Properties

Label 900.6.j.c.557.1
Level $900$
Weight $6$
Character 900.557
Analytic conductor $144.345$
Analytic rank $0$
Dimension $24$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [900,6,Mod(557,900)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("900.557"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(900, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 2, 1])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 900 = 2^{2} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 900.j (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(144.345437832\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 557.1
Character \(\chi\) \(=\) 900.557
Dual form 900.6.j.c.593.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-123.937 - 123.937i) q^{7} +296.299i q^{11} +(16.2336 - 16.2336i) q^{13} +(-547.265 + 547.265i) q^{17} +262.818i q^{19} +(-2434.99 - 2434.99i) q^{23} -4327.66 q^{29} +8473.00 q^{31} +(-100.890 - 100.890i) q^{37} +14606.6i q^{41} +(-9268.83 + 9268.83i) q^{43} +(-1485.67 + 1485.67i) q^{47} +13913.6i q^{49} +(-9264.63 - 9264.63i) q^{53} -2053.40 q^{59} -10864.1 q^{61} +(9222.90 + 9222.90i) q^{67} +10577.6i q^{71} +(20495.6 - 20495.6i) q^{73} +(36722.4 - 36722.4i) q^{77} -58845.3i q^{79} +(61864.1 + 61864.1i) q^{83} +43592.7 q^{89} -4023.88 q^{91} +(-75406.9 - 75406.9i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 13848 q^{31} - 28200 q^{61} + 908328 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/900\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(451\) \(577\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −123.937 123.937i −0.955994 0.955994i 0.0430780 0.999072i \(-0.486284\pi\)
−0.999072 + 0.0430780i \(0.986284\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 296.299i 0.738327i 0.929364 + 0.369164i \(0.120356\pi\)
−0.929364 + 0.369164i \(0.879644\pi\)
\(12\) 0 0
\(13\) 16.2336 16.2336i 0.0266414 0.0266414i −0.693661 0.720302i \(-0.744003\pi\)
0.720302 + 0.693661i \(0.244003\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −547.265 + 547.265i −0.459278 + 0.459278i −0.898418 0.439140i \(-0.855283\pi\)
0.439140 + 0.898418i \(0.355283\pi\)
\(18\) 0 0
\(19\) 262.818i 0.167021i 0.996507 + 0.0835104i \(0.0266132\pi\)
−0.996507 + 0.0835104i \(0.973387\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −2434.99 2434.99i −0.959793 0.959793i 0.0394291 0.999222i \(-0.487446\pi\)
−0.999222 + 0.0394291i \(0.987446\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −4327.66 −0.955561 −0.477781 0.878479i \(-0.658559\pi\)
−0.477781 + 0.878479i \(0.658559\pi\)
\(30\) 0 0
\(31\) 8473.00 1.58355 0.791777 0.610810i \(-0.209156\pi\)
0.791777 + 0.610810i \(0.209156\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −100.890 100.890i −0.0121155 0.0121155i 0.701023 0.713139i \(-0.252727\pi\)
−0.713139 + 0.701023i \(0.752727\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 14606.6i 1.35703i 0.734589 + 0.678513i \(0.237375\pi\)
−0.734589 + 0.678513i \(0.762625\pi\)
\(42\) 0 0
\(43\) −9268.83 + 9268.83i −0.764459 + 0.764459i −0.977125 0.212666i \(-0.931785\pi\)
0.212666 + 0.977125i \(0.431785\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −1485.67 + 1485.67i −0.0981017 + 0.0981017i −0.754454 0.656353i \(-0.772098\pi\)
0.656353 + 0.754454i \(0.272098\pi\)
\(48\) 0 0
\(49\) 13913.6i 0.827848i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −9264.63 9264.63i −0.453042 0.453042i 0.443321 0.896363i \(-0.353800\pi\)
−0.896363 + 0.443321i \(0.853800\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −2053.40 −0.0767970 −0.0383985 0.999263i \(-0.512226\pi\)
−0.0383985 + 0.999263i \(0.512226\pi\)
\(60\) 0 0
\(61\) −10864.1 −0.373826 −0.186913 0.982376i \(-0.559848\pi\)
−0.186913 + 0.982376i \(0.559848\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 9222.90 + 9222.90i 0.251004 + 0.251004i 0.821382 0.570378i \(-0.193203\pi\)
−0.570378 + 0.821382i \(0.693203\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 10577.6i 0.249024i 0.992218 + 0.124512i \(0.0397365\pi\)
−0.992218 + 0.124512i \(0.960263\pi\)
\(72\) 0 0
\(73\) 20495.6 20495.6i 0.450146 0.450146i −0.445257 0.895403i \(-0.646888\pi\)
