Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [900,4,Mod(649,900)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(900, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 1]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("900.649");
S:= CuspForms(chi, 4);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 900 = 2^{2} \cdot 3^{2} \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 900.d (of order \(2\), degree \(1\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(53.1017190052\) |
Analytic rank: | \(0\) |
Dimension: | \(2\) |
Coefficient field: | \(\Q(i)\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: | \( x^{2} + 1 \) |
Coefficient ring: | \(\Z[a_1, \ldots, a_{13}]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 300) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
Embedding invariants
Embedding label | 649.2 | ||
Root | \(1.00000i\) of defining polynomial | ||
Character | \(\chi\) | \(=\) | 900.649 |
Dual form | 900.4.d.e.649.1 |
$q$-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/900\mathbb{Z}\right)^\times\).
\(n\) | \(101\) | \(451\) | \(577\) |
\(\chi(n)\) | \(1\) | \(1\) | \(-1\) |
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
\(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
\(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
\(2\) | 0 | 0 | ||||||||
\(3\) | 0 | 0 | ||||||||
\(4\) | 0 | 0 | ||||||||
\(5\) | 0 | 0 | ||||||||
\(6\) | 0 | 0 | ||||||||
\(7\) | 13.0000i | 0.701934i | 0.936388 | + | 0.350967i | \(0.114147\pi\) | ||||
−0.936388 | + | 0.350967i | \(0.885853\pi\) | |||||||
\(8\) | 0 | 0 | ||||||||
\(9\) | 0 | 0 | ||||||||
\(10\) | 0 | 0 | ||||||||
\(11\) | −6.00000 | −0.164461 | −0.0822304 | − | 0.996613i | \(-0.526204\pi\) | ||||
−0.0822304 | + | 0.996613i | \(0.526204\pi\) | |||||||
\(12\) | 0 | 0 | ||||||||
\(13\) | 5.00000i | 0.106673i | 0.998577 | + | 0.0533366i | \(0.0169856\pi\) | ||||
−0.998577 | + | 0.0533366i | \(0.983014\pi\) | |||||||
\(14\) | 0 | 0 | ||||||||
\(15\) | 0 | 0 | ||||||||
\(16\) | 0 | 0 | ||||||||
\(17\) | − 78.0000i | − 1.11281i | −0.830911 | − | 0.556405i | \(-0.812180\pi\) | ||||
0.830911 | − | 0.556405i | \(-0.187820\pi\) | |||||||
\(18\) | 0 | 0 | ||||||||
\(19\) | −65.0000 | −0.784843 | −0.392422 | − | 0.919785i | \(-0.628363\pi\) | ||||
−0.392422 | + | 0.919785i | \(0.628363\pi\) | |||||||
\(20\) | 0 | 0 | ||||||||
\(21\) | 0 | 0 | ||||||||
\(22\) | 0 | 0 | ||||||||
\(23\) | − 138.000i | − 1.25109i | −0.780189 | − | 0.625543i | \(-0.784877\pi\) | ||||
0.780189 | − | 0.625543i | \(-0.215123\pi\) | |||||||
\(24\) | 0 | 0 | ||||||||
\(25\) | 0 | 0 | ||||||||
\(26\) | 0 | 0 | ||||||||
\(27\) | 0 | 0 | ||||||||
\(28\) | 0 | 0 | ||||||||
\(29\) | 66.0000 | 0.422617 | 0.211308 | − | 0.977419i | \(-0.432228\pi\) | ||||
0.211308 | + | 0.977419i | \(0.432228\pi\) | |||||||
\(30\) | 0 | 0 | ||||||||
\(31\) | 299.000 | 1.73232 | 0.866161 | − | 0.499765i | \(-0.166580\pi\) | ||||
0.866161 | + | 0.499765i | \(0.166580\pi\) | |||||||
\(32\) | 0 | 0 | ||||||||
\(33\) | 0 | 0 | ||||||||
\(34\) | 0 | 0 | ||||||||
\(35\) | 0 | 0 | ||||||||
\(36\) | 0 | 0 | ||||||||
\(37\) | 214.000i | 0.950848i | 0.879757 | + | 0.475424i | \(0.157705\pi\) | ||||
−0.879757 | + | 0.475424i | \(0.842295\pi\) | |||||||
\(38\) | 0 | 0 | ||||||||
\(39\) | 0 | 0 | ||||||||
\(40\) | 0 | 0 | ||||||||
\(41\) | −360.000 | −1.37128 | −0.685641 | − | 0.727940i | \(-0.740478\pi\) | ||||
−0.685641 | + | 0.727940i | \(0.740478\pi\) | |||||||
\(42\) | 0 | 0 | ||||||||
\(43\) | 203.000i | 0.719935i | 0.932965 | + | 0.359968i | \(0.117212\pi\) | ||||
−0.932965 | + | 0.359968i | \(0.882788\pi\) | |||||||
\(44\) | 0 | 0 | ||||||||
\(45\) | 0 | 0 | ||||||||
\(46\) | 0 | 0 | ||||||||
\(47\) | 78.0000i | 0.242074i | 0.992648 | + | 0.121037i | \(0.0386219\pi\) | ||||
−0.992648 | + | 0.121037i | \(0.961378\pi\) | |||||||
\(48\) | 0 | 0 | ||||||||
\(49\) | 174.000 | 0.507289 | ||||||||
\(50\) | 0 | 0 | ||||||||
\(51\) | 0 | 0 | ||||||||
\(52\) | 0 | 0 | ||||||||
\(53\) | − 636.000i | − 1.64833i | −0.566352 | − | 0.824163i | \(-0.691646\pi\) | ||||
0.566352 | − | 0.824163i | \(-0.308354\pi\) | |||||||
\(54\) | 0 | 0 | ||||||||
\(55\) | 0 | 0 | ||||||||
\(56\) | 0 | 0 | ||||||||
\(57\) | 0 | 0 | ||||||||
\(58\) | 0 | 0 | ||||||||
\(59\) | 786.000 | 1.73438 | 0.867191 | − | 0.497976i | \(-0.165923\pi\) | ||||
0.867191 | + | 0.497976i | \(0.165923\pi\) | |||||||
\(60\) | 0 | 0 | ||||||||
\(61\) | 467.000 | 0.980217 | 0.490108 | − | 0.871662i | \(-0.336957\pi\) | ||||
0.490108 | + | 0.871662i | \(0.336957\pi\) | |||||||
\(62\) | 0 | 0 | ||||||||
\(63\) | 0 | 0 | ||||||||
\(64\) | 0 | 0 | ||||||||
\(65\) | 0 | 0 | ||||||||
\(66\) | 0 | 0 | ||||||||
\(67\) | 217.000i | 0.395683i | 0.980234 | + | 0.197842i | \(0.0633932\pi\) | ||||
−0.980234 | + | 0.197842i | \(0.936607\pi\) | |||||||
\(68\) | 0 | 0 | ||||||||
\(69\) | 0 | 0 | ||||||||
\(70\) | 0 | 0 | ||||||||
\(71\) | 360.000 | 0.601748 | 0.300874 | − | 0.953664i | \(-0.402722\pi\) | ||||
0.300874 | + | 0.953664i | \(0.402722\pi\) | |||||||
\(72\) | 0 | 0 | ||||||||
\(73\) | − 286.000i | − 0.458545i | −0.973362 | − | 0.229272i | \(-0.926365\pi\) | ||||
0.973362 | − | 0.229272i | \(-0.0736347\pi\) | |||||||
\(74\) | 0 | 0 | ||||||||
\(75\) | 0 | 0 | ||||||||
\(76\) | 0 | 0 | ||||||||
\(77\) | − 78.0000i | − 0.115441i | ||||||||
\(78\) | 0 | 0 | ||||||||
\(79\) | −272.000 | −0.387372 | −0.193686 | − | 0.981064i | \(-0.562044\pi\) | ||||
−0.193686 | + | 0.981064i | \(0.562044\pi\) | |||||||
\(80\) | 0 | 0 | ||||||||
\(81\) | 0 | 0 | ||||||||
\(82\) | 0 | 0 | ||||||||
\(83\) | − 498.000i | − 0.658586i | −0.944228 | − | 0.329293i | \(-0.893190\pi\) | ||||
0.944228 | − | 0.329293i | \(-0.106810\pi\) | |||||||
\(84\) | 0 | 0 | ||||||||
\(85\) | 0 | 0 | ||||||||
\(86\) | 0 | 0 | ||||||||
\(87\) | 0 | 0 | ||||||||
\(88\) | 0 | 0 | ||||||||
\(89\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(90\) | 0 | 0 | ||||||||
\(91\) | −65.0000 | −0.0748775 | ||||||||
\(92\) | 0 | 0 | ||||||||
\(93\) | 0 | 0 | ||||||||
\(94\) | 0 | 0 | ||||||||
\(95\) | 0 | 0 | ||||||||
\(96\) | 0 | 0 | ||||||||
\(97\) | 511.000i | 0.534889i | 0.963573 | + | 0.267444i | \(0.0861791\pi\) | ||||
