \(-0.798524\pi\)
−0.806283 + 0.591530i \(0.798524\pi\)
\(74\) −3.24698 −0.377454
\(75\) 0 0
\(76\) 0 0
\(77\) −8.96077 −1.02117
\(78\) 5.04892 0.571677
\(79\) −5.66487 −0.637348 −0.318674 0.947864i \(-0.603238\pi\)
−0.318674 + 0.947864i \(0.603238\pi\)
\(80\) 0 0
\(81\) 6.32304 0.702560
\(82\) −24.0127 −2.65176
\(83\) 3.00969 0.330356 0.165178 0.986264i \(-0.447180\pi\)
0.165178 + 0.986264i \(0.447180\pi\)
\(84\) 9.89977 1.08015
\(85\) 0 0
\(86\) −14.7778 −1.59353
\(87\) 0.984935 0.105596
\(88\) −31.7114 −3.38045
\(89\) 10.2838 1.09008 0.545041 0.838409i \(-0.316514\pi\)
0.545041 + 0.838409i \(0.316514\pi\)
\(90\) 0 0
\(91\) 9.89977 1.03778
\(92\) −7.00969 −0.730811
\(93\) 5.18598 0.537761
\(94\) −6.60388 −0.681138
\(95\) 0 0
\(96\) 16.8388 1.71860
\(97\) 3.24698 0.329681 0.164840 0.986320i \(-0.447289\pi\)
0.164840 + 0.986320i \(0.447289\pi\)
\(98\) 6.43296 0.649827
\(99\) 7.91185 0.795171
\(100\) 0 0
\(101\) 5.09246 0.506718 0.253359 0.967372i \(-0.418465\pi\)
0.253359 + 0.967372i \(0.418465\pi\)
\(102\) 3.35690 0.332382
\(103\) −14.3110 −1.41010 −0.705051 0.709157i \(-0.749076\pi\)
−0.705051 + 0.709157i \(0.749076\pi\)
\(104\) 35.0344 3.43541
\(105\) 0 0
\(106\) 24.7235 2.40136
\(107\) −8.18598 −0.791369 −0.395684 0.918387i \(-0.629493\pi\)
−0.395684 + 0.918387i \(0.629493\pi\)
\(108\) −18.4819 −1.77842
\(109\) 11.3274 1.08496 0.542482 0.840067i \(-0.317485\pi\)
0.542482 + 0.840067i \(0.317485\pi\)
\(110\) 0 0
\(111\) −0.643104 −0.0610407
\(112\) 56.4989 5.33864
\(113\) 3.43535 0.323171 0.161585 0.986859i \(-0.448339\pi\)
0.161585 + 0.986859i \(0.448339\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 10.3840 0.964134
\(117\) −8.74094 −0.808100
\(118\) 15.9758 1.47069
\(119\) 6.58211 0.603381
\(120\) 0 0
\(121\) −2.36227 −0.214752
\(122\) −27.9095 −2.52680
\(123\) −4.75600 −0.428834
\(124\) 54.6752 4.90997
\(125\) 0 0
\(126\) −22.9976 −2.04879
\(127\) 1.46144 0.129681 0.0648407 0.997896i \(-0.479346\pi\)
0.0648407 + 0.997896i \(0.479346\pi\)
\(128\) 73.6848 6.51288
\(129\) −2.92692 −0.257701
\(130\) 0 0
\(131\) −13.2295 −1.15587 −0.577934 0.816083i \(-0.696141\pi\)
−0.577934 + 0.816083i \(0.696141\pi\)
\(132\) −9.54288 −0.830601
\(133\) 0 0
\(134\) 13.9608 1.20603
\(135\) 0 0
\(136\) 23.2935 1.99740
\(137\) −16.1739 −1.38183 −0.690915 0.722936i \(-0.742792\pi\)
−0.690915 + 0.722936i \(0.742792\pi\)
\(138\) −1.86294 −0.158584
\(139\) 13.0978 1.11094 0.555472 0.831535i \(-0.312538\pi\)
0.555472 + 0.831535i \(0.312538\pi\)
\(140\) 0 0
\(141\) −1.30798 −0.110152
\(142\) −7.57002 −0.635262
\(143\) −9.54288 −0.798015
\(144\) −49.8853 −4.15711
\(145\) 0 0
\(146\) −38.6045 −3.19493
\(147\) 1.27413 0.105088
\(148\) −6.78017 −0.557326
\(149\) 11.0640 0.906397 0.453198 0.891410i \(-0.350283\pi\)
0.453198 + 0.891410i \(0.350283\pi\)
\(150\) 0 0
\(151\) −10.4426 −0.849811 −0.424905 0.905238i \(-0.639693\pi\)
−0.424905 + 0.905238i \(0.639693\pi\)
\(152\) 0 0
\(153\) −5.81163 −0.469842
\(154\) −25.1075 −2.02322
\(155\) 0 0
\(156\) 10.5429 0.844106
\(157\) −2.48427 −0.198266 −0.0991332 0.995074i \(-0.531607\pi\)
−0.0991332 + 0.995074i \(0.531607\pi\)
\(158\) −15.8726 −1.26276
\(159\) 4.89679 0.388341
\(160\) 0 0
\(161\) −3.65279 −0.287880
\(162\) 17.7168 1.39196
\(163\) −3.16852 −0.248178 −0.124089 0.992271i \(-0.539601\pi\)
−0.124089 + 0.992271i \(0.539601\pi\)
\(164\) −50.1420 −3.91543
\(165\) 0 0
\(166\) 8.43296 0.654525
\(167\) 4.74632 0.367281 0.183640 0.982993i \(-0.441212\pi\)
0.183640 + 0.982993i \(0.441212\pi\)
\(168\) 18.2567 1.40853
\(169\) −2.45712 −0.189009
\(170\) 0 0
\(171\) 0 0
\(172\) −30.8582 −2.35291
\(173\) 3.96316 0.301314 0.150657 0.988586i \(-0.451861\pi\)
0.150657 + 0.988586i \(0.451861\pi\)
\(174\) 2.75973 0.209214
\(175\) 0 0
\(176\) −54.4620 −4.10523
\(177\) 3.16421 0.237837
\(178\) 28.8146 2.15975
\(179\) 14.0858 1.05282 0.526409 0.850231i \(-0.323538\pi\)
0.526409 + 0.850231i \(0.323538\pi\)
\(180\) 0 0
\(181\) 12.2513 0.910631 0.455316 0.890330i \(-0.349526\pi\)
0.455316 + 0.890330i \(0.349526\pi\)
\(182\) 27.7385 2.05612
\(183\) −5.52781 −0.408628