0.895403 + 0.445257i \(0.146888\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 36722.4 36722.4i 0.705836 0.705836i
\(78\) 0 0
\(79\) 58845.3i 1.06083i −0.847740 0.530413i \(-0.822037\pi\)
0.847740 0.530413i \(-0.177963\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 61864.1 + 61864.1i 0.985698 + 0.985698i 0.999899 0.0142015i \(-0.00452061\pi\)
−0.0142015 + 0.999899i \(0.504521\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 43592.7 0.583363 0.291681 0.956516i \(-0.405785\pi\)
0.291681 + 0.956516i \(0.405785\pi\)
\(90\) 0 0
\(91\) −4023.88 −0.0509380
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −75406.9 75406.9i −0.813733 0.813733i 0.171459 0.985191i \(-0.445152\pi\)
−0.985191 + 0.171459i \(0.945152\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 136828.i 1.33466i −0.744763 0.667329i \(-0.767437\pi\)
0.744763 0.667329i \(-0.232563\pi\)
\(102\) 0 0
\(103\) 68031.2 68031.2i 0.631851 0.631851i −0.316681 0.948532i \(-0.602568\pi\)
0.948532 + 0.316681i \(0.102568\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −21604.1 + 21604.1i −0.182422 + 0.182422i −0.792410 0.609988i \(-0.791174\pi\)
0.609988 + 0.792410i \(0.291174\pi\)
\(108\) 0 0
\(109\) 56892.1i 0.458655i 0.973349 + 0.229327i \(0.0736526\pi\)
−0.973349 + 0.229327i \(0.926347\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 61980.0 + 61980.0i 0.456621 + 0.456621i 0.897544 0.440924i \(-0.145349\pi\)
−0.440924 + 0.897544i \(0.645349\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 135653. 0.878134
\(120\) 0 0
\(121\) 73257.7 0.454873
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −59893.7 59893.7i −0.329512 0.329512i 0.522889 0.852401i \(-0.324854\pi\)
−0.852401 + 0.522889i \(0.824854\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 317743.i 1.61770i 0.588017 + 0.808849i \(0.299909\pi\)
−0.588017 + 0.808849i \(0.700091\pi\)
\(132\) 0 0
\(133\) 32572.8 32572.8i 0.159671 0.159671i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 283098. 283098.i 1.28865 1.28865i 0.353045 0.935606i \(-0.385146\pi\)
0.935606 0.353045i \(-0.114854\pi\)
\(138\) 0 0
\(139\) 215426.i 0.945716i −0.881139 0.472858i \(-0.843222\pi\)
0.881139 0.472858i \(-0.156778\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 4810.01 + 4810.01i 0.0196701 + 0.0196701i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −369959. −1.36517 −0.682587 0.730804i \(-0.739145\pi\)
−0.682587 + 0.730804i \(0.739145\pi\)
\(150\) 0 0
\(151\) 280532. 1.00124 0.500621 0.865666i \(-0.333105\pi\)
0.500621 + 0.865666i \(0.333105\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −30811.3 30811.3i −0.0997610 0.0997610i 0.655465 0.755226i \(-0.272473\pi\)
−0.755226 + 0.655465i \(0.772473\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 603570.i 1.83511i
\(162\) 0 0
\(163\) −96397.3 + 96397.3i −0.284181 + 0.284181i −0.834774 0.550593i \(-0.814402\pi\)
0.550593 + 0.834774i \(0.314402\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 35684.1 35684.1i 0.0990109 0.0990109i −0.655866 0.754877i \(-0.727696\pi\)
0.754877 + 0.655866i \(0.227696\pi\)
\(168\) 0 0
\(169\) 370766.i 0.998580i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −76138.1 76138.1i −0.193414 0.193414i 0.603756 0.797169i \(-0.293670\pi\)
−0.797169 + 0.603756i \(0.793670\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 411064. 0.958907 0.479454 0.877567i \(-0.340835\pi\)
0.479454 + 0.877567i \(0.340835\pi\)
\(180\) 0 0
\(181\) 272889. 0.619141 0.309571 0.950876i \(-0.399815\pi\)
0.309571 + 0.950876i \(0.399815\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −162154. 162154.i −0.339098 0.339098i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 868065.i 1.72175i 0.508820 + 0.860873i \(0.330082\pi\)
−0.508820 + 0.860873i \(0.669918\pi\)
\(192\) 0 0
\(193\) 23668.8 23668.8i 0.0457387 0.0457387i −0.683868 0.729606i \(-0.739703\pi\)
0.729606 + 0.683868i \(0.239703\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 629819. 629819.i 1.15625 1.15625i 0.170969 0.985276i \(-0.445310\pi\)
0.985276 0.170969i \(-0.0546898\pi\)
\(198\) 0 0
\(199\) 120544.i 0.215780i 0.994163 + 0.107890i \(0.0344094\pi\)