−0.963573 | + | 0.267444i | \(0.913821\pi\) | |||||||
\(98\) | 0 | 0 | ||||||||
\(99\) | 0 | 0 | ||||||||
\(100\) | 0 | 0 | ||||||||
\(101\) | 1812.00 | 1.78516 | 0.892578 | − | 0.450893i | \(-0.148894\pi\) | ||||
0.892578 | + | 0.450893i | \(0.148894\pi\) | |||||||
\(102\) | 0 | 0 | ||||||||
\(103\) | − 1708.00i | − 1.63392i | −0.576691 | − | 0.816962i | \(-0.695656\pi\) | ||||
0.576691 | − | 0.816962i | \(-0.304344\pi\) | |||||||
\(104\) | 0 | 0 | ||||||||
\(105\) | 0 | 0 | ||||||||
\(106\) | 0 | 0 | ||||||||
\(107\) | 1236.00i | 1.11672i | 0.829600 | + | 0.558358i | \(0.188568\pi\) | ||||
−0.829600 | + | 0.558358i | \(0.811432\pi\) | |||||||
\(108\) | 0 | 0 | ||||||||
\(109\) | 1543.00 | 1.35590 | 0.677948 | − | 0.735110i | \(-0.262870\pi\) | ||||
0.677948 | + | 0.735110i | \(0.262870\pi\) | |||||||
\(110\) | 0 | 0 | ||||||||
\(111\) | 0 | 0 | ||||||||
\(112\) | 0 | 0 | ||||||||
\(113\) | − 1884.00i | − 1.56842i | −0.620494 | − | 0.784212i | \(-0.713068\pi\) | ||||
0.620494 | − | 0.784212i | \(-0.286932\pi\) | |||||||
\(114\) | 0 | 0 | ||||||||
\(115\) | 0 | 0 | ||||||||
\(116\) | 0 | 0 | ||||||||
\(117\) | 0 | 0 | ||||||||
\(118\) | 0 | 0 | ||||||||
\(119\) | 1014.00 | 0.781120 | ||||||||
\(120\) | 0 | 0 | ||||||||
\(121\) | −1295.00 | −0.972953 | ||||||||
\(122\) | 0 | 0 | ||||||||
\(123\) | 0 | 0 | ||||||||
\(124\) | 0 | 0 | ||||||||
\(125\) | 0 | 0 | ||||||||
\(126\) | 0 | 0 | ||||||||
\(127\) | − 2072.00i | − 1.44772i | −0.689948 | − | 0.723859i | \(-0.742366\pi\) | ||||
0.689948 | − | 0.723859i | \(-0.257634\pi\) | |||||||
\(128\) | 0 | 0 | ||||||||
\(129\) | 0 | 0 | ||||||||
\(130\) | 0 | 0 | ||||||||
\(131\) | 2508.00 | 1.67271 | 0.836355 | − | 0.548188i | \(-0.184682\pi\) | ||||
0.836355 | + | 0.548188i | \(0.184682\pi\) | |||||||
\(132\) | 0 | 0 | ||||||||
\(133\) | − 845.000i | − 0.550908i | ||||||||
\(134\) | 0 | 0 | ||||||||
\(135\) | 0 | 0 | ||||||||
\(136\) | 0 | 0 | ||||||||
\(137\) | 1566.00i | 0.976587i | 0.872679 | + | 0.488293i | \(0.162380\pi\) | ||||
−0.872679 | + | 0.488293i | \(0.837620\pi\) | |||||||
\(138\) | 0 | 0 | ||||||||
\(139\) | 196.000 | 0.119601 | 0.0598004 | − | 0.998210i | \(-0.480954\pi\) | ||||
0.0598004 | + | 0.998210i | \(0.480954\pi\) | |||||||
\(140\) | 0 | 0 | ||||||||
\(141\) | 0 | 0 | ||||||||
\(142\) | 0 | 0 | ||||||||
\(143\) | − 30.0000i | − 0.0175435i | ||||||||
\(144\) | 0 | 0 | ||||||||
\(145\) | 0 | 0 | ||||||||
\(146\) | 0 | 0 | ||||||||
\(147\) | 0 | 0 | ||||||||
\(148\) | 0 | 0 | ||||||||
\(149\) | −1278.00 | −0.702670 | −0.351335 | − | 0.936250i | \(-0.614272\pi\) | ||||
−0.351335 | + | 0.936250i | \(0.614272\pi\) | |||||||
\(150\) | 0 | 0 | ||||||||
\(151\) | 1385.00 | 0.746422 | 0.373211 | − | 0.927747i | \(-0.378257\pi\) | ||||
0.373211 | + | 0.927747i | \(0.378257\pi\) | |||||||
\(152\) | 0 | 0 | ||||||||
\(153\) | 0 | 0 | ||||||||
\(154\) | 0 | 0 | ||||||||
\(155\) | 0 | 0 | ||||||||
\(156\) | 0 | 0 | ||||||||
\(157\) | 481.000i | 0.244509i | 0.992499 | + | 0.122255i | \(0.0390125\pi\) | ||||
−0.992499 | + | 0.122255i | \(0.960988\pi\) | |||||||
\(158\) | 0 | 0 | ||||||||
\(159\) | 0 | 0 | ||||||||
\(160\) | 0 | 0 | ||||||||
\(161\) | 1794.00 | 0.878180 | ||||||||
\(162\) | 0 | 0 | ||||||||
\(163\) | − 2815.00i | − 1.35269i | −0.736587 | − | 0.676343i | \(-0.763564\pi\) | ||||
0.736587 | − | 0.676343i | \(-0.236436\pi\) | |||||||
\(164\) | 0 | 0 | ||||||||
\(165\) | 0 | 0 | ||||||||
\(166\) | 0 | 0 | ||||||||
\(167\) | 1956.00i | 0.906346i | 0.891423 | + | 0.453173i | \(0.149708\pi\) | ||||
−0.891423 | + | 0.453173i | \(0.850292\pi\) | |||||||
\(168\) | 0 | 0 | ||||||||
\(169\) | 2172.00 | 0.988621 | ||||||||
\(170\) | 0 | 0 | ||||||||
\(171\) | 0 | 0 | ||||||||
\(172\) | 0 | 0 | ||||||||
\(173\) | − 2382.00i | − 1.04682i | −0.852081 | − | 0.523411i | \(-0.824659\pi\) | ||||
0.852081 | − | 0.523411i | \(-0.175341\pi\) | |||||||
\(174\) | 0 | 0 | ||||||||
\(175\) | 0 | 0 | ||||||||
\(176\) | 0 | 0 | ||||||||
\(177\) | 0 | 0 | ||||||||
\(178\) | 0 | 0 | ||||||||
\(179\) | 4386.00 | 1.83142 | 0.915712 | − | 0.401834i | \(-0.131627\pi\) | ||||
0.915712 | + | 0.401834i | \(0.131627\pi\) | |||||||
\(180\) | 0 | 0 | ||||||||
\(181\) | −2275.00 | −0.934251 | −0.467125 | − | 0.884191i | \(-0.654710\pi\) | ||||
−0.467125 | + | 0.884191i | \(0.654710\pi\) | |||||||
\(182\) | 0 | 0 | ||||||||
\(183\) | 0 | 0 | ||||||||
\(184\) | 0 | 0 | ||||||||
\(185\) | 0 | 0 | ||||||||
\(186\) | 0 | 0 | ||||||||
\(187\) | 468.000i | 0.183014i | ||||||||
\(188\) | 0 | 0 | ||||||||
\(189\) | 0 | 0 | ||||||||
\(190\) | 0 | 0 | ||||||||
\(191\) | −714.000 | −0.270488 | −0.135244 | − | 0.990812i | \(-0.543182\pi\) | ||||
−0.135244 | + | 0.990812i | \(0.543182\pi\) | |||||||
\(192\) | 0 | 0 | ||||||||
\(193\) | 1547.00i | 0.576971i | 0.957484 | + | 0.288486i | \(0.0931518\pi\) | ||||
−0.957484 | + | 0.288486i | \(0.906848\pi\) | |||||||
\(194\) | 0 | 0 | ||||||||
\(195\) | 0 | 0 | ||||||||
\(196\) | 0 | 0 | ||||||||
\(197\) | 438.000i | 0.158407i | 0.996858 | + | 0.0792036i | \(0.0252377\pi\) | ||||
−0.996858 | + | 0.0792036i | \(0.974762\pi\) | |||||||
\(198\) | 0 | 0 | ||||||||
\(199\) | −437.000 | −0.155669 | −0.0778344 | − | 0.996966i | \(-0.524801\pi\) | ||||
−0.0778344 | + | 0.996966i | \(0.524801\pi\) | |||||||
\(200\) | 0 | 0 | ||||||||
\(201\) | 0 | 0 | ||||||||
\(202\) | 0 | 0 | ||||||||
\(203\) | 858.000i | 0.296649i | ||||||||
\(204\) | 0 | 0 | ||||||||
\(205\) | 0 | 0 | ||||||||
\(206\) | 0 | 0 | ||||||||
\(207\) | 0 | 0 | ||||||||
\(208\) | 0 | 0 | ||||||||
\(209\) | 390.000 | 0.129076 | ||||||||
\(210\) | 0 | 0 | ||||||||
\(211\) | 1625.00 | 0.530188 | 0.265094 | − | 0.964223i | \(-0.414597\pi\) | ||||
0.265094 | + | 0.964223i | \(0.414597\pi\) | |||||||
\(212\) | 0 | 0 | ||||||||
\(213\) | 0 | 0 | ||||||||
\(214\) | 0 | 0 | ||||||||
\(215\) | 0 | 0 | ||||||||
\(216\) | 0 | 0 | ||||||||
\(217\) | 3887.00i | 1.21598i | ||||||||
\(218\) | 0 | 0 | ||||||||
\(219\) | 0 | 0 | ||||||||
\(220\) | 0 | 0 | ||||||||
\(221\) | 390.000 | 0.118707 | ||||||||
\(222\) | 0 | 0 | ||||||||
\(223\) | 875.000i | 0.262755i | 0.991332 | + | 0.131377i | \(0.0419400\pi\) | ||||
−0.991332 | + | 0.131377i | \(0.958060\pi\) | |||||||
