Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [900,4,Mod(649,900)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(900, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 1]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("900.649");
S:= CuspForms(chi, 4);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 900 = 2^{2} \cdot 3^{2} \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 900.d (of order \(2\), degree \(1\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(53.1017190052\) |
Analytic rank: | \(0\) |
Dimension: | \(2\) |
Coefficient field: | \(\Q(i)\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: | \( x^{2} + 1 \) |
Coefficient ring: | \(\Z[a_1, \ldots, a_{17}]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 100) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
Embedding invariants
Embedding label | 649.1 | ||
Root | \(-1.00000i\) of defining polynomial | ||
Character | \(\chi\) | \(=\) | 900.649 |
Dual form | 900.4.d.a.649.2 |
$q$-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/900\mathbb{Z}\right)^\times\).
\(n\) | \(101\) | \(451\) | \(577\) |
\(\chi(n)\) | \(1\) | \(1\) | \(-1\) |
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
\(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
\(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
\(2\) | 0 | 0 | ||||||||
\(3\) | 0 | 0 | ||||||||
\(4\) | 0 | 0 | ||||||||
\(5\) | 0 | 0 | ||||||||
\(6\) | 0 | 0 | ||||||||
\(7\) | − 26.0000i | − 1.40387i | −0.712242 | − | 0.701934i | \(-0.752320\pi\) | ||||
0.712242 | − | 0.701934i | \(-0.247680\pi\) | |||||||
\(8\) | 0 | 0 | ||||||||
\(9\) | 0 | 0 | ||||||||
\(10\) | 0 | 0 | ||||||||
\(11\) | −45.0000 | −1.23346 | −0.616728 | − | 0.787177i | \(-0.711542\pi\) | ||||
−0.616728 | + | 0.787177i | \(0.711542\pi\) | |||||||
\(12\) | 0 | 0 | ||||||||
\(13\) | 44.0000i | 0.938723i | 0.883006 | + | 0.469362i | \(0.155516\pi\) | ||||
−0.883006 | + | 0.469362i | \(0.844484\pi\) | |||||||
\(14\) | 0 | 0 | ||||||||
\(15\) | 0 | 0 | ||||||||
\(16\) | 0 | 0 | ||||||||
\(17\) | 117.000i | 1.66922i | 0.550845 | + | 0.834608i | \(0.314306\pi\) | ||||
−0.550845 | + | 0.834608i | \(0.685694\pi\) | |||||||
\(18\) | 0 | 0 | ||||||||
\(19\) | 91.0000 | 1.09878 | 0.549390 | − | 0.835566i | \(-0.314860\pi\) | ||||
0.549390 | + | 0.835566i | \(0.314860\pi\) | |||||||
\(20\) | 0 | 0 | ||||||||
\(21\) | 0 | 0 | ||||||||
\(22\) | 0 | 0 | ||||||||
\(23\) | 18.0000i | 0.163185i | 0.996666 | + | 0.0815926i | \(0.0260006\pi\) | ||||
−0.996666 | + | 0.0815926i | \(0.973999\pi\) | |||||||
\(24\) | 0 | 0 | ||||||||
\(25\) | 0 | 0 | ||||||||
\(26\) | 0 | 0 | ||||||||
\(27\) | 0 | 0 | ||||||||
\(28\) | 0 | 0 | ||||||||
\(29\) | 144.000 | 0.922073 | 0.461037 | − | 0.887381i | \(-0.347478\pi\) | ||||
0.461037 | + | 0.887381i | \(0.347478\pi\) | |||||||
\(30\) | 0 | 0 | ||||||||
\(31\) | 26.0000 | 0.150637 | 0.0753184 | − | 0.997160i | \(-0.476003\pi\) | ||||
0.0753184 | + | 0.997160i | \(0.476003\pi\) | |||||||
\(32\) | 0 | 0 | ||||||||
\(33\) | 0 | 0 | ||||||||
\(34\) | 0 | 0 | ||||||||
\(35\) | 0 | 0 | ||||||||
\(36\) | 0 | 0 | ||||||||
\(37\) | 214.000i | 0.950848i | 0.879757 | + | 0.475424i | \(0.157705\pi\) | ||||
−0.879757 | + | 0.475424i | \(0.842295\pi\) | |||||||
\(38\) | 0 | 0 | ||||||||
\(39\) | 0 | 0 | ||||||||
\(40\) | 0 | 0 | ||||||||
\(41\) | 459.000 | 1.74838 | 0.874192 | − | 0.485580i | \(-0.161392\pi\) | ||||
0.874192 | + | 0.485580i | \(0.161392\pi\) | |||||||
\(42\) | 0 | 0 | ||||||||
\(43\) | − 460.000i | − 1.63138i | −0.578489 | − | 0.815690i | \(-0.696358\pi\) | ||||
0.578489 | − | 0.815690i | \(-0.303642\pi\) | |||||||
\(44\) | 0 | 0 | ||||||||
\(45\) | 0 | 0 | ||||||||
\(46\) | 0 | 0 | ||||||||
\(47\) | − 468.000i | − 1.45244i | −0.687461 | − | 0.726221i | \(-0.741275\pi\) | ||||
0.687461 | − | 0.726221i | \(-0.258725\pi\) | |||||||
\(48\) | 0 | 0 | ||||||||
\(49\) | −333.000 | −0.970845 | ||||||||
\(50\) | 0 | 0 | ||||||||
\(51\) | 0 | 0 | ||||||||
\(52\) | 0 | 0 | ||||||||
\(53\) | − 558.000i | − 1.44617i | −0.690757 | − | 0.723087i | \(-0.742723\pi\) | ||||
0.690757 | − | 0.723087i | \(-0.257277\pi\) | |||||||
\(54\) | 0 | 0 | ||||||||
\(55\) | 0 | 0 | ||||||||
\(56\) | 0 | 0 | ||||||||
\(57\) | 0 | 0 | ||||||||
\(58\) | 0 | 0 | ||||||||
\(59\) | −72.0000 | −0.158875 | −0.0794373 | − | 0.996840i | \(-0.525312\pi\) | ||||
−0.0794373 | + | 0.996840i | \(0.525312\pi\) | |||||||
\(60\) | 0 | 0 | ||||||||
\(61\) | −118.000 | −0.247678 | −0.123839 | − | 0.992302i | \(-0.539521\pi\) | ||||
−0.123839 | + | 0.992302i | \(0.539521\pi\) | |||||||
\(62\) | 0 | 0 | ||||||||
\(63\) | 0 | 0 | ||||||||
\(64\) | 0 | 0 | ||||||||
\(65\) | 0 | 0 | ||||||||
\(66\) | 0 | 0 | ||||||||
\(67\) | − 251.000i | − 0.457680i | −0.973464 | − | 0.228840i | \(-0.926507\pi\) | ||||
0.973464 | − | 0.228840i | \(-0.0734932\pi\) | |||||||
\(68\) | 0 | 0 | ||||||||
\(69\) | 0 | 0 | ||||||||
\(70\) | 0 | 0 | ||||||||
\(71\) | −108.000 | −0.180525 | −0.0902623 | − | 0.995918i | \(-0.528771\pi\) | ||||
−0.0902623 | + | 0.995918i | \(0.528771\pi\) | |||||||
\(72\) | 0 | 0 | ||||||||
\(73\) | 299.000i | 0.479388i | 0.970849 | + | 0.239694i | \(0.0770471\pi\) | ||||
−0.970849 | + | 0.239694i | \(0.922953\pi\) | |||||||
\(74\) | 0 | 0 | ||||||||
\(75\) | 0 | 0 | ||||||||
\(76\) | 0 | 0 | ||||||||
\(77\) | 1170.00i | 1.73161i | ||||||||
\(78\) | 0 | 0 | ||||||||
\(79\) | 898.000 | 1.27890 | 0.639449 | − | 0.768834i | \(-0.279163\pi\) | ||||
0.639449 | + | 0.768834i | \(0.279163\pi\) | |||||||
\(80\) | 0 | 0 | ||||||||
\(81\) | 0 | 0 | ||||||||