−0.994163 + 0.107890i \(0.965591\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 536357. + 536357.i 0.913511 + 0.913511i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −77872.7 −0.123316
\(210\) 0 0
\(211\) 1.16641e6 1.80362 0.901809 0.432135i \(-0.142240\pi\)
0.901809 + 0.432135i \(0.142240\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −1.05012e6 1.05012e6i −1.51387 1.51387i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 17768.2i 0.0244716i
\(222\) 0 0
\(223\) 794666. 794666.i 1.07010 1.07010i 0.0727445 0.997351i \(-0.476824\pi\)
0.997351 0.0727445i \(-0.0231758\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 614503. 614503.i 0.791515 0.791515i −0.190225 0.981740i \(-0.560922\pi\)
0.981740 + 0.190225i \(0.0609218\pi\)
\(228\) 0 0
\(229\) 1.41946e6i 1.78869i −0.447377 0.894346i \(-0.647642\pi\)
0.447377 0.894346i \(-0.352358\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 580216. + 580216.i 0.700165 + 0.700165i 0.964446 0.264281i \(-0.0851346\pi\)
−0.264281 + 0.964446i \(0.585135\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 438358. 0.496402 0.248201 0.968709i \(-0.420161\pi\)
0.248201 + 0.968709i \(0.420161\pi\)
\(240\) 0 0
\(241\) −61779.3 −0.0685173 −0.0342586 0.999413i \(-0.510907\pi\)
−0.0342586 + 0.999413i \(0.510907\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 4266.48 + 4266.48i 0.00444967 + 0.00444967i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 152110.i 0.152396i 0.997093 + 0.0761978i \(0.0242780\pi\)
−0.997093 + 0.0761978i \(0.975722\pi\)
\(252\) 0 0
\(253\) 721486. 721486.i 0.708642 0.708642i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 794182. 794182.i 0.750045 0.750045i −0.224442 0.974487i \(-0.572056\pi\)
0.974487 + 0.224442i \(0.0720560\pi\)
\(258\) 0 0
\(259\) 25007.9i 0.0231648i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 846425. + 846425.i 0.754570 + 0.754570i 0.975328 0.220759i \(-0.0708534\pi\)
−0.220759 + 0.975328i \(0.570853\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 1.38502e6 1.16701 0.583507 0.812108i \(-0.301680\pi\)
0.583507 + 0.812108i \(0.301680\pi\)
\(270\) 0 0
\(271\) −450412. −0.372552 −0.186276 0.982497i \(-0.559642\pi\)
−0.186276 + 0.982497i \(0.559642\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −1.25916e6 1.25916e6i −0.986012 0.986012i 0.0138917 0.999904i \(-0.495578\pi\)
−0.999904 + 0.0138917i \(0.995578\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 1.96636e6i 1.48558i 0.669522 + 0.742792i \(0.266499\pi\)
−0.669522 + 0.742792i \(0.733501\pi\)
\(282\) 0 0
\(283\) 963548. 963548.i 0.715167 0.715167i −0.252445 0.967611i \(-0.581235\pi\)
0.967611 + 0.252445i \(0.0812346\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 1.81029e6 1.81029e6i 1.29731 1.29731i
\(288\) 0 0
\(289\) 820858.i 0.578127i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 1.78311e6 + 1.78311e6i 1.21342 + 1.21342i 0.969895 + 0.243522i \(0.0783026\pi\)
0.243522 + 0.969895i \(0.421697\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −79057.4 −0.0511405
\(300\) 0 0
\(301\) 2.29750e6 1.46164
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −1.26197e6 1.26197e6i −0.764193 0.764193i 0.212885 0.977077i \(-0.431714\pi\)
−0.977077 + 0.212885i \(0.931714\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 2.26700e6i 1.32908i 0.747253 + 0.664540i \(0.231372\pi\)
−0.747253 + 0.664540i \(0.768628\pi\)
\(312\) 0 0
\(313\) −1.03818e6 + 1.03818e6i −0.598979 + 0.598979i −0.940041 0.341062i \(-0.889213\pi\)
0.341062 + 0.940041i \(0.389213\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 895082. 895082.i 0.500282 0.500282i −0.411244 0.911526i \(-0.634905\pi\)
0.911526 + 0.411244i \(0.134905\pi\)
\(318\) 0 0
\(319\) 1.28228e6i 0.705517i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −143831. 143831.i −0.0767090 0.0767090i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 368257. 0.187569
\(330\) 0 0
\(331\) 1.59270e6 0.799031 0.399515 0.916727i \(-0.369178\pi\)
0.399515 + 0.916727i \(0.369178\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 2.14157e6 + 2.14157e6i 1.02721 + 1.02721i 0.999619 + 0.0275860i \(0.00878203\pi\)