\(184\) −12.9269 −0.952985
\(185\) 0 0
\(186\) 14.5308 1.06545
\(187\) −6.34481 −0.463979
\(188\) −13.7899 −1.00573
\(189\) −9.63102 −0.700554
\(190\) 0 0
\(191\) 20.1468 1.45777 0.728884 0.684637i \(-0.240039\pi\)
0.728884 + 0.684637i \(0.240039\pi\)
\(192\) 26.6136 1.92067
\(193\) −9.52781 −0.685827 −0.342913 0.939367i \(-0.611414\pi\)
−0.342913 + 0.939367i \(0.611414\pi\)
\(194\) 9.09783 0.653186
\(195\) 0 0
\(196\) 13.4330 0.959497
\(197\) −4.96316 −0.353611 −0.176805 0.984246i \(-0.556576\pi\)
−0.176805 + 0.984246i \(0.556576\pi\)
\(198\) 22.1685 1.57545
\(199\) 5.42221 0.384370 0.192185 0.981359i \(-0.438443\pi\)
0.192185 + 0.981359i \(0.438443\pi\)
\(200\) 0 0
\(201\) 2.76510 0.195035
\(202\) 14.2687 1.00395
\(203\) 5.41119 0.379791
\(204\) 7.00969 0.490776
\(205\) 0 0
\(206\) −40.0984 −2.79379
\(207\) 3.22521 0.224168
\(208\) 60.1691 4.17198
\(209\) 0 0
\(210\) 0 0
\(211\) −15.9638 −1.09899 −0.549495 0.835497i \(-0.685180\pi\)
−0.549495 + 0.835497i \(0.685180\pi\)
\(212\) 51.6262 3.54570
\(213\) −1.49934 −0.102733
\(214\) −22.9366 −1.56791
\(215\) 0 0
\(216\) −34.0834 −2.31908
\(217\) 28.4916 1.93413
\(218\) 31.7385 2.14961
\(219\) −7.64609 −0.516675
\(220\) 0 0
\(221\) 7.00969 0.471523
\(222\) −1.80194 −0.120938
\(223\) −23.2150 −1.55459 −0.777297 0.629134i \(-0.783410\pi\)
−0.777297 + 0.629134i \(0.783410\pi\)
\(224\) 92.5115 6.18119
\(225\) 0 0
\(226\) 9.62565 0.640288
\(227\) −17.4795 −1.16015 −0.580077 0.814562i \(-0.696978\pi\)
−0.580077 + 0.814562i \(0.696978\pi\)
\(228\) 0 0
\(229\) −2.32544 −0.153669 −0.0768346 0.997044i \(-0.524481\pi\)
−0.0768346 + 0.997044i \(0.524481\pi\)
\(230\) 0 0
\(231\) −4.97285 −0.327190
\(232\) 19.1497 1.25724
\(233\) 18.9342 1.24042 0.620211 0.784435i \(-0.287047\pi\)
0.620211 + 0.784435i \(0.287047\pi\)
\(234\) −24.4916 −1.60106
\(235\) 0 0
\(236\) 33.3599 2.17154
\(237\) −3.14377 −0.204210
\(238\) 18.4426 1.19546
\(239\) 11.1685 0.722432 0.361216 0.932482i \(-0.382362\pi\)
0.361216 + 0.932482i \(0.382362\pi\)
\(240\) 0 0
\(241\) −7.42998 −0.478607 −0.239303 0.970945i \(-0.576919\pi\)
−0.239303 + 0.970945i \(0.576919\pi\)
\(242\) −6.61894 −0.425482
\(243\) 12.9855 0.833022
\(244\) −58.2790 −3.73093
\(245\) 0 0
\(246\) −13.3260 −0.849637
\(247\) 0 0
\(248\) 100.829 6.40266
\(249\) 1.67025 0.105848
\(250\) 0 0
\(251\) −14.7409 −0.930440 −0.465220 0.885195i \(-0.654025\pi\)
−0.465220 + 0.885195i \(0.654025\pi\)
\(252\) −48.0224 −3.02512
\(253\) 3.52111 0.221370
\(254\) 4.09485 0.256934
\(255\) 0 0
\(256\) 110.548 6.90927
\(257\) 3.34721 0.208793 0.104397 0.994536i \(-0.466709\pi\)
0.104397 + 0.994536i \(0.466709\pi\)
\(258\) −8.20105 −0.510575
\(259\) −3.53319 −0.219542
\(260\) 0 0
\(261\) −4.77777 −0.295737
\(262\) −37.0683 −2.29009
\(263\) 16.6853 1.02886 0.514430 0.857532i \(-0.328003\pi\)
0.514430 + 0.857532i \(0.328003\pi\)
\(264\) −17.5985 −1.08311
\(265\) 0 0
\(266\) 0 0
\(267\) 5.70709 0.349268
\(268\) 29.1521 1.78075
\(269\) −15.5961 −0.950911 −0.475456 0.879740i \(-0.657717\pi\)
−0.475456 + 0.879740i \(0.657717\pi\)
\(270\) 0 0
\(271\) −13.2131 −0.802640 −0.401320 0.915938i \(-0.631449\pi\)
−0.401320 + 0.915938i \(0.631449\pi\)
\(272\) 40.0049 2.42565
\(273\) 5.49396 0.332510
\(274\) −45.3183 −2.73778
\(275\) 0 0
\(276\) −3.89008 −0.234156
\(277\) −12.9758 −0.779642 −0.389821 0.920891i \(-0.627463\pi\)
−0.389821 + 0.920891i \(0.627463\pi\)
\(278\) 36.6993 2.20108
\(279\) −25.1564 −1.50608
\(280\) 0 0
\(281\) −24.8901 −1.48482 −0.742409 0.669947i \(-0.766317\pi\)
−0.742409 + 0.669947i \(0.766317\pi\)
\(282\) −3.66487 −0.218240
\(283\) 13.5821 0.807372 0.403686 0.914898i \(-0.367729\pi\)
0.403686 + 0.914898i \(0.367729\pi\)
\(284\) −15.8073 −0.937992
\(285\) 0 0
\(286\) −26.7385 −1.58108
\(287\) −26.1293 −1.54236
\(288\) −81.6824 −4.81318
\(289\) −12.3394 −0.725849
\(290\) 0 0
\(291\) 1.80194 0.105631
\(292\) −80.6118 −4.71745
\(293\) 1.27652 0.0745751 0.0372875 0.999305i \(-0.488128\pi\)
0.0372875 + 0.999305i \(0.488128\pi\)
\(294\) 3.57002 0.208208
\(295\) 0 0
\(296\) −12.5036 −0.726760
\(297\) 9.28382 0.538702
\(298\) 31.0006 1.79582