\(82\) | 0 | 0 | ||||||||
\(83\) | − 927.000i | − 1.22592i | −0.790113 | − | 0.612961i | \(-0.789978\pi\) | ||||
0.790113 | − | 0.612961i | \(-0.210022\pi\) | |||||||
\(84\) | 0 | 0 | ||||||||
\(85\) | 0 | 0 | ||||||||
\(86\) | 0 | 0 | ||||||||
\(87\) | 0 | 0 | ||||||||
\(88\) | 0 | 0 | ||||||||
\(89\) | 351.000 | 0.418044 | 0.209022 | − | 0.977911i | \(-0.432972\pi\) | ||||
0.209022 | + | 0.977911i | \(0.432972\pi\) | |||||||
\(90\) | 0 | 0 | ||||||||
\(91\) | 1144.00 | 1.31784 | ||||||||
\(92\) | 0 | 0 | ||||||||
\(93\) | 0 | 0 | ||||||||
\(94\) | 0 | 0 | ||||||||
\(95\) | 0 | 0 | ||||||||
\(96\) | 0 | 0 | ||||||||
\(97\) | − 386.000i | − 0.404045i | −0.979381 | − | 0.202022i | \(-0.935249\pi\) | ||||
0.979381 | − | 0.202022i | \(-0.0647514\pi\) | |||||||
\(98\) | 0 | 0 | ||||||||
\(99\) | 0 | 0 | ||||||||
\(100\) | 0 | 0 | ||||||||
\(101\) | 954.000 | 0.939867 | 0.469933 | − | 0.882702i | \(-0.344278\pi\) | ||||
0.469933 | + | 0.882702i | \(0.344278\pi\) | |||||||
\(102\) | 0 | 0 | ||||||||
\(103\) | − 772.000i | − 0.738519i | −0.929326 | − | 0.369259i | \(-0.879611\pi\) | ||||
0.929326 | − | 0.369259i | \(-0.120389\pi\) | |||||||
\(104\) | 0 | 0 | ||||||||
\(105\) | 0 | 0 | ||||||||
\(106\) | 0 | 0 | ||||||||
\(107\) | 1197.00i | 1.08148i | 0.841190 | + | 0.540740i | \(0.181856\pi\) | ||||
−0.841190 | + | 0.540740i | \(0.818144\pi\) | |||||||
\(108\) | 0 | 0 | ||||||||
\(109\) | 802.000 | 0.704749 | 0.352375 | − | 0.935859i | \(-0.385374\pi\) | ||||
0.352375 | + | 0.935859i | \(0.385374\pi\) | |||||||
\(110\) | 0 | 0 | ||||||||
\(111\) | 0 | 0 | ||||||||
\(112\) | 0 | 0 | ||||||||
\(113\) | − 1143.00i | − 0.951543i | −0.879569 | − | 0.475772i | \(-0.842169\pi\) | ||||
0.879569 | − | 0.475772i | \(-0.157831\pi\) | |||||||
\(114\) | 0 | 0 | ||||||||
\(115\) | 0 | 0 | ||||||||
\(116\) | 0 | 0 | ||||||||
\(117\) | 0 | 0 | ||||||||
\(118\) | 0 | 0 | ||||||||
\(119\) | 3042.00 | 2.34336 | ||||||||
\(120\) | 0 | 0 | ||||||||
\(121\) | 694.000 | 0.521412 | ||||||||
\(122\) | 0 | 0 | ||||||||
\(123\) | 0 | 0 | ||||||||
\(124\) | 0 | 0 | ||||||||
\(125\) | 0 | 0 | ||||||||
\(126\) | 0 | 0 | ||||||||
\(127\) | 2374.00i | 1.65873i | 0.558709 | + | 0.829364i | \(0.311297\pi\) | ||||
−0.558709 | + | 0.829364i | \(0.688703\pi\) | |||||||
\(128\) | 0 | 0 | ||||||||
\(129\) | 0 | 0 | ||||||||
\(130\) | 0 | 0 | ||||||||
\(131\) | 1260.00 | 0.840357 | 0.420178 | − | 0.907442i | \(-0.361968\pi\) | ||||
0.420178 | + | 0.907442i | \(0.361968\pi\) | |||||||
\(132\) | 0 | 0 | ||||||||
\(133\) | − 2366.00i | − 1.54254i | ||||||||
\(134\) | 0 | 0 | ||||||||
\(135\) | 0 | 0 | ||||||||
\(136\) | 0 | 0 | ||||||||
\(137\) | − 891.000i | − 0.555644i | −0.960633 | − | 0.277822i | \(-0.910387\pi\) | ||||
0.960633 | − | 0.277822i | \(-0.0896126\pi\) | |||||||
\(138\) | 0 | 0 | ||||||||
\(139\) | −389.000 | −0.237371 | −0.118685 | − | 0.992932i | \(-0.537868\pi\) | ||||
−0.118685 | + | 0.992932i | \(0.537868\pi\) | |||||||
\(140\) | 0 | 0 | ||||||||
\(141\) | 0 | 0 | ||||||||
\(142\) | 0 | 0 | ||||||||
\(143\) | − 1980.00i | − 1.15787i | ||||||||
\(144\) | 0 | 0 | ||||||||
\(145\) | 0 | 0 | ||||||||
\(146\) | 0 | 0 | ||||||||
\(147\) | 0 | 0 | ||||||||
\(148\) | 0 | 0 | ||||||||
\(149\) | 1296.00 | 0.712567 | 0.356283 | − | 0.934378i | \(-0.384044\pi\) | ||||
0.356283 | + | 0.934378i | \(0.384044\pi\) | |||||||
\(150\) | 0 | 0 | ||||||||
\(151\) | −2710.00 | −1.46051 | −0.730254 | − | 0.683176i | \(-0.760598\pi\) | ||||
−0.730254 | + | 0.683176i | \(0.760598\pi\) | |||||||
\(152\) | 0 | 0 | ||||||||
\(153\) | 0 | 0 | ||||||||
\(154\) | 0 | 0 | ||||||||
\(155\) | 0 | 0 | ||||||||
\(156\) | 0 | 0 | ||||||||
\(157\) | 1846.00i | 0.938388i | 0.883095 | + | 0.469194i | \(0.155455\pi\) | ||||
−0.883095 | + | 0.469194i | \(0.844545\pi\) | |||||||
\(158\) | 0 | 0 | ||||||||
\(159\) | 0 | 0 | ||||||||
\(160\) | 0 | 0 | ||||||||
\(161\) | 468.000 | 0.229090 | ||||||||
\(162\) | 0 | 0 | ||||||||
\(163\) | 1475.00i | 0.708779i | 0.935098 | + | 0.354389i | \(0.115311\pi\) | ||||
−0.935098 | + | 0.354389i | \(0.884689\pi\) | |||||||
\(164\) | 0 | 0 | ||||||||
\(165\) | 0 | 0 | ||||||||
\(166\) | 0 | 0 | ||||||||
\(167\) | − 1476.00i | − 0.683930i | −0.939713 | − | 0.341965i | \(-0.888908\pi\) | ||||
0.939713 | − | 0.341965i | \(-0.111092\pi\) | |||||||
\(168\) | 0 | 0 | ||||||||
\(169\) | 261.000 | 0.118798 | ||||||||
\(170\) | 0 | 0 | ||||||||
\(171\) | 0 | 0 | ||||||||
\(172\) | 0 | 0 | ||||||||
\(173\) | − 1368.00i | − 0.601197i | −0.953751 | − | 0.300599i | \(-0.902814\pi\) | ||||
0.953751 | − | 0.300599i | \(-0.0971864\pi\) | |||||||
\(174\) | 0 | 0 | ||||||||
\(175\) | 0 | 0 | ||||||||
\(176\) | 0 | 0 | ||||||||
\(177\) | 0 | 0 | ||||||||
\(178\) | 0 | 0 | ||||||||
\(179\) | −1503.00 | −0.627595 | −0.313797 | − | 0.949490i | \(-0.601601\pi\) | ||||
−0.313797 | + | 0.949490i | \(0.601601\pi\) | |||||||
\(180\) | 0 | 0 | ||||||||
\(181\) | 3770.00 | 1.54819 | 0.774094 | − | 0.633071i | \(-0.218206\pi\) | ||||
0.774094 | + | 0.633071i | \(0.218206\pi\) | |||||||
\(182\) | 0 | 0 | ||||||||
\(183\) | 0 | 0 | ||||||||
\(184\) | 0 | 0 | ||||||||
\(185\) | 0 | 0 | ||||||||
\(186\) | 0 | 0 | ||||||||
\(187\) | − 5265.00i | − 2.05890i | ||||||||
\(188\) | 0 | 0 | ||||||||
\(189\) | 0 | 0 | ||||||||
\(190\) | 0 | 0 | ||||||||
\(191\) | 4122.00 | 1.56156 | 0.780779 | − | 0.624808i | \(-0.214823\pi\) | ||||
0.780779 | + | 0.624808i | \(0.214823\pi\) | |||||||
\(192\) | 0 | 0 | ||||||||
\(193\) | − 1963.00i | − 0.732123i | −0.930591 | − | 0.366062i | \(-0.880706\pi\) | ||||