\(224\) | 0 | 0 | ||||||||
\(225\) | 0 | 0 | ||||||||
\(226\) | 0 | 0 | ||||||||
\(227\) | − 4680.00i | − 1.36838i | −0.729303 | − | 0.684191i | \(-0.760156\pi\) | ||||
0.729303 | − | 0.684191i | \(-0.239844\pi\) | |||||||
\(228\) | 0 | 0 | ||||||||
\(229\) | −1469.00 | −0.423905 | −0.211953 | − | 0.977280i | \(-0.567982\pi\) | ||||
−0.211953 | + | 0.977280i | \(0.567982\pi\) | |||||||
\(230\) | 0 | 0 | ||||||||
\(231\) | 0 | 0 | ||||||||
\(232\) | 0 | 0 | ||||||||
\(233\) | − 3960.00i | − 1.11343i | −0.830705 | − | 0.556713i | \(-0.812062\pi\) | ||||
0.830705 | − | 0.556713i | \(-0.187938\pi\) | |||||||
\(234\) | 0 | 0 | ||||||||
\(235\) | 0 | 0 | ||||||||
\(236\) | 0 | 0 | ||||||||
\(237\) | 0 | 0 | ||||||||
\(238\) | 0 | 0 | ||||||||
\(239\) | 2652.00 | 0.717756 | 0.358878 | − | 0.933385i | \(-0.383159\pi\) | ||||
0.358878 | + | 0.933385i | \(0.383159\pi\) | |||||||
\(240\) | 0 | 0 | ||||||||
\(241\) | 5753.00 | 1.53769 | 0.768845 | − | 0.639435i | \(-0.220832\pi\) | ||||
0.768845 | + | 0.639435i | \(0.220832\pi\) | |||||||
\(242\) | 0 | 0 | ||||||||
\(243\) | 0 | 0 | ||||||||
\(244\) | 0 | 0 | ||||||||
\(245\) | 0 | 0 | ||||||||
\(246\) | 0 | 0 | ||||||||
\(247\) | − 325.000i | − 0.0837217i | ||||||||
\(248\) | 0 | 0 | ||||||||
\(249\) | 0 | 0 | ||||||||
\(250\) | 0 | 0 | ||||||||
\(251\) | −3588.00 | −0.902281 | −0.451141 | − | 0.892453i | \(-0.648983\pi\) | ||||
−0.451141 | + | 0.892453i | \(0.648983\pi\) | |||||||
\(252\) | 0 | 0 | ||||||||
\(253\) | 828.000i | 0.205755i | ||||||||
\(254\) | 0 | 0 | ||||||||
\(255\) | 0 | 0 | ||||||||
\(256\) | 0 | 0 | ||||||||
\(257\) | − 564.000i | − 0.136892i | −0.997655 | − | 0.0684462i | \(-0.978196\pi\) | ||||
0.997655 | − | 0.0684462i | \(-0.0218042\pi\) | |||||||
\(258\) | 0 | 0 | ||||||||
\(259\) | −2782.00 | −0.667433 | ||||||||
\(260\) | 0 | 0 | ||||||||
\(261\) | 0 | 0 | ||||||||
\(262\) | 0 | 0 | ||||||||
\(263\) | − 1248.00i | − 0.292604i | −0.989240 | − | 0.146302i | \(-0.953263\pi\) | ||||
0.989240 | − | 0.146302i | \(-0.0467372\pi\) | |||||||
\(264\) | 0 | 0 | ||||||||
\(265\) | 0 | 0 | ||||||||
\(266\) | 0 | 0 | ||||||||
\(267\) | 0 | 0 | ||||||||
\(268\) | 0 | 0 | ||||||||
\(269\) | −7266.00 | −1.64690 | −0.823450 | − | 0.567390i | \(-0.807953\pi\) | ||||
−0.823450 | + | 0.567390i | \(0.807953\pi\) | |||||||
\(270\) | 0 | 0 | ||||||||
\(271\) | 3224.00 | 0.722672 | 0.361336 | − | 0.932436i | \(-0.382321\pi\) | ||||
0.361336 | + | 0.932436i | \(0.382321\pi\) | |||||||
\(272\) | 0 | 0 | ||||||||
\(273\) | 0 | 0 | ||||||||
\(274\) | 0 | 0 | ||||||||
\(275\) | 0 | 0 | ||||||||
\(276\) | 0 | 0 | ||||||||
\(277\) | 151.000i | 0.0327535i | 0.999866 | + | 0.0163767i | \(0.00521311\pi\) | ||||
−0.999866 | + | 0.0163767i | \(0.994787\pi\) | |||||||
\(278\) | 0 | 0 | ||||||||
\(279\) | 0 | 0 | ||||||||
\(280\) | 0 | 0 | ||||||||
\(281\) | −7566.00 | −1.60623 | −0.803113 | − | 0.595826i | \(-0.796825\pi\) | ||||
−0.803113 | + | 0.595826i | \(0.796825\pi\) | |||||||
\(282\) | 0 | 0 | ||||||||
\(283\) | 1469.00i | 0.308562i | 0.988027 | + | 0.154281i | \(0.0493061\pi\) | ||||
−0.988027 | + | 0.154281i | \(0.950694\pi\) | |||||||
\(284\) | 0 | 0 | ||||||||
\(285\) | 0 | 0 | ||||||||
\(286\) | 0 | 0 | ||||||||
\(287\) | − 4680.00i | − 0.962549i | ||||||||
\(288\) | 0 | 0 | ||||||||
\(289\) | −1171.00 | −0.238347 | ||||||||
\(290\) | 0 | 0 | ||||||||
\(291\) | 0 | 0 | ||||||||
\(292\) | 0 | 0 | ||||||||
\(293\) | 306.000i | 0.0610127i | 0.999535 | + | 0.0305063i | \(0.00971197\pi\) | ||||
−0.999535 | + | 0.0305063i | \(0.990288\pi\) | |||||||
\(294\) | 0 | 0 | ||||||||
\(295\) | 0 | 0 | ||||||||
\(296\) | 0 | 0 | ||||||||
\(297\) | 0 | 0 | ||||||||
\(298\) | 0 | 0 | ||||||||
\(299\) | 690.000 | 0.133457 | ||||||||
\(300\) | 0 | 0 | ||||||||
\(301\) | −2639.00 | −0.505347 | ||||||||
\(302\) | 0 | 0 | ||||||||
\(303\) | 0 | 0 | ||||||||
\(304\) | 0 | 0 | ||||||||
\(305\) | 0 | 0 | ||||||||
\(306\) | 0 | 0 | ||||||||
\(307\) | − 4661.00i | − 0.866506i | −0.901272 | − | 0.433253i | \(-0.857366\pi\) | ||||
0.901272 | − | 0.433253i | \(-0.142634\pi\) | |||||||
\(308\) | 0 | 0 | ||||||||
\(309\) | 0 | 0 | ||||||||
\(310\) | 0 | 0 | ||||||||
\(311\) | −2514.00 | −0.458379 | −0.229189 | − | 0.973382i | \(-0.573608\pi\) | ||||
−0.229189 | + | 0.973382i | \(0.573608\pi\) | |||||||
\(312\) | 0 | 0 | ||||||||
\(313\) | 6707.00i | 1.21119i | 0.795774 | + | 0.605594i | \(0.207065\pi\) | ||||
−0.795774 | + | 0.605594i | \(0.792935\pi\) | |||||||
\(314\) | 0 | 0 | ||||||||
\(315\) | 0 | 0 | ||||||||
\(316\) | 0 | 0 | ||||||||
\(317\) | 4632.00i | 0.820691i | 0.911930 | + | 0.410345i | \(0.134592\pi\) | ||||
−0.911930 | + | 0.410345i | \(0.865408\pi\) | |||||||
\(318\) | 0 | 0 | ||||||||
\(319\) | −396.000 | −0.0695039 | ||||||||
\(320\) | 0 | 0 | ||||||||
\(321\) | 0 | 0 | ||||||||
\(322\) | 0 | 0 | ||||||||
\(323\) | 5070.00i | 0.873382i | ||||||||
\(324\) | 0 | 0 | ||||||||
\(325\) | 0 | 0 | ||||||||
\(326\) | 0 | 0 | ||||||||
\(327\) | 0 | 0 | ||||||||
\(328\) | 0 | 0 | ||||||||
\(329\) | −1014.00 | −0.169920 | ||||||||
\(330\) | 0 | 0 | ||||||||
\(331\) | −988.000 | −0.164065 | −0.0820323 | − | 0.996630i | \(-0.526141\pi\) | ||||
−0.0820323 | + | 0.996630i | \(0.526141\pi\) | |||||||
\(332\) | 0 | 0 | ||||||||
\(333\) | 0 | 0 | ||||||||
\(334\) | 0 | 0 | ||||||||
\(335\) | 0 | 0 | ||||||||
\(336\) | 0 | 0 | ||||||||
\(337\) | 9079.00i | 1.46755i | 0.679392 | + | 0.733775i | \(0.262244\pi\) | ||||
−0.679392 | + | 0.733775i | \(0.737756\pi\) | |||||||
\(338\) | 0 | 0 | ||||||||
\(339\) | 0 | 0 | ||||||||
\(340\) | 0 | 0 | ||||||||
\(341\) | −1794.00 | −0.284899 | ||||||||
\(342\) | 0 | 0 | ||||||||
\(343\) | 6721.00i | 1.05802i | ||||||||
\(344\) | 0 | 0 | ||||||||
\(345\) | 0 | 0 | ||||||||
\(346\) | 0 | 0 | ||||||||
\(347\) | − 5994.00i | − 0.927305i | −0.886017 | − | 0.463652i | \(-0.846539\pi\) | ||||
0.886017 | − | 0.463652i | \(-0.153461\pi\) | |||||||
\(348\) | 0 | 0 | ||||||||
\(349\) | 286.000 | 0.0438660 | 0.0219330 | − | 0.999759i | \(-0.493018\pi\) | ||||
0.0219330 | + | 0.999759i | \(0.493018\pi\) | |||||||
\(350\) | 0 | 0 | ||||||||
\(351\) | 0 | 0 | ||||||||
\(352\) | 0 | 0 | ||||||||
