Defining parameters
Level: | \( N \) | \(=\) | \( 9016 = 2^{3} \cdot 7^{2} \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 9016.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 47 \) | ||
Sturm bound: | \(2688\) | ||
Trace bound: | \(23\) | ||
Distinguishing \(T_p\): | \(3\), \(5\), \(11\), \(13\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(9016))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1376 | 226 | 1150 |
Cusp forms | 1313 | 226 | 1087 |
Eisenstein series | 63 | 0 | 63 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(7\) | \(23\) | Fricke | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | |||||||
\(+\) | \(+\) | \(+\) | \(+\) | \(156\) | \(27\) | \(129\) | \(149\) | \(27\) | \(122\) | \(7\) | \(0\) | \(7\) | |||
\(+\) | \(+\) | \(-\) | \(-\) | \(188\) | \(31\) | \(157\) | \(180\) | \(31\) | \(149\) | \(8\) | \(0\) | \(8\) | |||
\(+\) | \(-\) | \(+\) | \(-\) | \(188\) | \(29\) | \(159\) | \(180\) | \(29\) | \(151\) | \(8\) | \(0\) | \(8\) | |||
\(+\) | \(-\) | \(-\) | \(+\) | \(156\) | \(26\) | \(130\) | \(148\) | \(26\) | \(122\) | \(8\) | \(0\) | \(8\) | |||
\(-\) | \(+\) | \(+\) | \(-\) | \(164\) | \(29\) | \(135\) | \(156\) | \(29\) | \(127\) | \(8\) | \(0\) | \(8\) | |||
\(-\) | \(+\) | \(-\) | \(+\) | \(180\) | \(25\) | \(155\) | \(172\) | \(25\) | \(147\) | \(8\) | \(0\) | \(8\) | |||
\(-\) | \(-\) | \(+\) | \(+\) | \(180\) | \(28\) | \(152\) | \(172\) | \(28\) | \(144\) | \(8\) | \(0\) | \(8\) | |||
\(-\) | \(-\) | \(-\) | \(-\) | \(164\) | \(31\) | \(133\) | \(156\) | \(31\) | \(125\) | \(8\) | \(0\) | \(8\) | |||
Plus space | \(+\) | \(672\) | \(106\) | \(566\) | \(641\) | \(106\) | \(535\) | \(31\) | \(0\) | \(31\) | |||||
Minus space | \(-\) | \(704\) | \(120\) | \(584\) | \(672\) | \(120\) | \(552\) | \(32\) | \(0\) | \(32\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(9016))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(9016))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(9016)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(23))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(46))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(49))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(56))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(92))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(98))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(161))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(184))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(196))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(322))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(392))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(644))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1127))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1288))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2254))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(4508))\)\(^{\oplus 2}\)