0.930591 | − | 0.366062i | \(-0.119294\pi\) | |||||||
\(194\) | 0 | 0 | ||||||||
\(195\) | 0 | 0 | ||||||||
\(196\) | 0 | 0 | ||||||||
\(197\) | 2934.00i | 1.06111i | 0.847650 | + | 0.530555i | \(0.178017\pi\) | ||||
−0.847650 | + | 0.530555i | \(0.821983\pi\) | |||||||
\(198\) | 0 | 0 | ||||||||
\(199\) | −1412.00 | −0.502985 | −0.251493 | − | 0.967859i | \(-0.580921\pi\) | ||||
−0.251493 | + | 0.967859i | \(0.580921\pi\) | |||||||
\(200\) | 0 | 0 | ||||||||
\(201\) | 0 | 0 | ||||||||
\(202\) | 0 | 0 | ||||||||
\(203\) | − 3744.00i | − 1.29447i | ||||||||
\(204\) | 0 | 0 | ||||||||
\(205\) | 0 | 0 | ||||||||
\(206\) | 0 | 0 | ||||||||
\(207\) | 0 | 0 | ||||||||
\(208\) | 0 | 0 | ||||||||
\(209\) | −4095.00 | −1.35530 | ||||||||
\(210\) | 0 | 0 | ||||||||
\(211\) | 3419.00 | 1.11552 | 0.557758 | − | 0.830004i | \(-0.311662\pi\) | ||||
0.557758 | + | 0.830004i | \(0.311662\pi\) | |||||||
\(212\) | 0 | 0 | ||||||||
\(213\) | 0 | 0 | ||||||||
\(214\) | 0 | 0 | ||||||||
\(215\) | 0 | 0 | ||||||||
\(216\) | 0 | 0 | ||||||||
\(217\) | − 676.000i | − 0.211474i | ||||||||
\(218\) | 0 | 0 | ||||||||
\(219\) | 0 | 0 | ||||||||
\(220\) | 0 | 0 | ||||||||
\(221\) | −5148.00 | −1.56693 | ||||||||
\(222\) | 0 | 0 | ||||||||
\(223\) | − 100.000i | − 0.0300291i | −0.999887 | − | 0.0150146i | \(-0.995221\pi\) | ||||
0.999887 | − | 0.0150146i | \(-0.00477946\pi\) | |||||||
\(224\) | 0 | 0 | ||||||||
\(225\) | 0 | 0 | ||||||||
\(226\) | 0 | 0 | ||||||||
\(227\) | 4212.00i | 1.23154i | 0.787925 | + | 0.615771i | \(0.211156\pi\) | ||||
−0.787925 | + | 0.615771i | \(0.788844\pi\) | |||||||
\(228\) | 0 | 0 | ||||||||
\(229\) | 3484.00 | 1.00537 | 0.502684 | − | 0.864470i | \(-0.332346\pi\) | ||||
0.502684 | + | 0.864470i | \(0.332346\pi\) | |||||||
\(230\) | 0 | 0 | ||||||||
\(231\) | 0 | 0 | ||||||||
\(232\) | 0 | 0 | ||||||||
\(233\) | − 918.000i | − 0.258112i | −0.991637 | − | 0.129056i | \(-0.958805\pi\) | ||||
0.991637 | − | 0.129056i | \(-0.0411948\pi\) | |||||||
\(234\) | 0 | 0 | ||||||||
\(235\) | 0 | 0 | ||||||||
\(236\) | 0 | 0 | ||||||||
\(237\) | 0 | 0 | ||||||||
\(238\) | 0 | 0 | ||||||||
\(239\) | 3744.00 | 1.01330 | 0.506651 | − | 0.862151i | \(-0.330883\pi\) | ||||
0.506651 | + | 0.862151i | \(0.330883\pi\) | |||||||
\(240\) | 0 | 0 | ||||||||
\(241\) | −4231.00 | −1.13088 | −0.565441 | − | 0.824789i | \(-0.691294\pi\) | ||||
−0.565441 | + | 0.824789i | \(0.691294\pi\) | |||||||
\(242\) | 0 | 0 | ||||||||
\(243\) | 0 | 0 | ||||||||
\(244\) | 0 | 0 | ||||||||
\(245\) | 0 | 0 | ||||||||
\(246\) | 0 | 0 | ||||||||
\(247\) | 4004.00i | 1.03145i | ||||||||
\(248\) | 0 | 0 | ||||||||
\(249\) | 0 | 0 | ||||||||
\(250\) | 0 | 0 | ||||||||
\(251\) | 2925.00 | 0.735555 | 0.367778 | − | 0.929914i | \(-0.380119\pi\) | ||||
0.367778 | + | 0.929914i | \(0.380119\pi\) | |||||||
\(252\) | 0 | 0 | ||||||||
\(253\) | − 810.000i | − 0.201282i | ||||||||
\(254\) | 0 | 0 | ||||||||
\(255\) | 0 | 0 | ||||||||
\(256\) | 0 | 0 | ||||||||
\(257\) | − 18.0000i | − 0.00436891i | −0.999998 | − | 0.00218445i | \(-0.999305\pi\) | ||||
0.999998 | − | 0.00218445i | \(-0.000695334\pi\) | |||||||
\(258\) | 0 | 0 | ||||||||
\(259\) | 5564.00 | 1.33487 | ||||||||
\(260\) | 0 | 0 | ||||||||
\(261\) | 0 | 0 | ||||||||
\(262\) | 0 | 0 | ||||||||
\(263\) | 6786.00i | 1.59104i | 0.605929 | + | 0.795518i | \(0.292801\pi\) | ||||
−0.605929 | + | 0.795518i | \(0.707199\pi\) | |||||||
\(264\) | 0 | 0 | ||||||||
\(265\) | 0 | 0 | ||||||||
\(266\) | 0 | 0 | ||||||||
\(267\) | 0 | 0 | ||||||||
\(268\) | 0 | 0 | ||||||||
\(269\) | 7632.00 | 1.72986 | 0.864928 | − | 0.501896i | \(-0.167364\pi\) | ||||
0.864928 | + | 0.501896i | \(0.167364\pi\) | |||||||
\(270\) | 0 | 0 | ||||||||
\(271\) | 650.000 | 0.145700 | 0.0728500 | − | 0.997343i | \(-0.476791\pi\) | ||||
0.0728500 | + | 0.997343i | \(0.476791\pi\) | |||||||
\(272\) | 0 | 0 | ||||||||
\(273\) | 0 | 0 | ||||||||
\(274\) | 0 | 0 | ||||||||
\(275\) | 0 | 0 | ||||||||
\(276\) | 0 | 0 | ||||||||
\(277\) | 3232.00i | 0.701054i | 0.936553 | + | 0.350527i | \(0.113998\pi\) | ||||
−0.936553 | + | 0.350527i | \(0.886002\pi\) | |||||||
\(278\) | 0 | 0 | ||||||||
\(279\) | 0 | 0 | ||||||||
\(280\) | 0 | 0 | ||||||||
\(281\) | −4446.00 | −0.943865 | −0.471933 | − | 0.881635i | \(-0.656443\pi\) | ||||
−0.471933 | + | 0.881635i | \(0.656443\pi\) | |||||||
\(282\) | 0 | 0 | ||||||||
\(283\) | 2483.00i | 0.521551i | 0.965399 | + | 0.260776i | \(0.0839783\pi\) | ||||
−0.965399 | + | 0.260776i | \(0.916022\pi\) | |||||||
\(284\) | 0 | 0 | ||||||||
\(285\) | 0 | 0 | ||||||||
\(286\) | 0 | 0 | ||||||||
\(287\) | − 11934.0i | − 2.45450i | ||||||||
\(288\) | 0 | 0 | ||||||||
\(289\) | −8776.00 | −1.78628 | ||||||||
\(290\) | 0 | 0 | ||||||||
\(291\) | 0 | 0 | ||||||||
\(292\) | 0 | 0 | ||||||||
\(293\) | 4050.00i | 0.807521i | 0.914865 | + | 0.403760i | \(0.132297\pi\) | ||||
−0.914865 | + | 0.403760i | \(0.867703\pi\) | |||||||
\(294\) | 0 | 0 | ||||||||
\(295\) | 0 | 0 | ||||||||
\(296\) | 0 | 0 | ||||||||
\(297\) | 0 | 0 | ||||||||
\(298\) | 0 | 0 | ||||||||
\(299\) | −792.000 | −0.153186 | ||||||||
\(300\) | 0 | 0 | ||||||||
\(301\) | −11960.0 | −2.29024 | ||||||||
\(302\) | 0 | 0 | ||||||||
\(303\) | 0 | 0 | ||||||||
\(304\) | 0 | 0 | ||||||||
\(305\) | 0 | 0 | ||||||||
\(306\) | 0 | 0 | ||||||||
\(307\) | − 2321.00i | − 0.431487i | −0.976450 | − | 0.215743i | \(-0.930783\pi\) | ||||
0.976450 | − | 0.215743i | \(-0.0692175\pi\) | |||||||
\(308\) | 0 | 0 | ||||||||
\(309\) | 0 | 0 | ||||||||
\(310\) | 0 | 0 | ||||||||