\(353\) | 11466.0i | 1.72882i | 0.502787 | + | 0.864410i | \(0.332308\pi\) | ||||
−0.502787 | + | 0.864410i | \(0.667692\pi\) | |||||||
\(354\) | 0 | 0 | ||||||||
\(355\) | 0 | 0 | ||||||||
\(356\) | 0 | 0 | ||||||||
\(357\) | 0 | 0 | ||||||||
\(358\) | 0 | 0 | ||||||||
\(359\) | −624.000 | −0.0917367 | −0.0458683 | − | 0.998947i | \(-0.514605\pi\) | ||||
−0.0458683 | + | 0.998947i | \(0.514605\pi\) | |||||||
\(360\) | 0 | 0 | ||||||||
\(361\) | −2634.00 | −0.384021 | ||||||||
\(362\) | 0 | 0 | ||||||||
\(363\) | 0 | 0 | ||||||||
\(364\) | 0 | 0 | ||||||||
\(365\) | 0 | 0 | ||||||||
\(366\) | 0 | 0 | ||||||||
\(367\) | − 8477.00i | − 1.20571i | −0.797851 | − | 0.602855i | \(-0.794030\pi\) | ||||
0.797851 | − | 0.602855i | \(-0.205970\pi\) | |||||||
\(368\) | 0 | 0 | ||||||||
\(369\) | 0 | 0 | ||||||||
\(370\) | 0 | 0 | ||||||||
\(371\) | 8268.00 | 1.15702 | ||||||||
\(372\) | 0 | 0 | ||||||||
\(373\) | − 11257.0i | − 1.56264i | −0.624130 | − | 0.781321i | \(-0.714546\pi\) | ||||
0.624130 | − | 0.781321i | \(-0.285454\pi\) | |||||||
\(374\) | 0 | 0 | ||||||||
\(375\) | 0 | 0 | ||||||||
\(376\) | 0 | 0 | ||||||||
\(377\) | 330.000i | 0.0450819i | ||||||||
\(378\) | 0 | 0 | ||||||||
\(379\) | 1213.00 | 0.164400 | 0.0822000 | − | 0.996616i | \(-0.473805\pi\) | ||||
0.0822000 | + | 0.996616i | \(0.473805\pi\) | |||||||
\(380\) | 0 | 0 | ||||||||
\(381\) | 0 | 0 | ||||||||
\(382\) | 0 | 0 | ||||||||
\(383\) | 11076.0i | 1.47769i | 0.673873 | + | 0.738847i | \(0.264630\pi\) | ||||
−0.673873 | + | 0.738847i | \(0.735370\pi\) | |||||||
\(384\) | 0 | 0 | ||||||||
\(385\) | 0 | 0 | ||||||||
\(386\) | 0 | 0 | ||||||||
\(387\) | 0 | 0 | ||||||||
\(388\) | 0 | 0 | ||||||||
\(389\) | −8016.00 | −1.04480 | −0.522400 | − | 0.852700i | \(-0.674963\pi\) | ||||
−0.522400 | + | 0.852700i | \(0.674963\pi\) | |||||||
\(390\) | 0 | 0 | ||||||||
\(391\) | −10764.0 | −1.39222 | ||||||||
\(392\) | 0 | 0 | ||||||||
\(393\) | 0 | 0 | ||||||||
\(394\) | 0 | 0 | ||||||||
\(395\) | 0 | 0 | ||||||||
\(396\) | 0 | 0 | ||||||||
\(397\) | − 6851.00i | − 0.866100i | −0.901370 | − | 0.433050i | \(-0.857437\pi\) | ||||
0.901370 | − | 0.433050i | \(-0.142563\pi\) | |||||||
\(398\) | 0 | 0 | ||||||||
\(399\) | 0 | 0 | ||||||||
\(400\) | 0 | 0 | ||||||||
\(401\) | −12636.0 | −1.57360 | −0.786798 | − | 0.617211i | \(-0.788262\pi\) | ||||
−0.786798 | + | 0.617211i | \(0.788262\pi\) | |||||||
\(402\) | 0 | 0 | ||||||||
\(403\) | 1495.00i | 0.184792i | ||||||||
\(404\) | 0 | 0 | ||||||||
\(405\) | 0 | 0 | ||||||||
\(406\) | 0 | 0 | ||||||||
\(407\) | − 1284.00i | − 0.156377i | ||||||||
\(408\) | 0 | 0 | ||||||||
\(409\) | −10829.0 | −1.30919 | −0.654596 | − | 0.755979i | \(-0.727161\pi\) | ||||
−0.654596 | + | 0.755979i | \(0.727161\pi\) | |||||||
\(410\) | 0 | 0 | ||||||||
\(411\) | 0 | 0 | ||||||||
\(412\) | 0 | 0 | ||||||||
\(413\) | 10218.0i | 1.21742i | ||||||||
\(414\) | 0 | 0 | ||||||||
\(415\) | 0 | 0 | ||||||||
\(416\) | 0 | 0 | ||||||||
\(417\) | 0 | 0 | ||||||||
\(418\) | 0 | 0 | ||||||||
\(419\) | −6252.00 | −0.728950 | −0.364475 | − | 0.931213i | \(-0.618752\pi\) | ||||
−0.364475 | + | 0.931213i | \(0.618752\pi\) | |||||||
\(420\) | 0 | 0 | ||||||||
\(421\) | −15730.0 | −1.82098 | −0.910491 | − | 0.413529i | \(-0.864296\pi\) | ||||
−0.910491 | + | 0.413529i | \(0.864296\pi\) | |||||||
\(422\) | 0 | 0 | ||||||||
\(423\) | 0 | 0 | ||||||||
\(424\) | 0 | 0 | ||||||||
\(425\) | 0 | 0 | ||||||||
\(426\) | 0 | 0 | ||||||||
\(427\) | 6071.00i | 0.688047i | ||||||||
\(428\) | 0 | 0 | ||||||||
\(429\) | 0 | 0 | ||||||||
\(430\) | 0 | 0 | ||||||||
\(431\) | 10062.0 | 1.12452 | 0.562262 | − | 0.826959i | \(-0.309931\pi\) | ||||
0.562262 | + | 0.826959i | \(0.309931\pi\) | |||||||
\(432\) | 0 | 0 | ||||||||
\(433\) | 707.000i | 0.0784671i | 0.999230 | + | 0.0392335i | \(0.0124916\pi\) | ||||
−0.999230 | + | 0.0392335i | \(0.987508\pi\) | |||||||
\(434\) | 0 | 0 | ||||||||
\(435\) | 0 | 0 | ||||||||
\(436\) | 0 | 0 | ||||||||
\(437\) | 8970.00i | 0.981907i | ||||||||
\(438\) | 0 | 0 | ||||||||
\(439\) | 12493.0 | 1.35822 | 0.679110 | − | 0.734037i | \(-0.262366\pi\) | ||||
0.679110 | + | 0.734037i | \(0.262366\pi\) | |||||||
\(440\) | 0 | 0 | ||||||||
\(441\) | 0 | 0 | ||||||||
\(442\) | 0 | 0 | ||||||||
\(443\) | 5928.00i | 0.635774i | 0.948129 | + | 0.317887i | \(0.102973\pi\) | ||||
−0.948129 | + | 0.317887i | \(0.897027\pi\) | |||||||
\(444\) | 0 | 0 | ||||||||
\(445\) | 0 | 0 | ||||||||
\(446\) | 0 | 0 | ||||||||
\(447\) | 0 | 0 | ||||||||
\(448\) | 0 | 0 | ||||||||
\(449\) | −2028.00 | −0.213156 | −0.106578 | − | 0.994304i | \(-0.533989\pi\) | ||||
−0.106578 | + | 0.994304i | \(0.533989\pi\) | |||||||
\(450\) | 0 | 0 | ||||||||
\(451\) | 2160.00 | 0.225522 | ||||||||
\(452\) | 0 | 0 | ||||||||
\(453\) | 0 | 0 | ||||||||
\(454\) | 0 | 0 | ||||||||
\(455\) | 0 | 0 | ||||||||
\(456\) | 0 | 0 | ||||||||
\(457\) | − 17030.0i | − 1.74317i | −0.490242 | − | 0.871586i | \(-0.663092\pi\) | ||||
0.490242 | − | 0.871586i | \(-0.336908\pi\) | |||||||
\(458\) | 0 | 0 | ||||||||
\(459\) | 0 | 0 | ||||||||
\(460\) | 0 | 0 | ||||||||
\(461\) | 1044.00 | 0.105475 | 0.0527374 | − | 0.998608i | \(-0.483205\pi\) | ||||
0.0527374 | + | 0.998608i | \(0.483205\pi\) | |||||||
\(462\) | 0 | 0 | ||||||||
\(463\) | 9704.00i | 0.974046i | 0.873389 | + | 0.487023i | \(0.161917\pi\) | ||||
−0.873389 | + | 0.487023i | \(0.838083\pi\) | |||||||
\(464\) | 0 | 0 | ||||||||
\(465\) | 0 | 0 | ||||||||
\(466\) | 0 | 0 | ||||||||
\(467\) | − 4194.00i | − 0.415579i | −0.978174 | − | 0.207789i | \(-0.933373\pi\) | ||||
0.978174 | − | 0.207789i | \(-0.0666268\pi\) | |||||||
\(468\) | 0 | 0 | ||||||||
\(469\) | −2821.00 | −0.277743 | ||||||||
\(470\) | 0 | 0 | ||||||||
\(471\) | 0 | 0 | ||||||||
\(472\) | 0 | 0 | ||||||||
\(473\) | − 1218.00i | − 0.118401i | ||||||||
\(474\) | 0 | 0 | ||||||||
\(475\) | 0 | 0 | ||||||||
\(476\) | 0 | 0 | ||||||||
\(477\) | 0 | 0 | ||||||||
\(478\) | 0 | 0 | ||||||||
\(479\) | −12174.0 | −1.16126 | −0.580631 | − | 0.814167i | \(-0.697194\pi\) | ||||
−0.580631 | + | 0.814167i | \(0.697194\pi\) | |||||||
\(480\) | 0 | 0 | ||||||||
\(481\) | −1070.00 | −0.101430 | ||||||||