\(299\) −3.89008 −0.224969
\(300\) 0 0
\(301\) −16.0804 −0.926857
\(302\) −29.2597 −1.68370
\(303\) 2.82610 0.162355
\(304\) 0 0
\(305\) 0 0
\(306\) −16.2838 −0.930884
\(307\) −32.2295 −1.83944 −0.919718 0.392580i \(-0.871583\pi\)
−0.919718 + 0.392580i \(0.871583\pi\)
\(308\) −52.4282 −2.98737
\(309\) −7.94198 −0.451804
\(310\) 0 0
\(311\) 12.4983 0.708712 0.354356 0.935111i \(-0.384700\pi\)
0.354356 + 0.935111i \(0.384700\pi\)
\(312\) 19.4426 1.10072
\(313\) 20.9390 1.18354 0.591771 0.806106i \(-0.298429\pi\)
0.591771 + 0.806106i \(0.298429\pi\)
\(314\) −6.96077 −0.392819
\(315\) 0 0
\(316\) −33.1444 −1.86452
\(317\) 15.8562 0.890575 0.445287 0.895388i \(-0.353102\pi\)
0.445287 + 0.895388i \(0.353102\pi\)
\(318\) 13.7205 0.769407
\(319\) −5.21611 −0.292046
\(320\) 0 0
\(321\) −4.54288 −0.253559
\(322\) −10.2349 −0.570369
\(323\) 0 0
\(324\) 36.9952 2.05529
\(325\) 0 0
\(326\) −8.87800 −0.491707
\(327\) 6.28621 0.347628
\(328\) −92.4693 −5.10576
\(329\) −7.18598 −0.396176
\(330\) 0 0
\(331\) 13.2349 0.727456 0.363728 0.931505i \(-0.381504\pi\)
0.363728 + 0.931505i \(0.381504\pi\)
\(332\) 17.6093 0.966433
\(333\) 3.11960 0.170953
\(334\) 13.2989 0.727682
\(335\) 0 0
\(336\) 31.3545 1.71053
\(337\) −26.0780 −1.42056 −0.710279 0.703920i \(-0.751431\pi\)
−0.710279 + 0.703920i \(0.751431\pi\)
\(338\) −6.88471 −0.374479
\(339\) 1.90648 0.103546
\(340\) 0 0
\(341\) −27.4644 −1.48728
\(342\) 0 0
\(343\) −14.3424 −0.774418
\(344\) −56.9071 −3.06822
\(345\) 0 0
\(346\) 11.1045 0.596984
\(347\) −8.98254 −0.482208 −0.241104 0.970499i \(-0.577510\pi\)
−0.241104 + 0.970499i \(0.577510\pi\)
\(348\) 5.76271 0.308914
\(349\) 0.599564 0.0320939 0.0160470 0.999871i \(-0.494892\pi\)
0.0160470 + 0.999871i \(0.494892\pi\)
\(350\) 0 0
\(351\) −10.2567 −0.547460
\(352\) −89.1764 −4.75312
\(353\) −31.8896 −1.69731 −0.848656 0.528945i \(-0.822588\pi\)
−0.848656 + 0.528945i \(0.822588\pi\)
\(354\) 8.86592 0.471218
\(355\) 0 0
\(356\) 60.1691 3.18896
\(357\) 3.65279 0.193326
\(358\) 39.4674 2.08592
\(359\) −18.3763 −0.969863 −0.484931 0.874552i \(-0.661155\pi\)
−0.484931 + 0.874552i \(0.661155\pi\)
\(360\) 0 0
\(361\) 0 0
\(362\) 34.3274 1.80421
\(363\) −1.31096 −0.0688077
\(364\) 57.9221 3.03594
\(365\) 0 0
\(366\) −15.4886 −0.809601
\(367\) 14.6377 0.764083 0.382042 0.924145i \(-0.375221\pi\)
0.382042 + 0.924145i \(0.375221\pi\)
\(368\) −22.2010 −1.15731
\(369\) 23.0707 1.20101
\(370\) 0 0
\(371\) 26.9028 1.39672
\(372\) 30.3424 1.57318
\(373\) −1.02715 −0.0531837 −0.0265918 0.999646i \(-0.508465\pi\)
−0.0265918 + 0.999646i \(0.508465\pi\)
\(374\) −17.7778 −0.919267
\(375\) 0 0
\(376\) −25.4306 −1.31148
\(377\) 5.76271 0.296795
\(378\) −26.9855 −1.38799
\(379\) 22.5284 1.15721 0.578603 0.815609i \(-0.303598\pi\)
0.578603 + 0.815609i \(0.303598\pi\)
\(380\) 0 0
\(381\) 0.811035 0.0415506
\(382\) 56.4499 2.88823
\(383\) 32.6698 1.66935 0.834674 0.550745i \(-0.185656\pi\)
0.834674 + 0.550745i \(0.185656\pi\)
\(384\) 40.8920 2.08676
\(385\) 0 0
\(386\) −26.6963 −1.35881
\(387\) 14.1981 0.721728
\(388\) 18.9976 0.964457
\(389\) −8.16421 −0.413942 −0.206971 0.978347i \(-0.566361\pi\)
−0.206971 + 0.978347i \(0.566361\pi\)
\(390\) 0 0
\(391\) −2.58642 −0.130801
\(392\) 24.7724 1.25120
\(393\) −7.34183 −0.370346
\(394\) −13.9065 −0.700598
\(395\) 0 0
\(396\) 46.2911 2.32622
\(397\) −37.5478 −1.88447 −0.942235 0.334954i \(-0.891279\pi\)
−0.942235 + 0.334954i \(0.891279\pi\)
\(398\) 15.1927 0.761541
\(399\) 0 0
\(400\) 0 0
\(401\) −32.2519 −1.61058 −0.805291 0.592880i \(-0.797991\pi\)
−0.805291 + 0.592880i \(0.797991\pi\)
\(402\) 7.74764 0.386417
\(403\) 30.3424 1.51146
\(404\) 29.7952 1.48237
\(405\) 0 0
\(406\) 15.1618 0.752468
\(407\) 3.40581 0.168820
\(408\) 12.9269 0.639978
\(409\) 31.5459 1.55984 0.779921 0.625878i \(-0.215259\pi\)
0.779921 + 0.625878i \(0.215259\pi\)
\(410\) 0 0
\(411\) −8.97584 −0.442745
\(412\) −83.7314 −4.12515
\(413\) 17.3840 0.855413
\(414\) 9.03684 0.444136
\(415\) 0 0
\(416\) 98.5212 4.83040
\(417\) 7.26875 0.355952
\(418\) 0 0
\(419\) −14.6866 −0.717490 −0.358745 0.933436i \(-0.616795\pi\)