\(311\) | 3258.00 | 0.594033 | 0.297016 | − | 0.954872i | \(-0.404008\pi\) | ||||
0.297016 | + | 0.954872i | \(0.404008\pi\) | |||||||
\(312\) | 0 | 0 | ||||||||
\(313\) | 3626.00i | 0.654804i | 0.944885 | + | 0.327402i | \(0.106173\pi\) | ||||
−0.944885 | + | 0.327402i | \(0.893827\pi\) | |||||||
\(314\) | 0 | 0 | ||||||||
\(315\) | 0 | 0 | ||||||||
\(316\) | 0 | 0 | ||||||||
\(317\) | 3852.00i | 0.682492i | 0.939974 | + | 0.341246i | \(0.110849\pi\) | ||||
−0.939974 | + | 0.341246i | \(0.889151\pi\) | |||||||
\(318\) | 0 | 0 | ||||||||
\(319\) | −6480.00 | −1.13734 | ||||||||
\(320\) | 0 | 0 | ||||||||
\(321\) | 0 | 0 | ||||||||
\(322\) | 0 | 0 | ||||||||
\(323\) | 10647.0i | 1.83410i | ||||||||
\(324\) | 0 | 0 | ||||||||
\(325\) | 0 | 0 | ||||||||
\(326\) | 0 | 0 | ||||||||
\(327\) | 0 | 0 | ||||||||
\(328\) | 0 | 0 | ||||||||
\(329\) | −12168.0 | −2.03904 | ||||||||
\(330\) | 0 | 0 | ||||||||
\(331\) | 7553.00 | 1.25423 | 0.627115 | − | 0.778926i | \(-0.284235\pi\) | ||||
0.627115 | + | 0.778926i | \(0.284235\pi\) | |||||||
\(332\) | 0 | 0 | ||||||||
\(333\) | 0 | 0 | ||||||||
\(334\) | 0 | 0 | ||||||||
\(335\) | 0 | 0 | ||||||||
\(336\) | 0 | 0 | ||||||||
\(337\) | 109.000i | 0.0176190i | 0.999961 | + | 0.00880951i | \(0.00280419\pi\) | ||||
−0.999961 | + | 0.00880951i | \(0.997196\pi\) | |||||||
\(338\) | 0 | 0 | ||||||||
\(339\) | 0 | 0 | ||||||||
\(340\) | 0 | 0 | ||||||||
\(341\) | −1170.00 | −0.185804 | ||||||||
\(342\) | 0 | 0 | ||||||||
\(343\) | − 260.000i | − 0.0409291i | ||||||||
\(344\) | 0 | 0 | ||||||||
\(345\) | 0 | 0 | ||||||||
\(346\) | 0 | 0 | ||||||||
\(347\) | − 2835.00i | − 0.438590i | −0.975659 | − | 0.219295i | \(-0.929624\pi\) | ||||
0.975659 | − | 0.219295i | \(-0.0703757\pi\) | |||||||
\(348\) | 0 | 0 | ||||||||
\(349\) | −2990.00 | −0.458599 | −0.229299 | − | 0.973356i | \(-0.573644\pi\) | ||||
−0.229299 | + | 0.973356i | \(0.573644\pi\) | |||||||
\(350\) | 0 | 0 | ||||||||
\(351\) | 0 | 0 | ||||||||
\(352\) | 0 | 0 | ||||||||
\(353\) | − 9126.00i | − 1.37600i | −0.725711 | − | 0.688000i | \(-0.758489\pi\) | ||||
0.725711 | − | 0.688000i | \(-0.241511\pi\) | |||||||
\(354\) | 0 | 0 | ||||||||
\(355\) | 0 | 0 | ||||||||
\(356\) | 0 | 0 | ||||||||
\(357\) | 0 | 0 | ||||||||
\(358\) | 0 | 0 | ||||||||
\(359\) | −9594.00 | −1.41045 | −0.705226 | − | 0.708983i | \(-0.749154\pi\) | ||||
−0.705226 | + | 0.708983i | \(0.749154\pi\) | |||||||
\(360\) | 0 | 0 | ||||||||
\(361\) | 1422.00 | 0.207319 | ||||||||
\(362\) | 0 | 0 | ||||||||
\(363\) | 0 | 0 | ||||||||
\(364\) | 0 | 0 | ||||||||
\(365\) | 0 | 0 | ||||||||
\(366\) | 0 | 0 | ||||||||
\(367\) | − 9764.00i | − 1.38876i | −0.719606 | − | 0.694382i | \(-0.755678\pi\) | ||||
0.719606 | − | 0.694382i | \(-0.244322\pi\) | |||||||
\(368\) | 0 | 0 | ||||||||
\(369\) | 0 | 0 | ||||||||
\(370\) | 0 | 0 | ||||||||
\(371\) | −14508.0 | −2.03024 | ||||||||
\(372\) | 0 | 0 | ||||||||
\(373\) | 6722.00i | 0.933115i | 0.884491 | + | 0.466558i | \(0.154506\pi\) | ||||
−0.884491 | + | 0.466558i | \(0.845494\pi\) | |||||||
\(374\) | 0 | 0 | ||||||||
\(375\) | 0 | 0 | ||||||||
\(376\) | 0 | 0 | ||||||||
\(377\) | 6336.00i | 0.865572i | ||||||||
\(378\) | 0 | 0 | ||||||||
\(379\) | 13537.0 | 1.83469 | 0.917347 | − | 0.398089i | \(-0.130326\pi\) | ||||
0.917347 | + | 0.398089i | \(0.130326\pi\) | |||||||
\(380\) | 0 | 0 | ||||||||
\(381\) | 0 | 0 | ||||||||
\(382\) | 0 | 0 | ||||||||
\(383\) | 8658.00i | 1.15510i | 0.816355 | + | 0.577550i | \(0.195991\pi\) | ||||
−0.816355 | + | 0.577550i | \(0.804009\pi\) | |||||||
\(384\) | 0 | 0 | ||||||||
\(385\) | 0 | 0 | ||||||||
\(386\) | 0 | 0 | ||||||||
\(387\) | 0 | 0 | ||||||||
\(388\) | 0 | 0 | ||||||||
\(389\) | −8874.00 | −1.15663 | −0.578316 | − | 0.815813i | \(-0.696290\pi\) | ||||
−0.578316 | + | 0.815813i | \(0.696290\pi\) | |||||||
\(390\) | 0 | 0 | ||||||||
\(391\) | −2106.00 | −0.272391 | ||||||||
\(392\) | 0 | 0 | ||||||||
\(393\) | 0 | 0 | ||||||||
\(394\) | 0 | 0 | ||||||||
\(395\) | 0 | 0 | ||||||||
\(396\) | 0 | 0 | ||||||||
\(397\) | − 5876.00i | − 0.742841i | −0.928465 | − | 0.371421i | \(-0.878871\pi\) | ||||
0.928465 | − | 0.371421i | \(-0.121129\pi\) | |||||||
\(398\) | 0 | 0 | ||||||||
\(399\) | 0 | 0 | ||||||||
\(400\) | 0 | 0 | ||||||||
\(401\) | 1755.00 | 0.218555 | 0.109277 | − | 0.994011i | \(-0.465146\pi\) | ||||
0.109277 | + | 0.994011i | \(0.465146\pi\) | |||||||
\(402\) | 0 | 0 | ||||||||
\(403\) | 1144.00i | 0.141406i | ||||||||
\(404\) | 0 | 0 | ||||||||
\(405\) | 0 | 0 | ||||||||
\(406\) | 0 | 0 | ||||||||
\(407\) | − 9630.00i | − 1.17283i | ||||||||
\(408\) | 0 | 0 | ||||||||
\(409\) | −4589.00 | −0.554796 | −0.277398 | − | 0.960755i | \(-0.589472\pi\) | ||||
−0.277398 | + | 0.960755i | \(0.589472\pi\) | |||||||
\(410\) | 0 | 0 | ||||||||
\(411\) | 0 | 0 | ||||||||
\(412\) | 0 | 0 | ||||||||
\(413\) | 1872.00i | 0.223039i | ||||||||
\(414\) | 0 | 0 | ||||||||
\(415\) | 0 | 0 | ||||||||
\(416\) | 0 | 0 | ||||||||
\(417\) | 0 | 0 | ||||||||
\(418\) | 0 | 0 | ||||||||
\(419\) | 5409.00 | 0.630661 | 0.315330 | − | 0.948982i | \(-0.397885\pi\) | ||||
0.315330 | + | 0.948982i | \(0.397885\pi\) | |||||||
\(420\) | 0 | 0 | ||||||||
\(421\) | 12116.0 | 1.40261 | 0.701304 | − | 0.712863i | \(-0.252602\pi\) | ||||
0.701304 | + | 0.712863i | \(0.252602\pi\) | |||||||
\(422\) | 0 | 0 | ||||||||
\(423\) | 0 | 0 | ||||||||
\(424\) | 0 | 0 | ||||||||
\(425\) | 0 | 0 | ||||||||
\(426\) | 0 | 0 | ||||||||
\(427\) | 3068.00i | 0.347707i | ||||||||
\(428\) | 0 | 0 | ||||||||
\(429\) | 0 | 0 | ||||||||
\(430\) | 0 | 0 | ||||||||