0.0275860 + 0.999619i \(0.491218\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 2.51054e6i 1.16918i
\(342\) 0 0
\(343\) −358594. + 358594.i −0.164576 + 0.164576i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 1.35898e6 1.35898e6i 0.605883 0.605883i −0.335984 0.941868i \(-0.609069\pi\)
0.941868 + 0.335984i \(0.109069\pi\)
\(348\) 0 0
\(349\) 331480.i 0.145678i −0.997344 0.0728390i \(-0.976794\pi\)
0.997344 0.0728390i \(-0.0232059\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −1.53861e6 1.53861e6i −0.657192 0.657192i 0.297523 0.954715i \(-0.403840\pi\)
−0.954715 + 0.297523i \(0.903840\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −3.46509e6 −1.41899 −0.709493 0.704712i \(-0.751076\pi\)
−0.709493 + 0.704712i \(0.751076\pi\)
\(360\) 0 0
\(361\) 2.40703e6 0.972104
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −2.95418e6 2.95418e6i −1.14491 1.14491i −0.987539 0.157373i \(-0.949697\pi\)
−0.157373 0.987539i \(-0.550303\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 2.29646e6i 0.866211i
\(372\) 0 0
\(373\) 1.99621e6 1.99621e6i 0.742906 0.742906i −0.230231 0.973136i \(-0.573948\pi\)
0.973136 + 0.230231i \(0.0739480\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −70253.6 + 70253.6i −0.0254575 + 0.0254575i
\(378\) 0 0
\(379\) 3.85257e6i 1.37769i 0.724907 + 0.688847i \(0.241883\pi\)
−0.724907 + 0.688847i \(0.758117\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 114173. + 114173.i 0.0397709 + 0.0397709i 0.726713 0.686942i \(-0.241047\pi\)
−0.686942 + 0.726713i \(0.741047\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 3.51434e6 1.17752 0.588762 0.808307i \(-0.299616\pi\)
0.588762 + 0.808307i \(0.299616\pi\)
\(390\) 0 0
\(391\) 2.66517e6 0.881624
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −3.18815e6 3.18815e6i −1.01523 1.01523i −0.999882 0.0153441i \(-0.995116\pi\)
−0.0153441 0.999882i \(-0.504884\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 3.76155e6i 1.16817i 0.811692 + 0.584086i \(0.198547\pi\)
−0.811692 + 0.584086i \(0.801453\pi\)
\(402\) 0 0
\(403\) 137547. 137547.i 0.0421881 0.0421881i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 29893.6 29893.6i 0.00894524 0.00894524i
\(408\) 0 0
\(409\) 5.01805e6i 1.48329i −0.670792 0.741645i \(-0.734046\pi\)
0.670792 0.741645i \(-0.265954\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 254492. + 254492.i 0.0734174 + 0.0734174i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −1.71304e6 −0.476685 −0.238342 0.971181i \(-0.576604\pi\)
−0.238342 + 0.971181i \(0.576604\pi\)
\(420\) 0 0
\(421\) −1.12412e6 −0.309105 −0.154552 0.987985i \(-0.549394\pi\)
−0.154552 + 0.987985i \(0.549394\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 1.34646e6 + 1.34646e6i 0.357375 + 0.357375i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 3.16531e6i 0.820773i −0.911912 0.410386i \(-0.865394\pi\)
0.911912 0.410386i \(-0.134606\pi\)
\(432\) 0 0
\(433\) −520810. + 520810.i −0.133493 + 0.133493i −0.770696 0.637203i \(-0.780091\pi\)
0.637203 + 0.770696i \(0.280091\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 639959. 639959.i 0.160305 0.160305i
\(438\) 0 0
\(439\) 2.63513e6i 0.652589i 0.945268 + 0.326295i \(0.105800\pi\)
−0.945268 + 0.326295i \(0.894200\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 4.89945e6 + 4.89945e6i 1.18615 + 1.18615i 0.978124 + 0.208023i \(0.0667028\pi\)
0.208023 + 0.978124i \(0.433297\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 2.20484e6 0.516133 0.258066 0.966127i \(-0.416915\pi\)
0.258066 + 0.966127i \(0.416915\pi\)
\(450\) 0 0
\(451\) −4.32791e6 −1.00193
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 3.27070e6 + 3.27070e6i 0.732571 + 0.732571i 0.971128 0.238558i \(-0.0766746\pi\)
−0.238558 + 0.971128i \(0.576675\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 7.76391e6i 1.70148i −0.525583 0.850742i \(-0.676153\pi\)
0.525583 0.850742i \(-0.323847\pi\)
\(462\) 0 0
\(463\) 171191. 171191.i 0.0371133 0.0371133i −0.688307 0.725420i \(-0.741646\pi\)
0.725420 + 0.688307i \(0.241646\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 921034. 921034.i 0.195426 0.195426i −0.602610 0.798036i \(-0.705872\pi\)