−0.358745 + 0.933436i \(0.616795\pi\)
\(420\) 0 0
\(421\) −15.1142 −0.736622 −0.368311 0.929703i \(-0.620064\pi\)
−0.368311 + 0.929703i \(0.620064\pi\)
\(422\) −44.7294 −2.17740
\(423\) 6.34481 0.308495
\(424\) 95.2065 4.62364
\(425\) 0 0
\(426\) −4.20105 −0.203541
\(427\) −30.3696 −1.46969
\(428\) −47.8950 −2.31509
\(429\) −5.29590 −0.255688
\(430\) 0 0
\(431\) −1.67696 −0.0807761 −0.0403881 0.999184i \(-0.512859\pi\)
−0.0403881 + 0.999184i \(0.512859\pi\)
\(432\) −58.5357 −2.81630
\(433\) −13.1545 −0.632166 −0.316083 0.948732i \(-0.602368\pi\)
−0.316083 + 0.948732i \(0.602368\pi\)
\(434\) 79.8316 3.83204
\(435\) 0 0
\(436\) 66.2747 3.17398
\(437\) 0 0
\(438\) −21.4239 −1.02367
\(439\) −6.45580 −0.308118 −0.154059 0.988062i \(-0.549235\pi\)
−0.154059 + 0.988062i \(0.549235\pi\)
\(440\) 0 0
\(441\) −6.18060 −0.294314
\(442\) 19.6407 0.934213
\(443\) 25.3709 1.20541 0.602704 0.797965i \(-0.294090\pi\)
0.602704 + 0.797965i \(0.294090\pi\)
\(444\) −3.76271 −0.178570
\(445\) 0 0
\(446\) −65.0471 −3.08007
\(447\) 6.14005 0.290414
\(448\) 146.214 6.90795
\(449\) 3.59956 0.169874 0.0849370 0.996386i \(-0.472931\pi\)
0.0849370 + 0.996386i \(0.472931\pi\)
\(450\) 0 0
\(451\) 25.1873 1.18602
\(452\) 20.0998 0.945413
\(453\) −5.79523 −0.272284
\(454\) −48.9764 −2.29858
\(455\) 0 0
\(456\) 0 0
\(457\) 12.2784 0.574361 0.287181 0.957876i \(-0.407282\pi\)
0.287181 + 0.957876i \(0.407282\pi\)
\(458\) −6.51573 −0.304460
\(459\) −6.81940 −0.318302
\(460\) 0 0
\(461\) 39.4935 1.83939 0.919697 0.392628i \(-0.128434\pi\)
0.919697 + 0.392628i \(0.128434\pi\)
\(462\) −13.9336 −0.648251
\(463\) −18.3991 −0.855079 −0.427540 0.903997i \(-0.640620\pi\)
−0.427540 + 0.903997i \(0.640620\pi\)
\(464\) 32.8883 1.52680
\(465\) 0 0
\(466\) 53.0525 2.45761
\(467\) 36.2282 1.67644 0.838220 0.545332i \(-0.183596\pi\)
0.838220 + 0.545332i \(0.183596\pi\)
\(468\) −51.1420 −2.36404
\(469\) 15.1914 0.701472
\(470\) 0 0
\(471\) −1.37867 −0.0635256
\(472\) 61.5206 2.83172
\(473\) 15.5007 0.712721
\(474\) −8.80864 −0.404594
\(475\) 0 0
\(476\) 38.5109 1.76515
\(477\) −23.7536 −1.08760
\(478\) 31.2935 1.43133
\(479\) −34.3129 −1.56780 −0.783898 0.620890i \(-0.786771\pi\)
−0.783898 + 0.620890i \(0.786771\pi\)
\(480\) 0 0
\(481\) −3.76271 −0.171565
\(482\) −20.8183 −0.948249
\(483\) −2.02715 −0.0922384
\(484\) −13.8213 −0.628242
\(485\) 0 0
\(486\) 36.3846 1.65044
\(487\) −24.4722 −1.10894 −0.554470 0.832203i \(-0.687079\pi\)
−0.554470 + 0.832203i \(0.687079\pi\)
\(488\) −107.475 −4.86518
\(489\) −1.75840 −0.0795175
\(490\) 0 0
\(491\) 18.3067 0.826168 0.413084 0.910693i \(-0.364452\pi\)
0.413084 + 0.910693i \(0.364452\pi\)
\(492\) −27.8267 −1.25452
\(493\) 3.83148 0.172561
\(494\) 0 0
\(495\) 0 0
\(496\) 173.167 7.77542
\(497\) −8.23729 −0.369493
\(498\) 4.67994 0.209713
\(499\) −25.3424 −1.13448 −0.567241 0.823552i \(-0.691989\pi\)
−0.567241 + 0.823552i \(0.691989\pi\)
\(500\) 0 0
\(501\) 2.63401 0.117679
\(502\) −41.3032 −1.84345
\(503\) −14.1105 −0.629156 −0.314578 0.949232i \(-0.601863\pi\)
−0.314578 + 0.949232i \(0.601863\pi\)
\(504\) −88.5605 −3.94480
\(505\) 0 0
\(506\) 9.86592 0.438594
\(507\) −1.36360 −0.0605596
\(508\) 8.55065 0.379374
\(509\) 17.8019 0.789057 0.394529 0.918884i \(-0.370908\pi\)
0.394529 + 0.918884i \(0.370908\pi\)
\(510\) 0 0
\(511\) −42.0073 −1.85829
\(512\) 162.380 7.17625
\(513\) 0 0
\(514\) 9.37867 0.413675
\(515\) 0 0
\(516\) −17.1250 −0.753885
\(517\) 6.92692 0.304646
\(518\) −9.89977 −0.434971
\(519\) 2.19939 0.0965425
\(520\) 0 0
\(521\) −13.3948 −0.586837 −0.293418 0.955984i \(-0.594793\pi\)
−0.293418 + 0.955984i \(0.594793\pi\)
\(522\) −13.3870 −0.585934
\(523\) −1.46921 −0.0642439 −0.0321219 0.999484i \(-0.510226\pi\)
−0.0321219 + 0.999484i \(0.510226\pi\)
\(524\) −77.4040 −3.38141
\(525\) 0 0
\(526\) 46.7512 2.03845
\(527\) 20.1739 0.878789
\(528\) −30.2241 −1.31534
\(529\) −21.5646 −0.937593
\(530\) 0 0
\(531\) −15.3491 −0.666095
\(532\) 0 0
\(533\) −27.8267 −1.20531
\(534\) 15.9909 0.691994
\(535\) 0 0
\(536\) 53.7609 2.32212
\(537\) 7.81700 0.337329