\(431\) | −9126.00 | −1.01992 | −0.509958 | − | 0.860199i | \(-0.670339\pi\) | ||||
−0.509958 | + | 0.860199i | \(0.670339\pi\) | |||||||
\(432\) | 0 | 0 | ||||||||
\(433\) | 629.000i | 0.0698102i | 0.999391 | + | 0.0349051i | \(0.0111129\pi\) | ||||
−0.999391 | + | 0.0349051i | \(0.988887\pi\) | |||||||
\(434\) | 0 | 0 | ||||||||
\(435\) | 0 | 0 | ||||||||
\(436\) | 0 | 0 | ||||||||
\(437\) | 1638.00i | 0.179305i | ||||||||
\(438\) | 0 | 0 | ||||||||
\(439\) | −4472.00 | −0.486189 | −0.243094 | − | 0.970003i | \(-0.578162\pi\) | ||||
−0.243094 | + | 0.970003i | \(0.578162\pi\) | |||||||
\(440\) | 0 | 0 | ||||||||
\(441\) | 0 | 0 | ||||||||
\(442\) | 0 | 0 | ||||||||
\(443\) | 3393.00i | 0.363897i | 0.983308 | + | 0.181948i | \(0.0582404\pi\) | ||||
−0.983308 | + | 0.181948i | \(0.941760\pi\) | |||||||
\(444\) | 0 | 0 | ||||||||
\(445\) | 0 | 0 | ||||||||
\(446\) | 0 | 0 | ||||||||
\(447\) | 0 | 0 | ||||||||
\(448\) | 0 | 0 | ||||||||
\(449\) | −5031.00 | −0.528792 | −0.264396 | − | 0.964414i | \(-0.585173\pi\) | ||||
−0.264396 | + | 0.964414i | \(0.585173\pi\) | |||||||
\(450\) | 0 | 0 | ||||||||
\(451\) | −20655.0 | −2.15655 | ||||||||
\(452\) | 0 | 0 | ||||||||
\(453\) | 0 | 0 | ||||||||
\(454\) | 0 | 0 | ||||||||
\(455\) | 0 | 0 | ||||||||
\(456\) | 0 | 0 | ||||||||
\(457\) | 6487.00i | 0.664002i | 0.943279 | + | 0.332001i | \(0.107724\pi\) | ||||
−0.943279 | + | 0.332001i | \(0.892276\pi\) | |||||||
\(458\) | 0 | 0 | ||||||||
\(459\) | 0 | 0 | ||||||||
\(460\) | 0 | 0 | ||||||||
\(461\) | −2700.00 | −0.272780 | −0.136390 | − | 0.990655i | \(-0.543550\pi\) | ||||
−0.136390 | + | 0.990655i | \(0.543550\pi\) | |||||||
\(462\) | 0 | 0 | ||||||||
\(463\) | − 2932.00i | − 0.294302i | −0.989114 | − | 0.147151i | \(-0.952990\pi\) | ||||
0.989114 | − | 0.147151i | \(-0.0470102\pi\) | |||||||
\(464\) | 0 | 0 | ||||||||
\(465\) | 0 | 0 | ||||||||
\(466\) | 0 | 0 | ||||||||
\(467\) | − 15660.0i | − 1.55173i | −0.630898 | − | 0.775866i | \(-0.717314\pi\) | ||||
0.630898 | − | 0.775866i | \(-0.282686\pi\) | |||||||
\(468\) | 0 | 0 | ||||||||
\(469\) | −6526.00 | −0.642522 | ||||||||
\(470\) | 0 | 0 | ||||||||
\(471\) | 0 | 0 | ||||||||
\(472\) | 0 | 0 | ||||||||
\(473\) | 20700.0i | 2.01223i | ||||||||
\(474\) | 0 | 0 | ||||||||
\(475\) | 0 | 0 | ||||||||
\(476\) | 0 | 0 | ||||||||
\(477\) | 0 | 0 | ||||||||
\(478\) | 0 | 0 | ||||||||
\(479\) | 10134.0 | 0.966669 | 0.483334 | − | 0.875436i | \(-0.339426\pi\) | ||||
0.483334 | + | 0.875436i | \(0.339426\pi\) | |||||||
\(480\) | 0 | 0 | ||||||||
\(481\) | −9416.00 | −0.892583 | ||||||||
\(482\) | 0 | 0 | ||||||||
\(483\) | 0 | 0 | ||||||||
\(484\) | 0 | 0 | ||||||||
\(485\) | 0 | 0 | ||||||||
\(486\) | 0 | 0 | ||||||||
\(487\) | − 1898.00i | − 0.176605i | −0.996094 | − | 0.0883025i | \(-0.971856\pi\) | ||||
0.996094 | − | 0.0883025i | \(-0.0281442\pi\) | |||||||
\(488\) | 0 | 0 | ||||||||
\(489\) | 0 | 0 | ||||||||
\(490\) | 0 | 0 | ||||||||
\(491\) | 6300.00 | 0.579053 | 0.289526 | − | 0.957170i | \(-0.406502\pi\) | ||||
0.289526 | + | 0.957170i | \(0.406502\pi\) | |||||||
\(492\) | 0 | 0 | ||||||||
\(493\) | 16848.0i | 1.53914i | ||||||||
\(494\) | 0 | 0 | ||||||||
\(495\) | 0 | 0 | ||||||||
\(496\) | 0 | 0 | ||||||||
\(497\) | 2808.00i | 0.253433i | ||||||||
\(498\) | 0 | 0 | ||||||||
\(499\) | −18044.0 | −1.61876 | −0.809379 | − | 0.587286i | \(-0.800196\pi\) | ||||
−0.809379 | + | 0.587286i | \(0.800196\pi\) | |||||||
\(500\) | 0 | 0 | ||||||||
\(501\) | 0 | 0 | ||||||||
\(502\) | 0 | 0 | ||||||||
\(503\) | 6876.00i | 0.609514i | 0.952430 | + | 0.304757i | \(0.0985753\pi\) | ||||
−0.952430 | + | 0.304757i | \(0.901425\pi\) | |||||||
\(504\) | 0 | 0 | ||||||||
\(505\) | 0 | 0 | ||||||||
\(506\) | 0 | 0 | ||||||||
\(507\) | 0 | 0 | ||||||||
\(508\) | 0 | 0 | ||||||||
\(509\) | −4806.00 | −0.418511 | −0.209256 | − | 0.977861i | \(-0.567104\pi\) | ||||
−0.209256 | + | 0.977861i | \(0.567104\pi\) | |||||||
\(510\) | 0 | 0 | ||||||||
\(511\) | 7774.00 | 0.672997 | ||||||||
\(512\) | 0 | 0 | ||||||||
\(513\) | 0 | 0 | ||||||||
\(514\) | 0 | 0 | ||||||||
\(515\) | 0 | 0 | ||||||||
\(516\) | 0 | 0 | ||||||||
\(517\) | 21060.0i | 1.79152i | ||||||||
\(518\) | 0 | 0 | ||||||||
\(519\) | 0 | 0 | ||||||||
\(520\) | 0 | 0 | ||||||||
\(521\) | −7749.00 | −0.651612 | −0.325806 | − | 0.945437i | \(-0.605636\pi\) | ||||
−0.325806 | + | 0.945437i | \(0.605636\pi\) | |||||||
\(522\) | 0 | 0 | ||||||||
\(523\) | 8153.00i | 0.681655i | 0.940126 | + | 0.340828i | \(0.110707\pi\) | ||||
−0.940126 | + | 0.340828i | \(0.889293\pi\) | |||||||
\(524\) | 0 | 0 | ||||||||
\(525\) | 0 | 0 | ||||||||
\(526\) | 0 | 0 | ||||||||
\(527\) | 3042.00i | 0.251445i | ||||||||
\(528\) | 0 | 0 | ||||||||
\(529\) | 11843.0 | 0.973371 | ||||||||
\(530\) | 0 | 0 | ||||||||
\(531\) | 0 | 0 | ||||||||
\(532\) | 0 | 0 | ||||||||
\(533\) | 20196.0i | 1.64125i | ||||||||
\(534\) | 0 | 0 | ||||||||
\(535\) | 0 | 0 | ||||||||
\(536\) | 0 | 0 | ||||||||
\(537\) | 0 | 0 | ||||||||
\(538\) | 0 | 0 | ||||||||
\(539\) | 14985.0 | 1.19749 | ||||||||
\(540\) | 0 | 0 | ||||||||
\(541\) | −10576.0 | −0.840476 | −0.420238 | − | 0.907414i | \(-0.638053\pi\) | ||||
−0.420238 | + | 0.907414i | \(0.638053\pi\) | |||||||
\(542\) | 0 | 0 | ||||||||
\(543\) | 0 | 0 | ||||||||
\(544\) | 0 | 0 | ||||||||
\(545\) | 0 | 0 | ||||||||
\(546\) | 0 | 0 | ||||||||
\(547\) | − 7553.00i | − 0.590389i | −0.955437 | − | 0.295195i | \(-0.904615\pi\) | ||||
0.955437 | − | 0.295195i | \(-0.0953845\pi\) | |||||||
\(548\) | 0 | 0 | ||||||||
\(549\) | 0 | 0 | ||||||||
\(550\) | 0 | 0 | ||||||||