\(482\) | 0 | 0 | ||||||||
\(483\) | 0 | 0 | ||||||||
\(484\) | 0 | 0 | ||||||||
\(485\) | 0 | 0 | ||||||||
\(486\) | 0 | 0 | ||||||||
\(487\) | 1651.00i | 0.153622i | 0.997046 | + | 0.0768110i | \(0.0244738\pi\) | ||||
−0.997046 | + | 0.0768110i | \(0.975526\pi\) | |||||||
\(488\) | 0 | 0 | ||||||||
\(489\) | 0 | 0 | ||||||||
\(490\) | 0 | 0 | ||||||||
\(491\) | 6456.00 | 0.593391 | 0.296696 | − | 0.954972i | \(-0.404115\pi\) | ||||
0.296696 | + | 0.954972i | \(0.404115\pi\) | |||||||
\(492\) | 0 | 0 | ||||||||
\(493\) | − 5148.00i | − 0.470293i | ||||||||
\(494\) | 0 | 0 | ||||||||
\(495\) | 0 | 0 | ||||||||
\(496\) | 0 | 0 | ||||||||
\(497\) | 4680.00i | 0.422388i | ||||||||
\(498\) | 0 | 0 | ||||||||
\(499\) | 559.000 | 0.0501489 | 0.0250744 | − | 0.999686i | \(-0.492018\pi\) | ||||
0.0250744 | + | 0.999686i | \(0.492018\pi\) | |||||||
\(500\) | 0 | 0 | ||||||||
\(501\) | 0 | 0 | ||||||||
\(502\) | 0 | 0 | ||||||||
\(503\) | 14208.0i | 1.25945i | 0.776818 | + | 0.629725i | \(0.216832\pi\) | ||||
−0.776818 | + | 0.629725i | \(0.783168\pi\) | |||||||
\(504\) | 0 | 0 | ||||||||
\(505\) | 0 | 0 | ||||||||
\(506\) | 0 | 0 | ||||||||
\(507\) | 0 | 0 | ||||||||
\(508\) | 0 | 0 | ||||||||
\(509\) | −8082.00 | −0.703789 | −0.351894 | − | 0.936040i | \(-0.614462\pi\) | ||||
−0.351894 | + | 0.936040i | \(0.614462\pi\) | |||||||
\(510\) | 0 | 0 | ||||||||
\(511\) | 3718.00 | 0.321868 | ||||||||
\(512\) | 0 | 0 | ||||||||
\(513\) | 0 | 0 | ||||||||
\(514\) | 0 | 0 | ||||||||
\(515\) | 0 | 0 | ||||||||
\(516\) | 0 | 0 | ||||||||
\(517\) | − 468.000i | − 0.0398116i | ||||||||
\(518\) | 0 | 0 | ||||||||
\(519\) | 0 | 0 | ||||||||
\(520\) | 0 | 0 | ||||||||
\(521\) | −20502.0 | −1.72401 | −0.862005 | − | 0.506900i | \(-0.830791\pi\) | ||||
−0.862005 | + | 0.506900i | \(0.830791\pi\) | |||||||
\(522\) | 0 | 0 | ||||||||
\(523\) | 2069.00i | 0.172985i | 0.996253 | + | 0.0864924i | \(0.0275658\pi\) | ||||
−0.996253 | + | 0.0864924i | \(0.972434\pi\) | |||||||
\(524\) | 0 | 0 | ||||||||
\(525\) | 0 | 0 | ||||||||
\(526\) | 0 | 0 | ||||||||
\(527\) | − 23322.0i | − 1.92775i | ||||||||
\(528\) | 0 | 0 | ||||||||
\(529\) | −6877.00 | −0.565217 | ||||||||
\(530\) | 0 | 0 | ||||||||
\(531\) | 0 | 0 | ||||||||
\(532\) | 0 | 0 | ||||||||
\(533\) | − 1800.00i | − 0.146279i | ||||||||
\(534\) | 0 | 0 | ||||||||
\(535\) | 0 | 0 | ||||||||
\(536\) | 0 | 0 | ||||||||
\(537\) | 0 | 0 | ||||||||
\(538\) | 0 | 0 | ||||||||
\(539\) | −1044.00 | −0.0834291 | ||||||||
\(540\) | 0 | 0 | ||||||||
\(541\) | 1553.00 | 0.123417 | 0.0617086 | − | 0.998094i | \(-0.480345\pi\) | ||||
0.0617086 | + | 0.998094i | \(0.480345\pi\) | |||||||
\(542\) | 0 | 0 | ||||||||
\(543\) | 0 | 0 | ||||||||
\(544\) | 0 | 0 | ||||||||
\(545\) | 0 | 0 | ||||||||
\(546\) | 0 | 0 | ||||||||
\(547\) | − 12584.0i | − 0.983643i | −0.870696 | − | 0.491822i | \(-0.836331\pi\) | ||||
0.870696 | − | 0.491822i | \(-0.163669\pi\) | |||||||
\(548\) | 0 | 0 | ||||||||
\(549\) | 0 | 0 | ||||||||
\(550\) | 0 | 0 | ||||||||
\(551\) | −4290.00 | −0.331688 | ||||||||
\(552\) | 0 | 0 | ||||||||
\(553\) | − 3536.00i | − 0.271910i | ||||||||
\(554\) | 0 | 0 | ||||||||
\(555\) | 0 | 0 | ||||||||
\(556\) | 0 | 0 | ||||||||
\(557\) | 20754.0i | 1.57877i | 0.613898 | + | 0.789385i | \(0.289601\pi\) | ||||
−0.613898 | + | 0.789385i | \(0.710399\pi\) | |||||||
\(558\) | 0 | 0 | ||||||||
\(559\) | −1015.00 | −0.0767977 | ||||||||
\(560\) | 0 | 0 | ||||||||
\(561\) | 0 | 0 | ||||||||
\(562\) | 0 | 0 | ||||||||
\(563\) | − 14370.0i | − 1.07571i | −0.843038 | − | 0.537854i | \(-0.819235\pi\) | ||||
0.843038 | − | 0.537854i | \(-0.180765\pi\) | |||||||
\(564\) | 0 | 0 | ||||||||
\(565\) | 0 | 0 | ||||||||
\(566\) | 0 | 0 | ||||||||
\(567\) | 0 | 0 | ||||||||
\(568\) | 0 | 0 | ||||||||
\(569\) | 15774.0 | 1.16218 | 0.581090 | − | 0.813839i | \(-0.302626\pi\) | ||||
0.581090 | + | 0.813839i | \(0.302626\pi\) | |||||||
\(570\) | 0 | 0 | ||||||||
\(571\) | −3055.00 | −0.223902 | −0.111951 | − | 0.993714i | \(-0.535710\pi\) | ||||
−0.111951 | + | 0.993714i | \(0.535710\pi\) | |||||||
\(572\) | 0 | 0 | ||||||||
\(573\) | 0 | 0 | ||||||||
\(574\) | 0 | 0 | ||||||||
\(575\) | 0 | 0 | ||||||||
\(576\) | 0 | 0 | ||||||||
\(577\) | 25021.0i | 1.80526i | 0.430412 | + | 0.902632i | \(0.358368\pi\) | ||||
−0.430412 | + | 0.902632i | \(0.641632\pi\) | |||||||
\(578\) | 0 | 0 | ||||||||
\(579\) | 0 | 0 | ||||||||
\(580\) | 0 | 0 | ||||||||
\(581\) | 6474.00 | 0.462284 | ||||||||
\(582\) | 0 | 0 | ||||||||
\(583\) | 3816.00i | 0.271085i | ||||||||
\(584\) | 0 | 0 | ||||||||
\(585\) | 0 | 0 | ||||||||
\(586\) | 0 | 0 | ||||||||
\(587\) | − 18828.0i | − 1.32388i | −0.749559 | − | 0.661938i | \(-0.769734\pi\) | ||||
0.749559 | − | 0.661938i | \(-0.230266\pi\) | |||||||
\(588\) | 0 | 0 | ||||||||
\(589\) | −19435.0 | −1.35960 | ||||||||
\(590\) | 0 | 0 | ||||||||
\(591\) | 0 | 0 | ||||||||
\(592\) | 0 | 0 | ||||||||
\(593\) | − 19968.0i | − 1.38278i | −0.722483 | − | 0.691389i | \(-0.756999\pi\) | ||||
0.722483 | − | 0.691389i | \(-0.243001\pi\) | |||||||
\(594\) | 0 | 0 | ||||||||
\(595\) | 0 | 0 | ||||||||
\(596\) | 0 | 0 | ||||||||
\(597\) | 0 | 0 | ||||||||
\(598\) | 0 | 0 | ||||||||
\(599\) | 9684.00 | 0.660563 | 0.330282 | − | 0.943882i | \(-0.392856\pi\) | ||||
0.330282 | + | 0.943882i | \(0.392856\pi\) | |||||||
\(600\) | 0 | 0 | ||||||||
\(601\) | 23243.0 | 1.57754 | 0.788770 | − | 0.614688i | \(-0.210718\pi\) | ||||
0.788770 | + | 0.614688i | \(0.210718\pi\) | |||||||
\(602\) | 0 | 0 | ||||||||
\(603\) | 0 | 0 | ||||||||
\(604\) | 0 | 0 | ||||||||
\(605\) | 0 | 0 | ||||||||
\(606\) | 0 | 0 | ||||||||
\(607\) | 22984.0i | 1.53689i | 0.639916 | + | 0.768445i | \(0.278969\pi\) | ||||
−0.639916 | + | 0.768445i | \(0.721031\pi\) | |||||||
\(608\) | 0 | 0 | ||||||||
\(609\) | 0 | 0 | ||||||||
\(610\) | 0 | 0 | ||||||||
\(611\) | −390.000 | −0.0258228 | ||||||||
\(612\) | 0 | 0 | ||||||||
\(613\) | 13754.0i | 0.906230i | 0.891452 | + | 0.453115i | \(0.149687\pi\) | ||||
−0.891452 | + | 0.453115i | \(0.850313\pi\) | |||||||
\(614\) | 0 | 0 | ||||||||
\(615\) | 0 | 0 | ||||||||
\(616\) | 0 | 0 | ||||||||
\(617\) | 9468.00i | 0.617775i | 0.951099 | + | 0.308888i | \(0.0999567\pi\) | ||||