\(538\) −43.6993 −1.88401
\(539\) −6.74764 −0.290642
\(540\) 0 0
\(541\) −42.7144 −1.83643 −0.918217 0.396077i \(-0.870371\pi\)
−0.918217 + 0.396077i \(0.870371\pi\)
\(542\) −37.0224 −1.59025
\(543\) 6.79895 0.291771
\(544\) 65.5042 2.80847
\(545\) 0 0
\(546\) 15.3937 0.658791
\(547\) 10.6866 0.456928 0.228464 0.973552i \(-0.426630\pi\)
0.228464 + 0.973552i \(0.426630\pi\)
\(548\) −94.6311 −4.04244
\(549\) 26.8146 1.14442
\(550\) 0 0
\(551\) 0 0
\(552\) −7.17390 −0.305341
\(553\) −17.2717 −0.734469
\(554\) −36.3575 −1.54468
\(555\) 0 0
\(556\) 76.6335 3.24999
\(557\) 34.2083 1.44945 0.724727 0.689036i \(-0.241966\pi\)
0.724727 + 0.689036i \(0.241966\pi\)
\(558\) −70.4868 −2.98394
\(559\) −17.1250 −0.724310
\(560\) 0 0
\(561\) −3.52111 −0.148661
\(562\) −69.7405 −2.94182
\(563\) −5.46788 −0.230444 −0.115222 0.993340i \(-0.536758\pi\)
−0.115222 + 0.993340i \(0.536758\pi\)
\(564\) −7.65279 −0.322241
\(565\) 0 0
\(566\) 38.0562 1.59962
\(567\) 19.2784 0.809618
\(568\) −29.1511 −1.22315
\(569\) 17.4819 0.732878 0.366439 0.930442i \(-0.380577\pi\)
0.366439 + 0.930442i \(0.380577\pi\)
\(570\) 0 0
\(571\) −7.21877 −0.302096 −0.151048 0.988526i \(-0.548265\pi\)
−0.151048 + 0.988526i \(0.548265\pi\)
\(572\) −55.8340 −2.33454
\(573\) 11.1806 0.467076
\(574\) −73.2127 −3.05584
\(575\) 0 0
\(576\) −129.099 −5.37911
\(577\) −1.80625 −0.0751952 −0.0375976 0.999293i \(-0.511971\pi\)
−0.0375976 + 0.999293i \(0.511971\pi\)
\(578\) −34.5743 −1.43810
\(579\) −5.28754 −0.219743
\(580\) 0 0
\(581\) 9.17629 0.380697
\(582\) 5.04892 0.209284
\(583\) −25.9329 −1.07403
\(584\) −148.660 −6.15160
\(585\) 0 0
\(586\) 3.57673 0.147753
\(587\) −2.39075 −0.0986767 −0.0493384 0.998782i \(-0.515711\pi\)
−0.0493384 + 0.998782i \(0.515711\pi\)
\(588\) 7.45473 0.307428
\(589\) 0 0
\(590\) 0 0
\(591\) −2.75435 −0.113299
\(592\) −21.4741 −0.882580
\(593\) 42.2650 1.73562 0.867808 0.496899i \(-0.165528\pi\)
0.867808 + 0.496899i \(0.165528\pi\)
\(594\) 26.0127 1.06731
\(595\) 0 0
\(596\) 64.7338 2.65160
\(597\) 3.00910 0.123154
\(598\) −10.8998 −0.445725
\(599\) −8.95838 −0.366029 −0.183015 0.983110i \(-0.558586\pi\)
−0.183015 + 0.983110i \(0.558586\pi\)
\(600\) 0 0
\(601\) 19.8998 0.811729 0.405864 0.913933i \(-0.366971\pi\)
0.405864 + 0.913933i \(0.366971\pi\)
\(602\) −45.0562 −1.83635
\(603\) −13.4131 −0.546224
\(604\) −61.0984 −2.48606
\(605\) 0 0
\(606\) 7.91856 0.321669
\(607\) 26.0084 1.05565 0.527823 0.849354i \(-0.323008\pi\)
0.527823 + 0.849354i \(0.323008\pi\)
\(608\) 0 0
\(609\) 3.00298 0.121687
\(610\) 0 0
\(611\) −7.65279 −0.309599
\(612\) −34.0030 −1.37449
\(613\) −41.3763 −1.67117 −0.835586 0.549360i \(-0.814872\pi\)
−0.835586 + 0.549360i \(0.814872\pi\)
\(614\) −90.3051 −3.64442
\(615\) 0 0
\(616\) −96.6854 −3.89557
\(617\) −43.9845 −1.77075 −0.885374 0.464880i \(-0.846098\pi\)
−0.885374 + 0.464880i \(0.846098\pi\)
\(618\) −22.2529 −0.895145
\(619\) 23.4553 0.942749 0.471374 0.881933i \(-0.343758\pi\)
0.471374 + 0.881933i \(0.343758\pi\)
\(620\) 0 0
\(621\) 3.78448 0.151866
\(622\) 35.0194 1.40415
\(623\) 31.3545 1.25619
\(624\) 33.3913 1.33672
\(625\) 0 0
\(626\) 58.6698 2.34492
\(627\) 0 0
\(628\) −14.5351 −0.580014
\(629\) −2.50173 −0.0997505
\(630\) 0 0
\(631\) −34.8877 −1.38886 −0.694429 0.719562i \(-0.744343\pi\)
−0.694429 + 0.719562i \(0.744343\pi\)
\(632\) −61.1232 −2.43135
\(633\) −8.85922 −0.352122
\(634\) 44.4282 1.76447
\(635\) 0 0
\(636\) 28.6504 1.13606
\(637\) 7.45473 0.295367
\(638\) −14.6152 −0.578622
\(639\) 7.27306 0.287718
\(640\) 0 0
\(641\) 38.5314 1.52190 0.760949 0.648812i \(-0.224734\pi\)
0.760949 + 0.648812i \(0.224734\pi\)
\(642\) −12.7289 −0.502368
\(643\) 18.6353 0.734906 0.367453 0.930042i \(-0.380230\pi\)
0.367453 + 0.930042i \(0.380230\pi\)
\(644\) −21.3720 −0.842173
\(645\) 0 0
\(646\) 0 0
\(647\) −19.2282 −0.755938 −0.377969 0.925818i \(-0.623377\pi\)
−0.377969 + 0.925818i \(0.623377\pi\)
\(648\) 68.2247 2.68012
\(649\) −16.7573 −0.657783
\(650\) 0 0
\(651\) 15.8116 0.619706
\(652\) −18.5386 −0.726026
\(653\) 3.98553 0.155966 0.0779828 0.996955i \(-0.475152\pi\)