\(551\) | 13104.0 | 1.01316 | ||||||||
\(552\) | 0 | 0 | ||||||||
\(553\) | − 23348.0i | − 1.79540i | ||||||||
\(554\) | 0 | 0 | ||||||||
\(555\) | 0 | 0 | ||||||||
\(556\) | 0 | 0 | ||||||||
\(557\) | 13500.0i | 1.02695i | 0.858103 | + | 0.513477i | \(0.171643\pi\) | ||||
−0.858103 | + | 0.513477i | \(0.828357\pi\) | |||||||
\(558\) | 0 | 0 | ||||||||
\(559\) | 20240.0 | 1.53141 | ||||||||
\(560\) | 0 | 0 | ||||||||
\(561\) | 0 | 0 | ||||||||
\(562\) | 0 | 0 | ||||||||
\(563\) | − 23184.0i | − 1.73550i | −0.496997 | − | 0.867752i | \(-0.665564\pi\) | ||||
0.496997 | − | 0.867752i | \(-0.334436\pi\) | |||||||
\(564\) | 0 | 0 | ||||||||
\(565\) | 0 | 0 | ||||||||
\(566\) | 0 | 0 | ||||||||
\(567\) | 0 | 0 | ||||||||
\(568\) | 0 | 0 | ||||||||
\(569\) | −8055.00 | −0.593468 | −0.296734 | − | 0.954960i | \(-0.595897\pi\) | ||||
−0.296734 | + | 0.954960i | \(0.595897\pi\) | |||||||
\(570\) | 0 | 0 | ||||||||
\(571\) | 3068.00 | 0.224854 | 0.112427 | − | 0.993660i | \(-0.464138\pi\) | ||||
0.112427 | + | 0.993660i | \(0.464138\pi\) | |||||||
\(572\) | 0 | 0 | ||||||||
\(573\) | 0 | 0 | ||||||||
\(574\) | 0 | 0 | ||||||||
\(575\) | 0 | 0 | ||||||||
\(576\) | 0 | 0 | ||||||||
\(577\) | − 12419.0i | − 0.896031i | −0.894026 | − | 0.448015i | \(-0.852131\pi\) | ||||
0.894026 | − | 0.448015i | \(-0.147869\pi\) | |||||||
\(578\) | 0 | 0 | ||||||||
\(579\) | 0 | 0 | ||||||||
\(580\) | 0 | 0 | ||||||||
\(581\) | −24102.0 | −1.72103 | ||||||||
\(582\) | 0 | 0 | ||||||||
\(583\) | 25110.0i | 1.78379i | ||||||||
\(584\) | 0 | 0 | ||||||||
\(585\) | 0 | 0 | ||||||||
\(586\) | 0 | 0 | ||||||||
\(587\) | − 12393.0i | − 0.871403i | −0.900091 | − | 0.435702i | \(-0.856500\pi\) | ||||
0.900091 | − | 0.435702i | \(-0.143500\pi\) | |||||||
\(588\) | 0 | 0 | ||||||||
\(589\) | 2366.00 | 0.165517 | ||||||||
\(590\) | 0 | 0 | ||||||||
\(591\) | 0 | 0 | ||||||||
\(592\) | 0 | 0 | ||||||||
\(593\) | − 23751.0i | − 1.64475i | −0.568946 | − | 0.822375i | \(-0.692649\pi\) | ||||
0.568946 | − | 0.822375i | \(-0.307351\pi\) | |||||||
\(594\) | 0 | 0 | ||||||||
\(595\) | 0 | 0 | ||||||||
\(596\) | 0 | 0 | ||||||||
\(597\) | 0 | 0 | ||||||||
\(598\) | 0 | 0 | ||||||||
\(599\) | −11610.0 | −0.791939 | −0.395970 | − | 0.918264i | \(-0.629591\pi\) | ||||
−0.395970 | + | 0.918264i | \(0.629591\pi\) | |||||||
\(600\) | 0 | 0 | ||||||||
\(601\) | 26675.0 | 1.81048 | 0.905238 | − | 0.424905i | \(-0.139693\pi\) | ||||
0.905238 | + | 0.424905i | \(0.139693\pi\) | |||||||
\(602\) | 0 | 0 | ||||||||
\(603\) | 0 | 0 | ||||||||
\(604\) | 0 | 0 | ||||||||
\(605\) | 0 | 0 | ||||||||
\(606\) | 0 | 0 | ||||||||
\(607\) | − 17264.0i | − 1.15441i | −0.816601 | − | 0.577203i | \(-0.804144\pi\) | ||||
0.816601 | − | 0.577203i | \(-0.195856\pi\) | |||||||
\(608\) | 0 | 0 | ||||||||
\(609\) | 0 | 0 | ||||||||
\(610\) | 0 | 0 | ||||||||
\(611\) | 20592.0 | 1.36344 | ||||||||
\(612\) | 0 | 0 | ||||||||
\(613\) | − 26026.0i | − 1.71481i | −0.514640 | − | 0.857406i | \(-0.672074\pi\) | ||||
0.514640 | − | 0.857406i | \(-0.327926\pi\) | |||||||
\(614\) | 0 | 0 | ||||||||
\(615\) | 0 | 0 | ||||||||
\(616\) | 0 | 0 | ||||||||
\(617\) | 5022.00i | 0.327679i | 0.986487 | + | 0.163840i | \(0.0523880\pi\) | ||||
−0.986487 | + | 0.163840i | \(0.947612\pi\) | |||||||
\(618\) | 0 | 0 | ||||||||
\(619\) | −7820.00 | −0.507774 | −0.253887 | − | 0.967234i | \(-0.581709\pi\) | ||||
−0.253887 | + | 0.967234i | \(0.581709\pi\) | |||||||
\(620\) | 0 | 0 | ||||||||
\(621\) | 0 | 0 | ||||||||
\(622\) | 0 | 0 | ||||||||
\(623\) | − 9126.00i | − 0.586879i | ||||||||
\(624\) | 0 | 0 | ||||||||
\(625\) | 0 | 0 | ||||||||
\(626\) | 0 | 0 | ||||||||
\(627\) | 0 | 0 | ||||||||
\(628\) | 0 | 0 | ||||||||
\(629\) | −25038.0 | −1.58717 | ||||||||
\(630\) | 0 | 0 | ||||||||
\(631\) | 15002.0 | 0.946466 | 0.473233 | − | 0.880937i | \(-0.343087\pi\) | ||||
0.473233 | + | 0.880937i | \(0.343087\pi\) | |||||||
\(632\) | 0 | 0 | ||||||||
\(633\) | 0 | 0 | ||||||||
\(634\) | 0 | 0 | ||||||||
\(635\) | 0 | 0 | ||||||||
\(636\) | 0 | 0 | ||||||||
\(637\) | − 14652.0i | − 0.911355i | ||||||||
\(638\) | 0 | 0 | ||||||||
\(639\) | 0 | 0 | ||||||||
\(640\) | 0 | 0 | ||||||||
\(641\) | 918.000 | 0.0565660 | 0.0282830 | − | 0.999600i | \(-0.490996\pi\) | ||||
0.0282830 | + | 0.999600i | \(0.490996\pi\) | |||||||
\(642\) | 0 | 0 | ||||||||
\(643\) | − 23452.0i | − 1.43835i | −0.694831 | − | 0.719173i | \(-0.744521\pi\) | ||||
0.694831 | − | 0.719173i | \(-0.255479\pi\) | |||||||
\(644\) | 0 | 0 | ||||||||
\(645\) | 0 | 0 | ||||||||
\(646\) | 0 | 0 | ||||||||
\(647\) | 20556.0i | 1.24906i | 0.781002 | + | 0.624528i | \(0.214709\pi\) | ||||
−0.781002 | + | 0.624528i | \(0.785291\pi\) | |||||||
\(648\) | 0 | 0 | ||||||||
\(649\) | 3240.00 | 0.195965 | ||||||||
\(650\) | 0 | 0 | ||||||||
\(651\) | 0 | 0 | ||||||||
\(652\) | 0 | 0 | ||||||||
\(653\) | − 30654.0i | − 1.83703i | −0.395381 | − | 0.918517i | \(-0.629387\pi\) | ||||
0.395381 | − | 0.918517i | \(-0.370613\pi\) | |||||||
\(654\) | 0 | 0 | ||||||||
\(655\) | 0 | 0 | ||||||||
\(656\) | 0 | 0 | ||||||||
\(657\) | 0 | 0 | ||||||||
\(658\) | 0 | 0 | ||||||||
\(659\) | 8919.00 | 0.527215 | 0.263608 | − | 0.964630i | \(-0.415088\pi\) | ||||
0.263608 | + | 0.964630i | \(0.415088\pi\) | |||||||
\(660\) | 0 | 0 | ||||||||
\(661\) | −22912.0 | −1.34822 | −0.674110 | − | 0.738631i | \(-0.735473\pi\) | ||||
−0.674110 | + | 0.738631i | \(0.735473\pi\) | |||||||
\(662\) | 0 | 0 | ||||||||
\(663\) | 0 | 0 | ||||||||
\(664\) | 0 | 0 | ||||||||
\(665\) | 0 | 0 | ||||||||
\(666\) | 0 | 0 | ||||||||