−0.951099 | + | 0.308888i | \(0.900043\pi\) | |||||||
\(618\) | 0 | 0 | ||||||||
\(619\) | 28099.0 | 1.82455 | 0.912273 | − | 0.409582i | \(-0.134326\pi\) | ||||
0.912273 | + | 0.409582i | \(0.134326\pi\) | |||||||
\(620\) | 0 | 0 | ||||||||
\(621\) | 0 | 0 | ||||||||
\(622\) | 0 | 0 | ||||||||
\(623\) | 0 | 0 | ||||||||
\(624\) | 0 | 0 | ||||||||
\(625\) | 0 | 0 | ||||||||
\(626\) | 0 | 0 | ||||||||
\(627\) | 0 | 0 | ||||||||
\(628\) | 0 | 0 | ||||||||
\(629\) | 16692.0 | 1.05811 | ||||||||
\(630\) | 0 | 0 | ||||||||
\(631\) | 14807.0 | 0.934164 | 0.467082 | − | 0.884214i | \(-0.345305\pi\) | ||||
0.467082 | + | 0.884214i | \(0.345305\pi\) | |||||||
\(632\) | 0 | 0 | ||||||||
\(633\) | 0 | 0 | ||||||||
\(634\) | 0 | 0 | ||||||||
\(635\) | 0 | 0 | ||||||||
\(636\) | 0 | 0 | ||||||||
\(637\) | 870.000i | 0.0541141i | ||||||||
\(638\) | 0 | 0 | ||||||||
\(639\) | 0 | 0 | ||||||||
\(640\) | 0 | 0 | ||||||||
\(641\) | −20844.0 | −1.28438 | −0.642191 | − | 0.766545i | \(-0.721974\pi\) | ||||
−0.642191 | + | 0.766545i | \(0.721974\pi\) | |||||||
\(642\) | 0 | 0 | ||||||||
\(643\) | 3692.00i | 0.226436i | 0.993570 | + | 0.113218i | \(0.0361158\pi\) | ||||
−0.993570 | + | 0.113218i | \(0.963884\pi\) | |||||||
\(644\) | 0 | 0 | ||||||||
\(645\) | 0 | 0 | ||||||||
\(646\) | 0 | 0 | ||||||||
\(647\) | − 20004.0i | − 1.21552i | −0.794123 | − | 0.607758i | \(-0.792069\pi\) | ||||
0.794123 | − | 0.607758i | \(-0.207931\pi\) | |||||||
\(648\) | 0 | 0 | ||||||||
\(649\) | −4716.00 | −0.285238 | ||||||||
\(650\) | 0 | 0 | ||||||||
\(651\) | 0 | 0 | ||||||||
\(652\) | 0 | 0 | ||||||||
\(653\) | 17862.0i | 1.07044i | 0.844714 | + | 0.535218i | \(0.179770\pi\) | ||||
−0.844714 | + | 0.535218i | \(0.820230\pi\) | |||||||
\(654\) | 0 | 0 | ||||||||
\(655\) | 0 | 0 | ||||||||
\(656\) | 0 | 0 | ||||||||
\(657\) | 0 | 0 | ||||||||
\(658\) | 0 | 0 | ||||||||
\(659\) | 18552.0 | 1.09664 | 0.548318 | − | 0.836270i | \(-0.315268\pi\) | ||||
0.548318 | + | 0.836270i | \(0.315268\pi\) | |||||||
\(660\) | 0 | 0 | ||||||||
\(661\) | −12382.0 | −0.728599 | −0.364300 | − | 0.931282i | \(-0.618692\pi\) | ||||
−0.364300 | + | 0.931282i | \(0.618692\pi\) | |||||||
\(662\) | 0 | 0 | ||||||||
\(663\) | 0 | 0 | ||||||||
\(664\) | 0 | 0 | ||||||||
\(665\) | 0 | 0 | ||||||||
\(666\) | 0 | 0 | ||||||||
\(667\) | − 9108.00i | − 0.528730i | ||||||||
\(668\) | 0 | 0 | ||||||||
\(669\) | 0 | 0 | ||||||||
\(670\) | 0 | 0 | ||||||||
\(671\) | −2802.00 | −0.161207 | ||||||||
\(672\) | 0 | 0 | ||||||||
\(673\) | − 1690.00i | − 0.0967975i | −0.998828 | − | 0.0483987i | \(-0.984588\pi\) | ||||
0.998828 | − | 0.0483987i | \(-0.0154118\pi\) | |||||||
\(674\) | 0 | 0 | ||||||||
\(675\) | 0 | 0 | ||||||||
\(676\) | 0 | 0 | ||||||||
\(677\) | 5682.00i | 0.322566i | 0.986908 | + | 0.161283i | \(0.0515631\pi\) | ||||
−0.986908 | + | 0.161283i | \(0.948437\pi\) | |||||||
\(678\) | 0 | 0 | ||||||||
\(679\) | −6643.00 | −0.375456 | ||||||||
\(680\) | 0 | 0 | ||||||||
\(681\) | 0 | 0 | ||||||||
\(682\) | 0 | 0 | ||||||||
\(683\) | − 31512.0i | − 1.76541i | −0.469930 | − | 0.882704i | \(-0.655721\pi\) | ||||
0.469930 | − | 0.882704i | \(-0.344279\pi\) | |||||||
\(684\) | 0 | 0 | ||||||||
\(685\) | 0 | 0 | ||||||||
\(686\) | 0 | 0 | ||||||||
\(687\) | 0 | 0 | ||||||||
\(688\) | 0 | 0 | ||||||||
\(689\) | 3180.00 | 0.175832 | ||||||||
\(690\) | 0 | 0 | ||||||||
\(691\) | 20648.0 | 1.13674 | 0.568370 | − | 0.822773i | \(-0.307574\pi\) | ||||
0.568370 | + | 0.822773i | \(0.307574\pi\) | |||||||
\(692\) | 0 | 0 | ||||||||
\(693\) | 0 | 0 | ||||||||
\(694\) | 0 | 0 | ||||||||
\(695\) | 0 | 0 | ||||||||
\(696\) | 0 | 0 | ||||||||
\(697\) | 28080.0i | 1.52598i | ||||||||
\(698\) | 0 | 0 | ||||||||
\(699\) | 0 | 0 | ||||||||
\(700\) | 0 | 0 | ||||||||
\(701\) | 11874.0 | 0.639764 | 0.319882 | − | 0.947457i | \(-0.396357\pi\) | ||||
0.319882 | + | 0.947457i | \(0.396357\pi\) | |||||||
\(702\) | 0 | 0 | ||||||||
\(703\) | − 13910.0i | − 0.746267i | ||||||||
\(704\) | 0 | 0 | ||||||||
\(705\) | 0 | 0 | ||||||||
\(706\) | 0 | 0 | ||||||||
\(707\) | 23556.0i | 1.25306i | ||||||||
\(708\) | 0 | 0 | ||||||||
\(709\) | 10699.0 | 0.566727 | 0.283363 | − | 0.959013i | \(-0.408550\pi\) | ||||
0.283363 | + | 0.959013i | \(0.408550\pi\) | |||||||
\(710\) | 0 | 0 | ||||||||
\(711\) | 0 | 0 | ||||||||
\(712\) | 0 | 0 | ||||||||
\(713\) | − 41262.0i | − 2.16728i | ||||||||
\(714\) | 0 | 0 | ||||||||
\(715\) | 0 | 0 | ||||||||
\(716\) | 0 | 0 | ||||||||
\(717\) | 0 | 0 | ||||||||
\(718\) | 0 | 0 | ||||||||
\(719\) | −5598.00 | −0.290362 | −0.145181 | − | 0.989405i | \(-0.546376\pi\) | ||||
−0.145181 | + | 0.989405i | \(0.546376\pi\) | |||||||
\(720\) | 0 | 0 | ||||||||
\(721\) | 22204.0 | 1.14691 | ||||||||
\(722\) | 0 | 0 | ||||||||
\(723\) | 0 | 0 | ||||||||
\(724\) | 0 | 0 | ||||||||
\(725\) | 0 | 0 | ||||||||
\(726\) | 0 | 0 | ||||||||
\(727\) | − 22859.0i | − 1.16615i | −0.812417 | − | 0.583077i | \(-0.801849\pi\) | ||||
0.812417 | − | 0.583077i | \(-0.198151\pi\) | |||||||
\(728\) | 0 | 0 | ||||||||
\(729\) | 0 | 0 | ||||||||
\(730\) | 0 | 0 | ||||||||
\(731\) | 15834.0 | 0.801151 | ||||||||
\(732\) | 0 | 0 | ||||||||
\(733\) | − 31642.0i | − 1.59444i | −0.603689 | − | 0.797220i | \(-0.706303\pi\) | ||||
0.603689 | − | 0.797220i | \(-0.293697\pi\) | |||||||
\(734\) | 0 | 0 | ||||||||
\(735\) | 0 | 0 | ||||||||
\(736\) | 0 | 0 | ||||||||
\(737\) | − 1302.00i | − 0.0650743i | ||||||||
\(738\) | 0 | 0 | ||||||||
\(739\) | 12220.0 | 0.608281 | 0.304141 | − | 0.952627i | \(-0.401631\pi\) | ||||
0.304141 | + | 0.952627i | \(0.401631\pi\) | |||||||
\(740\) | 0 | 0 | ||||||||
\(741\) | 0 | 0 | ||||||||
\(742\) | 0 | 0 | ||||||||
\(743\) | − 17892.0i | − 0.883437i | −0.897154 | − | 0.441719i | \(-0.854369\pi\) | ||||
0.897154 | − | 0.441719i | \(-0.145631\pi\) | |||||||
\(744\) | 0 | 0 | ||||||||
\(745\) | 0 | 0 | ||||||||
\(746\) | 0 | 0 | ||||||||
\(747\) | 0 | 0 | ||||||||
\(748\) | 0 | 0 | ||||||||
\(749\) | −16068.0 | −0.783861 | ||||||||
\(750\) | 0 | 0 | ||||||||
\(751\) | −16648.0 | −0.808914 | −0.404457 | − | 0.914557i | \(-0.632539\pi\) | ||||
−0.404457 | + | 0.914557i | \(0.632539\pi\) | |||||||