0.0779828 + 0.996955i \(0.475152\pi\)
\(654\) 17.6136 0.688745
\(655\) 0 0
\(656\) −158.809 −6.20046
\(657\) 37.0901 1.44702
\(658\) −20.1347 −0.784931
\(659\) −33.5719 −1.30778 −0.653889 0.756591i \(-0.726864\pi\)
−0.653889 + 0.756591i \(0.726864\pi\)
\(660\) 0 0
\(661\) −36.9909 −1.43878 −0.719390 0.694607i \(-0.755578\pi\)
−0.719390 + 0.694607i \(0.755578\pi\)
\(662\) 37.0834 1.44129
\(663\) 3.89008 0.151078
\(664\) 32.4741 1.26024
\(665\) 0 0
\(666\) 8.74094 0.338704
\(667\) −2.12631 −0.0823310
\(668\) 27.7700 1.07445
\(669\) −12.8834 −0.498100
\(670\) 0 0
\(671\) 29.2747 1.13014
\(672\) 51.3400 1.98048
\(673\) 12.0747 0.465447 0.232723 0.972543i \(-0.425236\pi\)
0.232723 + 0.972543i \(0.425236\pi\)
\(674\) −73.0689 −2.81451
\(675\) 0 0
\(676\) −14.3763 −0.552934
\(677\) 41.9135 1.61087 0.805434 0.592686i \(-0.201933\pi\)
0.805434 + 0.592686i \(0.201933\pi\)
\(678\) 5.34183 0.205152
\(679\) 9.89977 0.379918
\(680\) 0 0
\(681\) −9.70038 −0.371719
\(682\) −76.9536 −2.94671
\(683\) 9.17092 0.350915 0.175458 0.984487i \(-0.443859\pi\)
0.175458 + 0.984487i \(0.443859\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −40.1866 −1.53433
\(687\) −1.29052 −0.0492364
\(688\) −97.7338 −3.72606
\(689\) 28.6504 1.09149
\(690\) 0 0
\(691\) −0.111244 −0.00423193 −0.00211596 0.999998i \(-0.500674\pi\)
−0.00211596 + 0.999998i \(0.500674\pi\)
\(692\) 23.1879 0.881472
\(693\) 24.1226 0.916341
\(694\) −25.1685 −0.955384
\(695\) 0 0
\(696\) 10.6273 0.402827
\(697\) −18.5013 −0.700785
\(698\) 1.67994 0.0635867
\(699\) 10.5077 0.397438
\(700\) 0 0
\(701\) −27.7832 −1.04936 −0.524678 0.851301i \(-0.675814\pi\)
−0.524678 + 0.851301i \(0.675814\pi\)
\(702\) −28.7385 −1.08467
\(703\) 0 0
\(704\) −140.943 −5.31198
\(705\) 0 0
\(706\) −89.3527 −3.36283
\(707\) 15.5265 0.583933
\(708\) 18.5133 0.695774
\(709\) 37.4668 1.40710 0.703548 0.710648i \(-0.251598\pi\)
0.703548 + 0.710648i \(0.251598\pi\)
\(710\) 0 0
\(711\) 15.2500 0.571918
\(712\) 110.961 4.15844
\(713\) −11.1957 −0.419281
\(714\) 10.2349 0.383031
\(715\) 0 0
\(716\) 82.4137 3.07994
\(717\) 6.19806 0.231471
\(718\) −51.4892 −1.92156
\(719\) −21.0513 −0.785081 −0.392541 0.919735i \(-0.628404\pi\)
−0.392541 + 0.919735i \(0.628404\pi\)
\(720\) 0 0
\(721\) −43.6329 −1.62498
\(722\) 0 0
\(723\) −4.12333 −0.153348
\(724\) 71.6805 2.66399
\(725\) 0 0
\(726\) −3.67324 −0.136327
\(727\) 44.7023 1.65792 0.828958 0.559310i \(-0.188934\pi\)
0.828958 + 0.559310i \(0.188934\pi\)
\(728\) 106.817 3.95891
\(729\) −11.7627 −0.435656
\(730\) 0 0
\(731\) −11.3860 −0.421125
\(732\) −32.3424 −1.19541
\(733\) −25.0301 −0.924509 −0.462254 0.886747i \(-0.652959\pi\)
−0.462254 + 0.886747i \(0.652959\pi\)
\(734\) 41.0140 1.51385
\(735\) 0 0
\(736\) −36.3521 −1.33996
\(737\) −14.6437 −0.539407
\(738\) 64.6426 2.37953
\(739\) −23.9982 −0.882788 −0.441394 0.897313i \(-0.645516\pi\)
−0.441394 + 0.897313i \(0.645516\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 75.3798 2.76728
\(743\) 10.4601 0.383744 0.191872 0.981420i \(-0.438544\pi\)
0.191872 + 0.981420i \(0.438544\pi\)
\(744\) 55.9560 2.05145
\(745\) 0 0
\(746\) −2.87800 −0.105371
\(747\) −8.10215 −0.296442
\(748\) −37.1226 −1.35734
\(749\) −24.9584 −0.911959
\(750\) 0 0
\(751\) 29.9420 1.09260 0.546299 0.837590i \(-0.316036\pi\)
0.546299 + 0.837590i \(0.316036\pi\)
\(752\) −43.6752 −1.59267
\(753\) −8.18060 −0.298118
\(754\) 16.1468 0.588030
\(755\) 0 0
\(756\) −56.3497 −2.04942
\(757\) −27.2174 −0.989235 −0.494617 0.869111i \(-0.664692\pi\)
−0.494617 + 0.869111i \(0.664692\pi\)
\(758\) 63.1232 2.29274
\(759\) 1.95407 0.0709281
\(760\) 0 0
\(761\) 18.6813 0.677195 0.338598 0.940931i \(-0.390047\pi\)
0.338598 + 0.940931i \(0.390047\pi\)
\(762\) 2.27247 0.0823229
\(763\) 34.5362 1.25029
\(764\) 117.876 4.26459
\(765\) 0 0
\(766\) 91.5387 3.30743
\(767\) 18.5133 0.668478
\(768\) 61.3497 2.21377
\(769\) 6.34780 0.228907 0.114454 0.993429i \(-0.463488\pi\)
0.114454 + 0.993429i \(0.463488\pi\)
\(770\) 0 0
\(771\) 1.85756 0.0668984
\(772\) −55.7458 −2.00634
\(773\) 49.7851 1.79064 0.895322 0.445419i \(-0.146945\pi\)