\(667\) | 2592.00i | 0.150469i | ||||||||
\(668\) | 0 | 0 | ||||||||
\(669\) | 0 | 0 | ||||||||
\(670\) | 0 | 0 | ||||||||
\(671\) | 5310.00 | 0.305500 | ||||||||
\(672\) | 0 | 0 | ||||||||
\(673\) | − 1222.00i | − 0.0699920i | −0.999387 | − | 0.0349960i | \(-0.988858\pi\) | ||||
0.999387 | − | 0.0349960i | \(-0.0111419\pi\) | |||||||
\(674\) | 0 | 0 | ||||||||
\(675\) | 0 | 0 | ||||||||
\(676\) | 0 | 0 | ||||||||
\(677\) | 144.000i | 0.00817484i | 0.999992 | + | 0.00408742i | \(0.00130107\pi\) | ||||
−0.999992 | + | 0.00408742i | \(0.998699\pi\) | |||||||
\(678\) | 0 | 0 | ||||||||
\(679\) | −10036.0 | −0.567226 | ||||||||
\(680\) | 0 | 0 | ||||||||
\(681\) | 0 | 0 | ||||||||
\(682\) | 0 | 0 | ||||||||
\(683\) | 12519.0i | 0.701356i | 0.936496 | + | 0.350678i | \(0.114049\pi\) | ||||
−0.936496 | + | 0.350678i | \(0.885951\pi\) | |||||||
\(684\) | 0 | 0 | ||||||||
\(685\) | 0 | 0 | ||||||||
\(686\) | 0 | 0 | ||||||||
\(687\) | 0 | 0 | ||||||||
\(688\) | 0 | 0 | ||||||||
\(689\) | 24552.0 | 1.35756 | ||||||||
\(690\) | 0 | 0 | ||||||||
\(691\) | 11873.0 | 0.653647 | 0.326824 | − | 0.945085i | \(-0.394022\pi\) | ||||
0.326824 | + | 0.945085i | \(0.394022\pi\) | |||||||
\(692\) | 0 | 0 | ||||||||
\(693\) | 0 | 0 | ||||||||
\(694\) | 0 | 0 | ||||||||
\(695\) | 0 | 0 | ||||||||
\(696\) | 0 | 0 | ||||||||
\(697\) | 53703.0i | 2.91843i | ||||||||
\(698\) | 0 | 0 | ||||||||
\(699\) | 0 | 0 | ||||||||
\(700\) | 0 | 0 | ||||||||
\(701\) | 3060.00 | 0.164871 | 0.0824355 | − | 0.996596i | \(-0.473730\pi\) | ||||
0.0824355 | + | 0.996596i | \(0.473730\pi\) | |||||||
\(702\) | 0 | 0 | ||||||||
\(703\) | 19474.0i | 1.04477i | ||||||||
\(704\) | 0 | 0 | ||||||||
\(705\) | 0 | 0 | ||||||||
\(706\) | 0 | 0 | ||||||||
\(707\) | − 24804.0i | − 1.31945i | ||||||||
\(708\) | 0 | 0 | ||||||||
\(709\) | −4004.00 | −0.212092 | −0.106046 | − | 0.994361i | \(-0.533819\pi\) | ||||
−0.106046 | + | 0.994361i | \(0.533819\pi\) | |||||||
\(710\) | 0 | 0 | ||||||||
\(711\) | 0 | 0 | ||||||||
\(712\) | 0 | 0 | ||||||||
\(713\) | 468.000i | 0.0245817i | ||||||||
\(714\) | 0 | 0 | ||||||||
\(715\) | 0 | 0 | ||||||||
\(716\) | 0 | 0 | ||||||||
\(717\) | 0 | 0 | ||||||||
\(718\) | 0 | 0 | ||||||||
\(719\) | 10314.0 | 0.534975 | 0.267488 | − | 0.963561i | \(-0.413807\pi\) | ||||
0.267488 | + | 0.963561i | \(0.413807\pi\) | |||||||
\(720\) | 0 | 0 | ||||||||
\(721\) | −20072.0 | −1.03678 | ||||||||
\(722\) | 0 | 0 | ||||||||
\(723\) | 0 | 0 | ||||||||
\(724\) | 0 | 0 | ||||||||
\(725\) | 0 | 0 | ||||||||
\(726\) | 0 | 0 | ||||||||
\(727\) | − 9872.00i | − 0.503621i | −0.967777 | − | 0.251810i | \(-0.918974\pi\) | ||||
0.967777 | − | 0.251810i | \(-0.0810259\pi\) | |||||||
\(728\) | 0 | 0 | ||||||||
\(729\) | 0 | 0 | ||||||||
\(730\) | 0 | 0 | ||||||||
\(731\) | 53820.0 | 2.72313 | ||||||||
\(732\) | 0 | 0 | ||||||||
\(733\) | 7436.00i | 0.374700i | 0.982293 | + | 0.187350i | \(0.0599898\pi\) | ||||
−0.982293 | + | 0.187350i | \(0.940010\pi\) | |||||||
\(734\) | 0 | 0 | ||||||||
\(735\) | 0 | 0 | ||||||||
\(736\) | 0 | 0 | ||||||||
\(737\) | 11295.0i | 0.564527i | ||||||||
\(738\) | 0 | 0 | ||||||||
\(739\) | 16900.0 | 0.841240 | 0.420620 | − | 0.907237i | \(-0.361813\pi\) | ||||
0.420620 | + | 0.907237i | \(0.361813\pi\) | |||||||
\(740\) | 0 | 0 | ||||||||
\(741\) | 0 | 0 | ||||||||
\(742\) | 0 | 0 | ||||||||
\(743\) | 23058.0i | 1.13851i | 0.822160 | + | 0.569257i | \(0.192769\pi\) | ||||
−0.822160 | + | 0.569257i | \(0.807231\pi\) | |||||||
\(744\) | 0 | 0 | ||||||||
\(745\) | 0 | 0 | ||||||||
\(746\) | 0 | 0 | ||||||||
\(747\) | 0 | 0 | ||||||||
\(748\) | 0 | 0 | ||||||||
\(749\) | 31122.0 | 1.51826 | ||||||||
\(750\) | 0 | 0 | ||||||||
\(751\) | −8224.00 | −0.399598 | −0.199799 | − | 0.979837i | \(-0.564029\pi\) | ||||
−0.199799 | + | 0.979837i | \(0.564029\pi\) | |||||||
\(752\) | 0 | 0 | ||||||||
\(753\) | 0 | 0 | ||||||||
\(754\) | 0 | 0 | ||||||||
\(755\) | 0 | 0 | ||||||||
\(756\) | 0 | 0 | ||||||||
\(757\) | 7696.00i | 0.369506i | 0.982785 | + | 0.184753i | \(0.0591485\pi\) | ||||
−0.982785 | + | 0.184753i | \(0.940852\pi\) | |||||||
\(758\) | 0 | 0 | ||||||||
\(759\) | 0 | 0 | ||||||||
\(760\) | 0 | 0 | ||||||||
\(761\) | 6363.00 | 0.303099 | 0.151550 | − | 0.988450i | \(-0.451574\pi\) | ||||
0.151550 | + | 0.988450i | \(0.451574\pi\) | |||||||
\(762\) | 0 | 0 | ||||||||
\(763\) | − 20852.0i | − 0.989375i | ||||||||
\(764\) | 0 | 0 | ||||||||
\(765\) | 0 | 0 | ||||||||
\(766\) | 0 | 0 | ||||||||
\(767\) | − 3168.00i | − 0.149139i | ||||||||
\(768\) | 0 | 0 | ||||||||
\(769\) | −8333.00 | −0.390762 | −0.195381 | − | 0.980727i | \(-0.562594\pi\) | ||||
−0.195381 | + | 0.980727i | \(0.562594\pi\) | |||||||
\(770\) | 0 | 0 | ||||||||
\(771\) | 0 | 0 | ||||||||
\(772\) | 0 | 0 | ||||||||
\(773\) | − 32760.0i | − 1.52431i | −0.647392 | − | 0.762157i | \(-0.724140\pi\) | ||||
0.647392 | − | 0.762157i | \(-0.275860\pi\) | |||||||
\(774\) | 0 | 0 | ||||||||
\(775\) | 0 | 0 | ||||||||
\(776\) | 0 | 0 | ||||||||
\(777\) | 0 | 0 | ||||||||
\(778\) | 0 | 0 | ||||||||
\(779\) | 41769.0 | 1.92109 | ||||||||
\(780\) | 0 | 0 | ||||||||
\(781\) | 4860.00 | 0.222669 | ||||||||
\(782\) | 0 | 0 | ||||||||
\(783\) | 0 | 0 | ||||||||
\(784\) | 0 | 0 | ||||||||
\(785\) | 0 | 0 | ||||||||
\(786\) | 0 | 0 | ||||||||
\(787\) | 43732.0i | 1.98078i | 0.138286 | + | 0.990392i | \(0.455841\pi\) | ||||
−0.138286 | + | 0.990392i | \(0.544159\pi\) | |||||||
\(788\) | 0 | 0 | ||||||||
\(789\) | 0 | 0 | ||||||||
\(790\) | 0 | 0 | ||||||||
\(791\) | −29718.0 | −1.33584 | ||||||||
\(792\) | 0 | 0 | ||||||||