0.798036 + 0.602610i \(0.205872\pi\)
\(468\) 0 0
\(469\) 2.28611e6i 0.479917i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −2.74635e6 2.74635e6i −0.564421 0.564421i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 157207. 0.0313064 0.0156532 0.999877i \(-0.495017\pi\)
0.0156532 + 0.999877i \(0.495017\pi\)
\(480\) 0 0
\(481\) −3275.61 −0.000645550
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 690885. + 690885.i 0.132003 + 0.132003i 0.770021 0.638018i \(-0.220246\pi\)
−0.638018 + 0.770021i \(0.720246\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 3.17012e6i 0.593434i −0.954965 0.296717i \(-0.904108\pi\)
0.954965 0.296717i \(-0.0958918\pi\)
\(492\) 0 0
\(493\) 2.36838e6 2.36838e6i 0.438868 0.438868i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 1.31095e6 1.31095e6i 0.238065 0.238065i
\(498\) 0 0
\(499\) 3.10049e6i 0.557415i −0.960376 0.278708i \(-0.910094\pi\)
0.960376 0.278708i \(-0.0899061\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 3.20877e6 + 3.20877e6i 0.565481 + 0.565481i 0.930859 0.365378i \(-0.119060\pi\)
−0.365378 + 0.930859i \(0.619060\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 6.43063e6 1.10017 0.550084 0.835109i \(-0.314596\pi\)
0.550084 + 0.835109i \(0.314596\pi\)
\(510\) 0 0
\(511\) −5.08032e6 −0.860674
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −440202. 440202.i −0.0724312 0.0724312i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 3.25599e6i 0.525519i 0.964861 + 0.262759i \(0.0846325\pi\)
−0.964861 + 0.262759i \(0.915367\pi\)
\(522\) 0 0
\(523\) −259544. + 259544.i −0.0414912 + 0.0414912i −0.727548 0.686057i \(-0.759340\pi\)
0.686057 + 0.727548i \(0.259340\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −4.63698e6 + 4.63698e6i −0.727292 + 0.727292i
\(528\) 0 0
\(529\) 5.42202e6i 0.842406i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 237117. + 237117.i 0.0361531 + 0.0361531i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −4.12260e6 −0.611223
\(540\) 0 0
\(541\) −8.89249e6 −1.30626 −0.653131 0.757245i \(-0.726545\pi\)
−0.653131 + 0.757245i \(0.726545\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 1.90236e6 + 1.90236e6i 0.271846 + 0.271846i 0.829843 0.557997i \(-0.188430\pi\)
−0.557997 + 0.829843i \(0.688430\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 1.13739e6i 0.159599i
\(552\) 0 0
\(553\) −7.29309e6 + 7.29309e6i −1.01414 + 1.01414i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −6.92347e6 + 6.92347e6i −0.945553 + 0.945553i −0.998592 0.0530399i \(-0.983109\pi\)
0.0530399 + 0.998592i \(0.483109\pi\)
\(558\) 0 0
\(559\) 300933.i 0.0407325i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −9.52384e6 9.52384e6i −1.26631 1.26631i −0.947979 0.318334i \(-0.896877\pi\)
−0.318334 0.947979i \(-0.603123\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −1.04760e7 −1.35648 −0.678241 0.734839i \(-0.737257\pi\)
−0.678241 + 0.734839i \(0.737257\pi\)
\(570\) 0 0
\(571\) 2.27504e6 0.292011 0.146006 0.989284i \(-0.453358\pi\)
0.146006 + 0.989284i \(0.453358\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 541993. + 541993.i 0.0677726 + 0.0677726i 0.740181 0.672408i \(-0.234740\pi\)
−0.672408 + 0.740181i \(0.734740\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 1.53345e7i 1.88464i
\(582\) 0 0
\(583\) 2.74510e6 2.74510e6i 0.334493 0.334493i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −1.04755e7 + 1.04755e7i −1.25482 + 1.25482i −0.301286 + 0.953534i \(0.597416\pi\)
−0.953534 + 0.301286i \(0.902584\pi\)
\(588\) 0 0
\(589\) 2.22686e6i 0.264487i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −9.39119e6 9.39119e6i −1.09669 1.09669i −0.994795 0.101894i \(-0.967510\pi\)
−0.101894 0.994795i \(-0.532490\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −3.38639e6 −0.385629 −0.192814 0.981235i \(-0.561762\pi\)
−0.192814 + 0.981235i \(0.561762\pi\)
\(600\) 0 0
\(601\) 7.38299e6 0.833770 0.416885 0.908959i \(-0.363122\pi\)
0.416885 + 0.908959i \(0.363122\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 1.09377e7 + 1.09377e7i 1.20491 + 1.20491i 0.972654 + 0.232259i \(0.0746116\pi\)