0.895322 + 0.445419i \(0.146945\pi\)
\(774\) 39.7821 1.42994
\(775\) 0 0
\(776\) 35.0344 1.25766
\(777\) −1.96077 −0.0703423
\(778\) −22.8756 −0.820130
\(779\) 0 0
\(780\) 0 0
\(781\) 7.94033 0.284127
\(782\) −7.24698 −0.259151
\(783\) −5.60627 −0.200352
\(784\) 42.5448 1.51946
\(785\) 0 0
\(786\) −20.5714 −0.733756
\(787\) −9.19865 −0.327897 −0.163948 0.986469i \(-0.552423\pi\)
−0.163948 + 0.986469i \(0.552423\pi\)
\(788\) −29.0388 −1.03446
\(789\) 9.25965 0.329652
\(790\) 0 0
\(791\) 10.4741 0.372416
\(792\) 85.3678 3.03341
\(793\) −32.3424 −1.14851
\(794\) −105.207 −3.73364
\(795\) 0 0
\(796\) 31.7245 1.12445
\(797\) 13.5084 0.478493 0.239247 0.970959i \(-0.423100\pi\)
0.239247 + 0.970959i \(0.423100\pi\)
\(798\) 0 0
\(799\) −5.08815 −0.180006
\(800\) 0 0
\(801\) −27.6843 −0.978175
\(802\) −90.3678 −3.19100
\(803\) 40.4929 1.42896
\(804\) 16.1782 0.570562
\(805\) 0 0
\(806\) 85.0176 2.99462
\(807\) −8.65519 −0.304677
\(808\) 54.9469 1.93302
\(809\) 31.9560 1.12351 0.561756 0.827303i \(-0.310126\pi\)
0.561756 + 0.827303i \(0.310126\pi\)
\(810\) 0 0
\(811\) −40.7012 −1.42921 −0.714607 0.699526i \(-0.753394\pi\)
−0.714607 + 0.699526i \(0.753394\pi\)
\(812\) 31.6601 1.11105
\(813\) −7.33273 −0.257170
\(814\) 9.54288 0.334478
\(815\) 0 0
\(816\) 22.2010 0.777192
\(817\) 0 0
\(818\) 88.3895 3.09047
\(819\) −26.6504 −0.931240
\(820\) 0 0
\(821\) −13.4300 −0.468709 −0.234355 0.972151i \(-0.575298\pi\)
−0.234355 + 0.972151i \(0.575298\pi\)
\(822\) −25.1497 −0.877198
\(823\) 26.7275 0.931663 0.465832 0.884873i \(-0.345755\pi\)
0.465832 + 0.884873i \(0.345755\pi\)
\(824\) −154.413 −5.37924
\(825\) 0 0
\(826\) 48.7090 1.69480
\(827\) 33.3435 1.15947 0.579733 0.814806i \(-0.303157\pi\)
0.579733 + 0.814806i \(0.303157\pi\)
\(828\) 18.8702 0.655786
\(829\) −12.2849 −0.426672 −0.213336 0.976979i \(-0.568433\pi\)
−0.213336 + 0.976979i \(0.568433\pi\)
\(830\) 0 0
\(831\) −7.20105 −0.249802
\(832\) 155.712 5.39835
\(833\) 4.95646 0.171731
\(834\) 20.3666 0.705237
\(835\) 0 0
\(836\) 0 0
\(837\) −29.5187 −1.02032
\(838\) −41.1511 −1.42154
\(839\) −36.9922 −1.27711 −0.638557 0.769575i \(-0.720468\pi\)
−0.638557 + 0.769575i \(0.720468\pi\)
\(840\) 0 0
\(841\) −25.8501 −0.891383
\(842\) −42.3491 −1.45945
\(843\) −13.8130 −0.475743
\(844\) −93.4016 −3.21502
\(845\) 0 0
\(846\) 17.7778 0.611212
\(847\) −7.20237 −0.247477
\(848\) 163.510 5.61497
\(849\) 7.53750 0.258686
\(850\) 0 0
\(851\) 1.38835 0.0475922
\(852\) −8.77240 −0.300537
\(853\) −7.16959 −0.245482 −0.122741 0.992439i \(-0.539168\pi\)
−0.122741 + 0.992439i \(0.539168\pi\)
\(854\) −85.0936 −2.91184
\(855\) 0 0
\(856\) −88.3256 −3.01891
\(857\) 2.55124 0.0871486 0.0435743 0.999050i \(-0.486125\pi\)
0.0435743 + 0.999050i \(0.486125\pi\)
\(858\) −14.8388 −0.506587
\(859\) 53.9493 1.84073 0.920363 0.391065i \(-0.127893\pi\)
0.920363 + 0.391065i \(0.127893\pi\)
\(860\) 0 0
\(861\) −14.5007 −0.494181
\(862\) −4.69873 −0.160039
\(863\) 21.4698 0.730840 0.365420 0.930843i \(-0.380925\pi\)
0.365420 + 0.930843i \(0.380925\pi\)
\(864\) −95.8467 −3.26077
\(865\) 0 0
\(866\) −36.8582 −1.25249
\(867\) −6.84787 −0.232566
\(868\) 166.700 5.65817
\(869\) 16.6491 0.564781
\(870\) 0 0
\(871\) 16.1782 0.548178
\(872\) 122.221 4.13891
\(873\) −8.74094 −0.295836
\(874\) 0 0
\(875\) 0 0
\(876\) −44.7362 −1.51149
\(877\) −38.9638 −1.31571 −0.657856 0.753144i \(-0.728537\pi\)
−0.657856 + 0.753144i \(0.728537\pi\)
\(878\) −18.0887 −0.610465
\(879\) 0.708415 0.0238942
\(880\) 0 0
\(881\) −13.4373 −0.452713 −0.226357 0.974045i \(-0.572681\pi\)
−0.226357 + 0.974045i \(0.572681\pi\)
\(882\) −17.3177 −0.583116
\(883\) 27.8799 0.938234 0.469117 0.883136i \(-0.344572\pi\)
0.469117 + 0.883136i \(0.344572\pi\)
\(884\) 41.0127 1.37941
\(885\) 0 0
\(886\) 71.0877 2.38824
\(887\) −28.9135 −0.970821 −0.485410 0.874286i \(-0.661330\pi\)
−0.485410 + 0.874286i \(0.661330\pi\)
\(888\) −6.93900 −0.232858
\(889\) 4.45580 0.149443
\(890\) 0 0
\(891\) −18.5834 −0.622568
\(892\) −135.828 −4.54785
\(893\) 0 0
\(894\) 17.2040 0.575389
\(895\) 0 0
\(896\) 224.659 7.50533
\(897\) −2.15883 −0.0720814