\(752\) | 0 | 0 | ||||||||
\(753\) | 0 | 0 | ||||||||
\(754\) | 0 | 0 | ||||||||
\(755\) | 0 | 0 | ||||||||
\(756\) | 0 | 0 | ||||||||
\(757\) | − 31733.0i | − 1.52359i | −0.647820 | − | 0.761794i | \(-0.724319\pi\) | ||||
0.647820 | − | 0.761794i | \(-0.275681\pi\) | |||||||
\(758\) | 0 | 0 | ||||||||
\(759\) | 0 | 0 | ||||||||
\(760\) | 0 | 0 | ||||||||
\(761\) | 10068.0 | 0.479586 | 0.239793 | − | 0.970824i | \(-0.422920\pi\) | ||||
0.239793 | + | 0.970824i | \(0.422920\pi\) | |||||||
\(762\) | 0 | 0 | ||||||||
\(763\) | 20059.0i | 0.951749i | ||||||||
\(764\) | 0 | 0 | ||||||||
\(765\) | 0 | 0 | ||||||||
\(766\) | 0 | 0 | ||||||||
\(767\) | 3930.00i | 0.185012i | ||||||||
\(768\) | 0 | 0 | ||||||||
\(769\) | −24323.0 | −1.14058 | −0.570292 | − | 0.821442i | \(-0.693170\pi\) | ||||
−0.570292 | + | 0.821442i | \(0.693170\pi\) | |||||||
\(770\) | 0 | 0 | ||||||||
\(771\) | 0 | 0 | ||||||||
\(772\) | 0 | 0 | ||||||||
\(773\) | 2184.00i | 0.101621i | 0.998708 | + | 0.0508105i | \(0.0161804\pi\) | ||||
−0.998708 | + | 0.0508105i | \(0.983820\pi\) | |||||||
\(774\) | 0 | 0 | ||||||||
\(775\) | 0 | 0 | ||||||||
\(776\) | 0 | 0 | ||||||||
\(777\) | 0 | 0 | ||||||||
\(778\) | 0 | 0 | ||||||||
\(779\) | 23400.0 | 1.07624 | ||||||||
\(780\) | 0 | 0 | ||||||||
\(781\) | −2160.00 | −0.0989640 | ||||||||
\(782\) | 0 | 0 | ||||||||
\(783\) | 0 | 0 | ||||||||
\(784\) | 0 | 0 | ||||||||
\(785\) | 0 | 0 | ||||||||
\(786\) | 0 | 0 | ||||||||
\(787\) | 37531.0i | 1.69992i | 0.526849 | + | 0.849959i | \(0.323373\pi\) | ||||
−0.526849 | + | 0.849959i | \(0.676627\pi\) | |||||||
\(788\) | 0 | 0 | ||||||||
\(789\) | 0 | 0 | ||||||||
\(790\) | 0 | 0 | ||||||||
\(791\) | 24492.0 | 1.10093 | ||||||||
\(792\) | 0 | 0 | ||||||||
\(793\) | 2335.00i | 0.104563i | ||||||||
\(794\) | 0 | 0 | ||||||||
\(795\) | 0 | 0 | ||||||||
\(796\) | 0 | 0 | ||||||||
\(797\) | 28644.0i | 1.27305i | 0.771255 | + | 0.636526i | \(0.219629\pi\) | ||||
−0.771255 | + | 0.636526i | \(0.780371\pi\) | |||||||
\(798\) | 0 | 0 | ||||||||
\(799\) | 6084.00 | 0.269382 | ||||||||
\(800\) | 0 | 0 | ||||||||
\(801\) | 0 | 0 | ||||||||
\(802\) | 0 | 0 | ||||||||
\(803\) | 1716.00i | 0.0754126i | ||||||||
\(804\) | 0 | 0 | ||||||||
\(805\) | 0 | 0 | ||||||||
\(806\) | 0 | 0 | ||||||||
\(807\) | 0 | 0 | ||||||||
\(808\) | 0 | 0 | ||||||||
\(809\) | −17316.0 | −0.752532 | −0.376266 | − | 0.926512i | \(-0.622792\pi\) | ||||
−0.376266 | + | 0.926512i | \(0.622792\pi\) | |||||||
\(810\) | 0 | 0 | ||||||||
\(811\) | 425.000 | 0.0184017 | 0.00920084 | − | 0.999958i | \(-0.497071\pi\) | ||||
0.00920084 | + | 0.999958i | \(0.497071\pi\) | |||||||
\(812\) | 0 | 0 | ||||||||
\(813\) | 0 | 0 | ||||||||
\(814\) | 0 | 0 | ||||||||
\(815\) | 0 | 0 | ||||||||
\(816\) | 0 | 0 | ||||||||
\(817\) | − 13195.0i | − 0.565036i | ||||||||
\(818\) | 0 | 0 | ||||||||
\(819\) | 0 | 0 | ||||||||
\(820\) | 0 | 0 | ||||||||
\(821\) | 25194.0 | 1.07098 | 0.535491 | − | 0.844541i | \(-0.320126\pi\) | ||||
0.535491 | + | 0.844541i | \(0.320126\pi\) | |||||||
\(822\) | 0 | 0 | ||||||||
\(823\) | − 33961.0i | − 1.43840i | −0.694801 | − | 0.719202i | \(-0.744508\pi\) | ||||
0.694801 | − | 0.719202i | \(-0.255492\pi\) | |||||||
\(824\) | 0 | 0 | ||||||||
\(825\) | 0 | 0 | ||||||||
\(826\) | 0 | 0 | ||||||||
\(827\) | − 1956.00i | − 0.0822452i | −0.999154 | − | 0.0411226i | \(-0.986907\pi\) | ||||
0.999154 | − | 0.0411226i | \(-0.0130934\pi\) | |||||||
\(828\) | 0 | 0 | ||||||||
\(829\) | 47302.0 | 1.98174 | 0.990872 | − | 0.134803i | \(-0.0430403\pi\) | ||||
0.990872 | + | 0.134803i | \(0.0430403\pi\) | |||||||
\(830\) | 0 | 0 | ||||||||
\(831\) | 0 | 0 | ||||||||
\(832\) | 0 | 0 | ||||||||
\(833\) | − 13572.0i | − 0.564516i | ||||||||
\(834\) | 0 | 0 | ||||||||
\(835\) | 0 | 0 | ||||||||
\(836\) | 0 | 0 | ||||||||
\(837\) | 0 | 0 | ||||||||
\(838\) | 0 | 0 | ||||||||
\(839\) | 30726.0 | 1.26434 | 0.632169 | − | 0.774831i | \(-0.282165\pi\) | ||||
0.632169 | + | 0.774831i | \(0.282165\pi\) | |||||||
\(840\) | 0 | 0 | ||||||||
\(841\) | −20033.0 | −0.821395 | ||||||||
\(842\) | 0 | 0 | ||||||||
\(843\) | 0 | 0 | ||||||||
\(844\) | 0 | 0 | ||||||||
\(845\) | 0 | 0 | ||||||||
\(846\) | 0 | 0 | ||||||||
\(847\) | − 16835.0i | − 0.682949i | ||||||||
\(848\) | 0 | 0 | ||||||||
\(849\) | 0 | 0 | ||||||||
\(850\) | 0 | 0 | ||||||||
\(851\) | 29532.0 | 1.18959 | ||||||||
\(852\) | 0 | 0 | ||||||||
\(853\) | − 34489.0i | − 1.38439i | −0.721713 | − | 0.692193i | \(-0.756645\pi\) | ||||
0.721713 | − | 0.692193i | \(-0.243355\pi\) | |||||||
\(854\) | 0 | 0 | ||||||||
\(855\) | 0 | 0 | ||||||||
\(856\) | 0 | 0 | ||||||||
\(857\) | 8484.00i | 0.338166i | 0.985602 | + | 0.169083i | \(0.0540805\pi\) | ||||
−0.985602 | + | 0.169083i | \(0.945919\pi\) | |||||||
\(858\) | 0 | 0 | ||||||||
\(859\) | 520.000 | 0.0206544 | 0.0103272 | − | 0.999947i | \(-0.496713\pi\) | ||||
0.0103272 | + | 0.999947i | \(0.496713\pi\) | |||||||
\(860\) | 0 | 0 | ||||||||
\(861\) | 0 | 0 | ||||||||
\(862\) | 0 | 0 | ||||||||
\(863\) | 6864.00i | 0.270745i | 0.990795 | + | 0.135373i | \(0.0432232\pi\) | ||||
−0.990795 | + | 0.135373i | \(0.956777\pi\) | |||||||
\(864\) | 0 | 0 | ||||||||
\(865\) | 0 | 0 | ||||||||
\(866\) | 0 | 0 | ||||||||
\(867\) | 0 | 0 | ||||||||
\(868\) | 0 | 0 | ||||||||
\(869\) | 1632.00 | 0.0637075 | ||||||||
\(870\) | 0 | 0 | ||||||||
\(871\) | −1085.00 | −0.0422088 | ||||||||
\(872\) | 0 | 0 | ||||||||
\(873\) | 0 | 0 | ||||||||
\(874\) | 0 | 0 | ||||||||
\(875\) | 0 | 0 | ||||||||
\(876\) | 0 | 0 | ||||||||
\(877\) | 38857.0i | 1.49613i | 0.663624 | + | 0.748066i | \(0.269017\pi\) | ||||
−0.663624 | + | 0.748066i | \(0.730983\pi\) | |||||||
\(878\) | 0 | 0 | ||||||||
\(879\) | 0 | 0 | ||||||||
\(880\) | 0 | 0 | ||||||||
\(881\) | 10080.0 | 0.385475 | 0.192738 | − | 0.981250i | \(-0.438263\pi\) | ||||
0.192738 | + | 0.981250i | \(0.438263\pi\) | |||||||
\(882\) | 0 | 0 | ||||||||
\(883\) | − 34549.0i | − 1.31672i | −0.752702 | − | 0.658362i | \(-0.771250\pi\) | ||||
0.752702 | − | 0.658362i | \(-0.228750\pi\) | |||||||
\(884\) | 0 | 0 | ||||||||
\(885\) | 0 | 0 | ||||||||
\(886\) | 0 | 0 | ||||||||
\(887\) | − 18798.0i | − 0.711584i | −0.934565 | − | 0.355792i | \(-0.884211\pi\) | ||||