0.232259 + 0.972654i \(0.425388\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 48235.5i 0.00522713i
\(612\) 0 0
\(613\) −9.57139e6 + 9.57139e6i −1.02878 + 1.02878i −0.0292102 + 0.999573i \(0.509299\pi\)
−0.999573 + 0.0292102i \(0.990701\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 2.65393e6 2.65393e6i 0.280657 0.280657i −0.552714 0.833371i \(-0.686408\pi\)
0.833371 + 0.552714i \(0.186408\pi\)
\(618\) 0 0
\(619\) 2.23480e6i 0.234429i 0.993107 + 0.117214i \(0.0373965\pi\)
−0.993107 + 0.117214i \(0.962604\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −5.40274e6 5.40274e6i −0.557691 0.557691i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 110427. 0.0111288
\(630\) 0 0
\(631\) 9.17502e6 0.917347 0.458674 0.888605i \(-0.348325\pi\)
0.458674 + 0.888605i \(0.348325\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 225869. + 225869.i 0.0220550 + 0.0220550i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 949377.i 0.0912628i 0.998958 + 0.0456314i \(0.0145300\pi\)
−0.998958 + 0.0456314i \(0.985470\pi\)
\(642\) 0 0
\(643\) 2.12833e6 2.12833e6i 0.203007 0.203007i −0.598280 0.801287i \(-0.704149\pi\)
0.801287 + 0.598280i \(0.204149\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −1.02885e7 + 1.02885e7i −0.966253 + 0.966253i −0.999449 0.0331962i \(-0.989431\pi\)
0.0331962 + 0.999449i \(0.489431\pi\)
\(648\) 0 0
\(649\) 608422.i 0.0567013i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −4.59428e6 4.59428e6i −0.421633 0.421633i 0.464133 0.885766i \(-0.346366\pi\)
−0.885766 + 0.464133i \(0.846366\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −5.22204e6 −0.468411 −0.234205 0.972187i \(-0.575249\pi\)
−0.234205 + 0.972187i \(0.575249\pi\)
\(660\) 0 0
\(661\) −2.16231e7 −1.92493 −0.962465 0.271405i \(-0.912512\pi\)
−0.962465 + 0.271405i \(0.912512\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 1.05378e7 + 1.05378e7i 0.917141 + 0.917141i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 3.21903e6i 0.276006i
\(672\) 0 0
\(673\) −1.51265e7 + 1.51265e7i −1.28736 + 1.28736i −0.350974 + 0.936385i \(0.614150\pi\)
−0.936385 + 0.350974i \(0.885850\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −2.02380e6 + 2.02380e6i −0.169705 + 0.169705i −0.786850 0.617144i \(-0.788289\pi\)
0.617144 + 0.786850i \(0.288289\pi\)
\(678\) 0 0
\(679\) 1.86914e7i 1.55585i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 8.21866e6 + 8.21866e6i 0.674138 + 0.674138i 0.958667 0.284529i \(-0.0918372\pi\)
−0.284529 + 0.958667i \(0.591837\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −300797. −0.0241393
\(690\) 0 0
\(691\) −1.62147e7 −1.29185 −0.645926 0.763400i \(-0.723529\pi\)
−0.645926 + 0.763400i \(0.723529\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −7.99366e6 7.99366e6i −0.623252 0.623252i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 2.49796e7i 1.91995i −0.280081 0.959976i \(-0.590361\pi\)
0.280081 0.959976i \(-0.409639\pi\)
\(702\) 0 0
\(703\) 26515.6 26515.6i 0.00202355 0.00202355i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −1.69580e7 + 1.69580e7i −1.27592 + 1.27592i
\(708\) 0 0
\(709\) 1.44518e7i 1.07971i −0.841760 0.539853i \(-0.818480\pi\)
0.841760 0.539853i \(-0.181520\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −2.06317e7 2.06317e7i −1.51989 1.51989i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 4.32849e6 0.312258 0.156129 0.987737i \(-0.450098\pi\)
0.156129 + 0.987737i \(0.450098\pi\)
\(720\) 0 0
\(721\) −1.68631e7 −1.20809
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 1.66934e7 + 1.66934e7i 1.17141 + 1.17141i 0.981873 + 0.189538i \(0.0606989\pi\)
0.189538 + 0.981873i \(0.439301\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 1.01450e7i 0.702198i
\(732\) 0 0
\(733\) 7.29281e6 7.29281e6i 0.501343 0.501343i −0.410512 0.911855i \(-0.634650\pi\)
0.911855 + 0.410512i \(0.134650\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −2.73274e6 + 2.73274e6i −0.185323 + 0.185323i
\(738\) 0 0
\(739\) 7.99531e6i 0.538548i −0.963064 0.269274i \(-0.913216\pi\)
0.963064 0.269274i \(-0.0867837\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 1.74977e7 + 1.74977e7i 1.16281 + 1.16281i 0.983858 + 0.178953i \(0.0572712\pi\)