\(898\) 10.0858 0.336566
\(899\) 16.5851 0.553144
\(900\) 0 0
\(901\) 19.0489 0.634611
\(902\) 70.5733 2.34983
\(903\) −8.92394 −0.296970
\(904\) 37.0670 1.23283
\(905\) 0 0
\(906\) −16.2379 −0.539467
\(907\) 30.7127 1.01980 0.509900 0.860234i \(-0.329683\pi\)
0.509900 + 0.860234i \(0.329683\pi\)
\(908\) −102.270 −3.39395
\(909\) −13.7090 −0.454699
\(910\) 0 0
\(911\) −39.3690 −1.30435 −0.652176 0.758067i \(-0.726144\pi\)
−0.652176 + 0.758067i \(0.726144\pi\)
\(912\) 0 0
\(913\) −8.84548 −0.292743
\(914\) 34.4034 1.13796
\(915\) 0 0
\(916\) −13.6058 −0.449548
\(917\) −40.3357 −1.33200
\(918\) −19.1075 −0.630642
\(919\) −7.87023 −0.259615 −0.129808 0.991539i \(-0.541436\pi\)
−0.129808 + 0.991539i \(0.541436\pi\)
\(920\) 0 0
\(921\) −17.8860 −0.589365
\(922\) 110.658 3.64434
\(923\) −8.77240 −0.288747
\(924\) −29.0954 −0.957170
\(925\) 0 0
\(926\) −51.5532 −1.69414
\(927\) 38.5254 1.26534
\(928\) 53.8514 1.76776
\(929\) 39.2924 1.28914 0.644572 0.764544i \(-0.277036\pi\)
0.644572 + 0.764544i \(0.277036\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 110.781 3.62876
\(933\) 6.93602 0.227075
\(934\) 101.509 3.32148
\(935\) 0 0
\(936\) −94.3135 −3.08273
\(937\) 26.7554 0.874061 0.437031 0.899447i \(-0.356030\pi\)
0.437031 + 0.899447i \(0.356030\pi\)
\(938\) 42.5652 1.38980
\(939\) 11.6203 0.379213
\(940\) 0 0
\(941\) 41.9191 1.36653 0.683263 0.730173i \(-0.260560\pi\)
0.683263 + 0.730173i \(0.260560\pi\)
\(942\) −3.86294 −0.125861
\(943\) 10.2674 0.334353
\(944\) 105.657 3.43885
\(945\) 0 0
\(946\) 43.4319 1.41209
\(947\) −55.4868 −1.80308 −0.901539 0.432698i \(-0.857562\pi\)
−0.901539 + 0.432698i \(0.857562\pi\)
\(948\) −18.3937 −0.597401
\(949\) −44.7362 −1.45220
\(950\) 0 0
\(951\) 8.79954 0.285345
\(952\) 71.0200 2.30177
\(953\) 8.48081 0.274720 0.137360 0.990521i \(-0.456138\pi\)
0.137360 + 0.990521i \(0.456138\pi\)
\(954\) −66.5561 −2.15483
\(955\) 0 0
\(956\) 65.3454 2.11342
\(957\) −2.89472 −0.0935731
\(958\) −96.1426 −3.10623
\(959\) −49.3129 −1.59240
\(960\) 0 0
\(961\) 56.3256 1.81695
\(962\) −10.5429 −0.339916
\(963\) 22.0368 0.710127
\(964\) −43.4717 −1.40013
\(965\) 0 0
\(966\) −5.67994 −0.182749
\(967\) 7.63102 0.245397 0.122699 0.992444i \(-0.460845\pi\)
0.122699 + 0.992444i \(0.460845\pi\)
\(968\) −25.4886 −0.819234
\(969\) 0 0
\(970\) 0 0
\(971\) 19.3599 0.621288 0.310644 0.950526i \(-0.399455\pi\)
0.310644 + 0.950526i \(0.399455\pi\)
\(972\) 75.9764 2.43695
\(973\) 39.9342 1.28023
\(974\) −68.5695 −2.19711
\(975\) 0 0
\(976\) −184.581 −5.90829
\(977\) 55.8883 1.78802 0.894012 0.448042i \(-0.147879\pi\)
0.894012 + 0.448042i \(0.147879\pi\)
\(978\) −4.92692 −0.157546
\(979\) −30.2241 −0.965968
\(980\) 0 0
\(981\) −30.4935 −0.973582
\(982\) 51.2941 1.63686
\(983\) −4.58450 −0.146223 −0.0731114 0.997324i \(-0.523293\pi\)
−0.0731114 + 0.997324i \(0.523293\pi\)
\(984\) −51.3166 −1.63591
\(985\) 0 0
\(986\) 10.7356 0.341890
\(987\) −3.98792 −0.126937
\(988\) 0 0
\(989\) 6.31873 0.200924
\(990\) 0 0
\(991\) −27.5666 −0.875681 −0.437840 0.899053i \(-0.644257\pi\)
−0.437840 + 0.899053i \(0.644257\pi\)
\(992\) 283.544 9.00254
\(993\) 7.34481 0.233081
\(994\) −23.0804 −0.732065
\(995\) 0 0
\(996\) 9.77240 0.309650
\(997\) −15.9119 −0.503933 −0.251967 0.967736i \(-0.581077\pi\)
−0.251967 + 0.967736i \(0.581077\pi\)
\(998\) −71.0079 −2.24772
\(999\) 3.66056 0.115815
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9025.2.a.be.1.3 3
5.4 even 2 9025.2.a.w.1.1 3
19.18 odd 2 475.2.a.d.1.1 3
57.56 even 2 4275.2.a.bn.1.3 3
76.75 even 2 7600.2.a.bw.1.2 3
95.18 even 4 475.2.b.c.324.6 6
95.37 even 4 475.2.b.c.324.1 6
95.94 odd 2 475.2.a.h.1.3 yes 3
285.284 even 2 4275.2.a.z.1.1 3
380.379 even 2 7600.2.a.bn.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
475.2.a.d.1.1 3 19.18 odd 2
475.2.a.h.1.3 yes 3 95.94 odd 2
475.2.b.c.324.1 6 95.37 even 4
475.2.b.c.324.6 6 95.18 even 4
4275.2.a.z.1.1 3 285.284 even 2
4275.2.a.bn.1.3 3 57.56 even 2
7600.2.a.bn.1.2 3 380.379 even 2
7600.2.a.bw.1.2 3 76.75 even 2
9025.2.a.w.1.1 3 5.4 even 2
9025.2.a.be.1.3 3 1.1 even 1 trivial