0.934565 | − | 0.355792i | \(-0.115789\pi\) | |||||||
\(888\) | 0 | 0 | ||||||||
\(889\) | 26936.0 | 1.01620 | ||||||||
\(890\) | 0 | 0 | ||||||||
\(891\) | 0 | 0 | ||||||||
\(892\) | 0 | 0 | ||||||||
\(893\) | − 5070.00i | − 0.189990i | ||||||||
\(894\) | 0 | 0 | ||||||||
\(895\) | 0 | 0 | ||||||||
\(896\) | 0 | 0 | ||||||||
\(897\) | 0 | 0 | ||||||||
\(898\) | 0 | 0 | ||||||||
\(899\) | 19734.0 | 0.732109 | ||||||||
\(900\) | 0 | 0 | ||||||||
\(901\) | −49608.0 | −1.83428 | ||||||||
\(902\) | 0 | 0 | ||||||||
\(903\) | 0 | 0 | ||||||||
\(904\) | 0 | 0 | ||||||||
\(905\) | 0 | 0 | ||||||||
\(906\) | 0 | 0 | ||||||||
\(907\) | − 50276.0i | − 1.84056i | −0.391261 | − | 0.920280i | \(-0.627961\pi\) | ||||
0.391261 | − | 0.920280i | \(-0.372039\pi\) | |||||||
\(908\) | 0 | 0 | ||||||||
\(909\) | 0 | 0 | ||||||||
\(910\) | 0 | 0 | ||||||||
\(911\) | 20502.0 | 0.745622 | 0.372811 | − | 0.927907i | \(-0.378394\pi\) | ||||
0.372811 | + | 0.927907i | \(0.378394\pi\) | |||||||
\(912\) | 0 | 0 | ||||||||
\(913\) | 2988.00i | 0.108311i | ||||||||
\(914\) | 0 | 0 | ||||||||
\(915\) | 0 | 0 | ||||||||
\(916\) | 0 | 0 | ||||||||
\(917\) | 32604.0i | 1.17413i | ||||||||
\(918\) | 0 | 0 | ||||||||
\(919\) | −37817.0 | −1.35742 | −0.678709 | − | 0.734407i | \(-0.737460\pi\) | ||||
−0.678709 | + | 0.734407i | \(0.737460\pi\) | |||||||
\(920\) | 0 | 0 | ||||||||
\(921\) | 0 | 0 | ||||||||
\(922\) | 0 | 0 | ||||||||
\(923\) | 1800.00i | 0.0641904i | ||||||||
\(924\) | 0 | 0 | ||||||||
\(925\) | 0 | 0 | ||||||||
\(926\) | 0 | 0 | ||||||||
\(927\) | 0 | 0 | ||||||||
\(928\) | 0 | 0 | ||||||||
\(929\) | −11778.0 | −0.415957 | −0.207978 | − | 0.978133i | \(-0.566688\pi\) | ||||
−0.207978 | + | 0.978133i | \(0.566688\pi\) | |||||||
\(930\) | 0 | 0 | ||||||||
\(931\) | −11310.0 | −0.398142 | ||||||||
\(932\) | 0 | 0 | ||||||||
\(933\) | 0 | 0 | ||||||||
\(934\) | 0 | 0 | ||||||||
\(935\) | 0 | 0 | ||||||||
\(936\) | 0 | 0 | ||||||||
\(937\) | 18409.0i | 0.641831i | 0.947108 | + | 0.320916i | \(0.103991\pi\) | ||||
−0.947108 | + | 0.320916i | \(0.896009\pi\) | |||||||
\(938\) | 0 | 0 | ||||||||
\(939\) | 0 | 0 | ||||||||
\(940\) | 0 | 0 | ||||||||
\(941\) | 9330.00 | 0.323219 | 0.161610 | − | 0.986855i | \(-0.448331\pi\) | ||||
0.161610 | + | 0.986855i | \(0.448331\pi\) | |||||||
\(942\) | 0 | 0 | ||||||||
\(943\) | 49680.0i | 1.71559i | ||||||||
\(944\) | 0 | 0 | ||||||||
\(945\) | 0 | 0 | ||||||||
\(946\) | 0 | 0 | ||||||||
\(947\) | 49146.0i | 1.68641i | 0.537592 | + | 0.843205i | \(0.319334\pi\) | ||||
−0.537592 | + | 0.843205i | \(0.680666\pi\) | |||||||
\(948\) | 0 | 0 | ||||||||
\(949\) | 1430.00 | 0.0489144 | ||||||||
\(950\) | 0 | 0 | ||||||||
\(951\) | 0 | 0 | ||||||||
\(952\) | 0 | 0 | ||||||||
\(953\) | 5928.00i | 0.201497i | 0.994912 | + | 0.100749i | \(0.0321238\pi\) | ||||
−0.994912 | + | 0.100749i | \(0.967876\pi\) | |||||||
\(954\) | 0 | 0 | ||||||||
\(955\) | 0 | 0 | ||||||||
\(956\) | 0 | 0 | ||||||||
\(957\) | 0 | 0 | ||||||||
\(958\) | 0 | 0 | ||||||||
\(959\) | −20358.0 | −0.685500 | ||||||||
\(960\) | 0 | 0 | ||||||||
\(961\) | 59610.0 | 2.00094 | ||||||||
\(962\) | 0 | 0 | ||||||||
\(963\) | 0 | 0 | ||||||||
\(964\) | 0 | 0 | ||||||||
\(965\) | 0 | 0 | ||||||||
\(966\) | 0 | 0 | ||||||||
\(967\) | 9520.00i | 0.316590i | 0.987392 | + | 0.158295i | \(0.0505997\pi\) | ||||
−0.987392 | + | 0.158295i | \(0.949400\pi\) | |||||||
\(968\) | 0 | 0 | ||||||||
\(969\) | 0 | 0 | ||||||||
\(970\) | 0 | 0 | ||||||||
\(971\) | −12558.0 | −0.415042 | −0.207521 | − | 0.978231i | \(-0.566539\pi\) | ||||
−0.207521 | + | 0.978231i | \(0.566539\pi\) | |||||||
\(972\) | 0 | 0 | ||||||||
\(973\) | 2548.00i | 0.0839518i | ||||||||
\(974\) | 0 | 0 | ||||||||
\(975\) | 0 | 0 | ||||||||
\(976\) | 0 | 0 | ||||||||
\(977\) | − 46206.0i | − 1.51306i | −0.653958 | − | 0.756531i | \(-0.726893\pi\) | ||||
0.653958 | − | 0.756531i | \(-0.273107\pi\) | |||||||
\(978\) | 0 | 0 | ||||||||
\(979\) | 0 | 0 | ||||||||
\(980\) | 0 | 0 | ||||||||
\(981\) | 0 | 0 | ||||||||
\(982\) | 0 | 0 | ||||||||
\(983\) | 32676.0i | 1.06023i | 0.847927 | + | 0.530113i | \(0.177851\pi\) | ||||
−0.847927 | + | 0.530113i | \(0.822149\pi\) | |||||||
\(984\) | 0 | 0 | ||||||||
\(985\) | 0 | 0 | ||||||||
\(986\) | 0 | 0 | ||||||||
\(987\) | 0 | 0 | ||||||||
\(988\) | 0 | 0 | ||||||||
\(989\) | 28014.0 | 0.900701 | ||||||||
\(990\) | 0 | 0 | ||||||||
\(991\) | −8137.00 | −0.260828 | −0.130414 | − | 0.991460i | \(-0.541631\pi\) | ||||
−0.130414 | + | 0.991460i | \(0.541631\pi\) | |||||||
\(992\) | 0 | 0 | ||||||||
\(993\) | 0 | 0 | ||||||||
\(994\) | 0 | 0 | ||||||||
\(995\) | 0 | 0 | ||||||||
\(996\) | 0 | 0 | ||||||||
\(997\) | − 18578.0i | − 0.590142i | −0.955475 | − | 0.295071i | \(-0.904657\pi\) | ||||
0.955475 | − | 0.295071i | \(-0.0953432\pi\) | |||||||
\(998\) | 0 | 0 | ||||||||
\(999\) | 0 | 0 |
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
Twists
By twisting character | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Type | Twist | Min | Dim | |
1.1 | even | 1 | trivial | 900.4.d.e.649.2 | 2 | ||
3.2 | odd | 2 | 300.4.d.c.49.1 | 2 | |||
5.2 | odd | 4 | 900.4.a.f.1.1 | 1 | |||
5.3 | odd | 4 | 900.4.a.l.1.1 | 1 | |||
5.4 | even | 2 | inner | 900.4.d.e.649.1 | 2 | ||
12.11 | even | 2 | 1200.4.f.k.49.2 | 2 | |||
15.2 | even | 4 | 300.4.a.a.1.1 | ✓ | 1 | ||
15.8 | even | 4 | 300.4.a.h.1.1 | yes | 1 | ||
15.14 | odd | 2 | 300.4.d.c.49.2 | 2 | |||
60.23 | odd | 4 | 1200.4.a.d.1.1 | 1 | |||
60.47 | odd | 4 | 1200.4.a.bi.1.1 | 1 | |||
60.59 | even | 2 | 1200.4.f.k.49.1 | 2 |
By twisted newform | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Type | |
300.4.a.a.1.1 | ✓ | 1 | 15.2 | even | 4 | ||
300.4.a.h.1.1 | yes | 1 | 15.8 | even | 4 | ||
300.4.d.c.49.1 | 2 | 3.2 | odd | 2 | |||
300.4.d.c.49.2 | 2 | 15.14 | odd | 2 | |||
900.4.a.f.1.1 | 1 | 5.2 | odd | 4 | |||
900.4.a.l.1.1 | 1 | 5.3 | odd | 4 | |||
900.4.d.e.649.1 | 2 | 5.4 | even | 2 | inner | ||
900.4.d.e.649.2 | 2 | 1.1 | even | 1 | trivial | ||
1200.4.a.d.1.1 | 1 | 60.23 | odd | 4 | |||
1200.4.a.bi.1.1 | 1 | 60.47 | odd | 4 | |||
1200.4.f.k.49.1 | 2 | 60.59 | even | 2 | |||
1200.4.f.k.49.2 | 2 | 12.11 | even | 2 |