0.178953 + 0.983858i \(0.442729\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 5.35509e6 0.348788
\(750\) 0 0
\(751\) −1.18625e7 −0.767494 −0.383747 0.923438i \(-0.625366\pi\)
−0.383747 + 0.923438i \(0.625366\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 1.18681e7 + 1.18681e7i 0.752733 + 0.752733i 0.974989 0.222255i \(-0.0713418\pi\)
−0.222255 + 0.974989i \(0.571342\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 1.36406e7i 0.853832i −0.904291 0.426916i \(-0.859600\pi\)
0.904291 0.426916i \(-0.140400\pi\)
\(762\) 0 0
\(763\) 7.05102e6 7.05102e6i 0.438471 0.438471i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −33334.2 + 33334.2i −0.00204598 + 0.00204598i
\(768\) 0 0
\(769\) 8.00583e6i 0.488192i 0.969751 + 0.244096i \(0.0784912\pi\)
−0.969751 + 0.244096i \(0.921509\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −2.94684e6 2.94684e6i −0.177381 0.177381i 0.612832 0.790213i \(-0.290030\pi\)
−0.790213 + 0.612832i \(0.790030\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −3.83886e6 −0.226652
\(780\) 0 0
\(781\) −3.13414e6 −0.183861
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −5.07512e6 5.07512e6i −0.292085 0.292085i 0.545818 0.837904i \(-0.316219\pi\)
−0.837904 + 0.545818i \(0.816219\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 1.53632e7i 0.873053i
\(792\) 0 0
\(793\) −176364. + 176364.i −0.00995924 + 0.00995924i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 1.32317e7 1.32317e7i 0.737855 0.737855i −0.234308 0.972162i \(-0.575282\pi\)
0.972162 + 0.234308i \(0.0752824\pi\)
\(798\) 0 0
\(799\) 1.62611e6i 0.0901120i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 6.07284e6 + 6.07284e6i 0.332355 + 0.332355i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 3.80318e6 0.204303 0.102152 0.994769i \(-0.467427\pi\)
0.102152 + 0.994769i \(0.467427\pi\)
\(810\) 0 0
\(811\) 1.12914e7 0.602829 0.301414 0.953493i \(-0.402541\pi\)
0.301414 + 0.953493i \(0.402541\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −2.43601e6 2.43601e6i −0.127681 0.127681i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 2.15427e7i 1.11543i −0.830032 0.557716i \(-0.811678\pi\)
0.830032 0.557716i \(-0.188322\pi\)
\(822\) 0 0
\(823\) −8.73412e6 + 8.73412e6i −0.449489 + 0.449489i −0.895185 0.445695i \(-0.852956\pi\)
0.445695 + 0.895185i \(0.352956\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −1.59254e7 + 1.59254e7i −0.809705 + 0.809705i −0.984589 0.174884i \(-0.944045\pi\)
0.174884 + 0.984589i \(0.444045\pi\)
\(828\) 0 0
\(829\) 2.78306e7i 1.40649i −0.710948 0.703244i \(-0.751734\pi\)
0.710948 0.703244i \(-0.248266\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −7.61445e6 7.61445e6i −0.380212 0.380212i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −8.50255e6 −0.417008 −0.208504 0.978022i \(-0.566859\pi\)
−0.208504 + 0.978022i \(0.566859\pi\)
\(840\) 0 0
\(841\) −1.78247e6 −0.0869026
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −9.07933e6 9.07933e6i −0.434856 0.434856i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 491332.i 0.0232568i
\(852\) 0 0
\(853\) −4.51666e6 + 4.51666e6i −0.212542 + 0.212542i −0.805346 0.592805i \(-0.798021\pi\)
0.592805 + 0.805346i \(0.298021\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −2.32536e7 + 2.32536e7i −1.08153 + 1.08153i −0.0851602 + 0.996367i \(0.527140\pi\)
−0.996367 + 0.0851602i \(0.972860\pi\)
\(858\) 0 0
\(859\) 3.86671e7i 1.78796i 0.448105 + 0.893981i \(0.352099\pi\)
−0.448105 + 0.893981i \(0.647901\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −1.41644e7 1.41644e7i −0.647400 0.647400i 0.304964 0.952364i \(-0.401356\pi\)
−0.952364 + 0.304964i \(0.901356\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 1.74358e7 0.783236
\(870\) 0 0
\(871\) 299442. 0.0133742
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −6.20885e6 6.20885e6i −0.272591 0.272591i 0.557551 0.830143i \(-0.311741\pi\)
−0.830143 + 0.557551i \(0.811741\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 1.69249e7i 0.734660i 0.930091 + 0.367330i \(0.119728\pi\)
−0.930091 + 0.367330i \(0.880272\pi\)
\(882\) 0 0
\(883\) 154530. 154530.i 0.00666976 0.00666976i −0.703764 0.710434i \(-0.748499\pi\)
0.710434 + 0.703764i \(0.248499\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −1.66600e7 + 1.66600e7i −0.710992 + 0.710992i −0.966743 0.255751i \(-0.917677\pi\)
0.255751 + 0.966743i \(0.417677\pi\)
\(888\) 0 0
\(889\) 1.48461e7i 0.630024i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −390460. 390460.i −0.0163850 0.0163850i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −3.66683e7 −1.51318
\(900\) 0 0
\(901\) 1.01404e7 0.416145
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 1.88373e7 + 1.88373e7i 0.760328 + 0.760328i 0.976382 0.216053i \(-0.0693185\pi\)
−0.216053 + 0.976382i \(0.569319\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 2.97112e7i 1.18611i 0.805163 + 0.593054i \(0.202078\pi\)
−0.805163 + 0.593054i \(0.797922\pi\)
\(912\) 0 0
\(913\) −1.83303e7 + 1.83303e7i −0.727767 + 0.727767i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 3.93800e7 3.93800e7i 1.54651 1.54651i
\(918\) 0 0
\(919\) 1.68807e7i 0.659329i −0.944098 0.329665i \(-0.893064\pi\)
0.944098 0.329665i \(-0.106936\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 171713. + 171713.i 0.00663435 + 0.00663435i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 3.25540e7 1.23756 0.618779 0.785565i \(-0.287628\pi\)
0.618779 + 0.785565i \(0.287628\pi\)
\(930\) 0 0
\(931\) −3.65675e6 −0.138268
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 6.56214e6 + 6.56214e6i 0.244172 + 0.244172i 0.818574 0.574401i \(-0.194765\pi\)
−0.574401 + 0.818574i \(0.694765\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 4.46801e7i 1.64490i 0.568836 + 0.822451i \(0.307394\pi\)
−0.568836 + 0.822451i \(0.692606\pi\)
\(942\) 0 0
\(943\) 3.55668e7 3.55668e7i 1.30246 1.30246i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 2.74895e7 2.74895e7i 0.996075 0.996075i −0.00391761 0.999992i \(-0.501247\pi\)
0.999992 + 0.00391761i \(0.00124702\pi\)
\(948\) 0 0
\(949\) 665436.i 0.0239851i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −3.00343e7 3.00343e7i −1.07123 1.07123i −0.997260 0.0739747i \(-0.976432\pi\)
−0.0739747 0.997260i \(-0.523568\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −7.01725e7 −2.46389
\(960\) 0 0
\(961\) 4.31626e7 1.50765
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −1.78773e7 1.78773e7i −0.614803 0.614803i 0.329391 0.944194i \(-0.393157\pi\)
−0.944194 + 0.329391i \(0.893157\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 1.75062e7i 0.595861i 0.954588 + 0.297930i \(0.0962963\pi\)
−0.954588 + 0.297930i \(0.903704\pi\)
\(972\) 0 0
\(973\) −2.66992e7 + 2.66992e7i −0.904098 + 0.904098i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −6.05445e6 + 6.05445e6i −0.202926 + 0.202926i −0.801253 0.598326i \(-0.795833\pi\)
0.598326 + 0.801253i \(0.295833\pi\)
\(978\) 0 0
\(979\) 1.29165e7i 0.430713i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 3.92434e7 + 3.92434e7i 1.29534 + 1.29534i 0.931439 + 0.363898i \(0.118554\pi\)
0.363898 + 0.931439i \(0.381446\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 4.51390e7 1.46744
\(990\) 0 0
\(991\) 9.21716e6 0.298135 0.149068 0.988827i \(-0.452373\pi\)
0.149068 + 0.988827i \(0.452373\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 3.03016e6 + 3.03016e6i 0.0965446 + 0.0965446i 0.753729 0.657185i \(-0.228253\pi\)
−0.657185 + 0.753729i \(0.728253\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 900.6.j.c.557.1 24
3.2 odd 2 inner 900.6.j.c.557.2 yes 24
5.2 odd 4 inner 900.6.j.c.593.12 yes 24
5.3 odd 4 inner 900.6.j.c.593.2 yes 24
5.4 even 2 inner 900.6.j.c.557.11 yes 24
15.2 even 4 inner 900.6.j.c.593.11 yes 24
15.8 even 4 inner 900.6.j.c.593.1 yes 24
15.14 odd 2 inner 900.6.j.c.557.12 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
900.6.j.c.557.1 24 1.1 even 1 trivial
900.6.j.c.557.2 yes 24 3.2 odd 2 inner
900.6.j.c.557.11 yes 24 5.4 even 2 inner
900.6.j.c.557.12 yes 24 15.14 odd 2 inner
900.6.j.c.593.1 yes 24 15.8 even 4 inner
900.6.j.c.593.2 yes 24 5.3 odd 4 inner
900.6.j.c.593.11 yes 24 15.2 even 4 inner
900.6.j.c.593.12 yes 24 5.2 odd 4 inner