\(793\) | − 5192.00i | − 0.232501i | ||||||||
\(794\) | 0 | 0 | ||||||||
\(795\) | 0 | 0 | ||||||||
\(796\) | 0 | 0 | ||||||||
\(797\) | 16866.0i | 0.749591i | 0.927107 | + | 0.374796i | \(0.122287\pi\) | ||||
−0.927107 | + | 0.374796i | \(0.877713\pi\) | |||||||
\(798\) | 0 | 0 | ||||||||
\(799\) | 54756.0 | 2.42444 | ||||||||
\(800\) | 0 | 0 | ||||||||
\(801\) | 0 | 0 | ||||||||
\(802\) | 0 | 0 | ||||||||
\(803\) | − 13455.0i | − 0.591303i | ||||||||
\(804\) | 0 | 0 | ||||||||
\(805\) | 0 | 0 | ||||||||
\(806\) | 0 | 0 | ||||||||
\(807\) | 0 | 0 | ||||||||
\(808\) | 0 | 0 | ||||||||
\(809\) | 16146.0 | 0.701685 | 0.350842 | − | 0.936434i | \(-0.385895\pi\) | ||||
0.350842 | + | 0.936434i | \(0.385895\pi\) | |||||||
\(810\) | 0 | 0 | ||||||||
\(811\) | 32444.0 | 1.40476 | 0.702382 | − | 0.711801i | \(-0.252120\pi\) | ||||
0.702382 | + | 0.711801i | \(0.252120\pi\) | |||||||
\(812\) | 0 | 0 | ||||||||
\(813\) | 0 | 0 | ||||||||
\(814\) | 0 | 0 | ||||||||
\(815\) | 0 | 0 | ||||||||
\(816\) | 0 | 0 | ||||||||
\(817\) | − 41860.0i | − 1.79253i | ||||||||
\(818\) | 0 | 0 | ||||||||
\(819\) | 0 | 0 | ||||||||
\(820\) | 0 | 0 | ||||||||
\(821\) | 2574.00 | 0.109419 | 0.0547096 | − | 0.998502i | \(-0.482577\pi\) | ||||
0.0547096 | + | 0.998502i | \(0.482577\pi\) | |||||||
\(822\) | 0 | 0 | ||||||||
\(823\) | − 27604.0i | − 1.16916i | −0.811338 | − | 0.584578i | \(-0.801260\pi\) | ||||
0.811338 | − | 0.584578i | \(-0.198740\pi\) | |||||||
\(824\) | 0 | 0 | ||||||||
\(825\) | 0 | 0 | ||||||||
\(826\) | 0 | 0 | ||||||||
\(827\) | 11655.0i | 0.490065i | 0.969515 | + | 0.245033i | \(0.0787987\pi\) | ||||
−0.969515 | + | 0.245033i | \(0.921201\pi\) | |||||||
\(828\) | 0 | 0 | ||||||||
\(829\) | −33428.0 | −1.40049 | −0.700243 | − | 0.713905i | \(-0.746925\pi\) | ||||
−0.700243 | + | 0.713905i | \(0.746925\pi\) | |||||||
\(830\) | 0 | 0 | ||||||||
\(831\) | 0 | 0 | ||||||||
\(832\) | 0 | 0 | ||||||||
\(833\) | − 38961.0i | − 1.62055i | ||||||||
\(834\) | 0 | 0 | ||||||||
\(835\) | 0 | 0 | ||||||||
\(836\) | 0 | 0 | ||||||||
\(837\) | 0 | 0 | ||||||||
\(838\) | 0 | 0 | ||||||||
\(839\) | −17712.0 | −0.728827 | −0.364414 | − | 0.931237i | \(-0.618731\pi\) | ||||
−0.364414 | + | 0.931237i | \(0.618731\pi\) | |||||||
\(840\) | 0 | 0 | ||||||||
\(841\) | −3653.00 | −0.149781 | ||||||||
\(842\) | 0 | 0 | ||||||||
\(843\) | 0 | 0 | ||||||||
\(844\) | 0 | 0 | ||||||||
\(845\) | 0 | 0 | ||||||||
\(846\) | 0 | 0 | ||||||||
\(847\) | − 18044.0i | − 0.731994i | ||||||||
\(848\) | 0 | 0 | ||||||||
\(849\) | 0 | 0 | ||||||||
\(850\) | 0 | 0 | ||||||||
\(851\) | −3852.00 | −0.155164 | ||||||||
\(852\) | 0 | 0 | ||||||||
\(853\) | − 10270.0i | − 0.412237i | −0.978527 | − | 0.206118i | \(-0.933917\pi\) | ||||
0.978527 | − | 0.206118i | \(-0.0660832\pi\) | |||||||
\(854\) | 0 | 0 | ||||||||
\(855\) | 0 | 0 | ||||||||
\(856\) | 0 | 0 | ||||||||
\(857\) | 38709.0i | 1.54291i | 0.636284 | + | 0.771455i | \(0.280471\pi\) | ||||
−0.636284 | + | 0.771455i | \(0.719529\pi\) | |||||||
\(858\) | 0 | 0 | ||||||||
\(859\) | −15509.0 | −0.616019 | −0.308009 | − | 0.951383i | \(-0.599663\pi\) | ||||
−0.308009 | + | 0.951383i | \(0.599663\pi\) | |||||||
\(860\) | 0 | 0 | ||||||||
\(861\) | 0 | 0 | ||||||||
\(862\) | 0 | 0 | ||||||||
\(863\) | − 15912.0i | − 0.627637i | −0.949483 | − | 0.313819i | \(-0.898392\pi\) | ||||
0.949483 | − | 0.313819i | \(-0.101608\pi\) | |||||||
\(864\) | 0 | 0 | ||||||||
\(865\) | 0 | 0 | ||||||||
\(866\) | 0 | 0 | ||||||||
\(867\) | 0 | 0 | ||||||||
\(868\) | 0 | 0 | ||||||||
\(869\) | −40410.0 | −1.57746 | ||||||||
\(870\) | 0 | 0 | ||||||||
\(871\) | 11044.0 | 0.429635 | ||||||||
\(872\) | 0 | 0 | ||||||||
\(873\) | 0 | 0 | ||||||||
\(874\) | 0 | 0 | ||||||||
\(875\) | 0 | 0 | ||||||||
\(876\) | 0 | 0 | ||||||||
\(877\) | 10972.0i | 0.422461i | 0.977436 | + | 0.211230i | \(0.0677470\pi\) | ||||
−0.977436 | + | 0.211230i | \(0.932253\pi\) | |||||||
\(878\) | 0 | 0 | ||||||||
\(879\) | 0 | 0 | ||||||||
\(880\) | 0 | 0 | ||||||||
\(881\) | 18738.0 | 0.716571 | 0.358286 | − | 0.933612i | \(-0.383361\pi\) | ||||
0.358286 | + | 0.933612i | \(0.383361\pi\) | |||||||
\(882\) | 0 | 0 | ||||||||
\(883\) | − 21367.0i | − 0.814334i | −0.913354 | − | 0.407167i | \(-0.866517\pi\) | ||||
0.913354 | − | 0.407167i | \(-0.133483\pi\) | |||||||
\(884\) | 0 | 0 | ||||||||
\(885\) | 0 | 0 | ||||||||
\(886\) | 0 | 0 | ||||||||
\(887\) | 20124.0i | 0.761779i | 0.924621 | + | 0.380889i | \(0.124382\pi\) | ||||
−0.924621 | + | 0.380889i | \(0.875618\pi\) | |||||||
\(888\) | 0 | 0 | ||||||||
\(889\) | 61724.0 | 2.32864 | ||||||||
\(890\) | 0 | 0 | ||||||||
\(891\) | 0 | 0 | ||||||||
\(892\) | 0 | 0 | ||||||||
\(893\) | − 42588.0i | − 1.59592i | ||||||||
\(894\) | 0 | 0 | ||||||||
\(895\) | 0 | 0 | ||||||||
\(896\) | 0 | 0 | ||||||||
\(897\) | 0 | 0 | ||||||||
\(898\) | 0 | 0 | ||||||||
\(899\) | 3744.00 | 0.138898 | ||||||||
\(900\) | 0 | 0 | ||||||||
\(901\) | 65286.0 | 2.41398 | ||||||||
\(902\) | 0 | 0 | ||||||||
\(903\) | 0 | 0 | ||||||||
\(904\) | 0 | 0 | ||||||||
\(905\) | 0 | 0 | ||||||||
\(906\) | 0 | 0 | ||||||||
\(907\) | − 23132.0i | − 0.846842i | −0.905933 | − | 0.423421i | \(-0.860829\pi\) | ||||
0.905933 | − | 0.423421i | \(-0.139171\pi\) | |||||||
\(908\) | 0 | 0 | ||||||||
\(909\) | 0 | 0 | ||||||||
\(910\) | 0 | 0 | ||||||||
\(911\) | −31212.0 | −1.13513 | −0.567563 | − | 0.823330i | \(-0.692114\pi\) | ||||
−0.567563 | + | 0.823330i | \(0.692114\pi\) | |||||||
\(912\) | 0 | 0 | ||||||||
\(913\) | 41715.0i | 1.51212i | ||||||||
\(914\) | 0 | 0 | ||||||||
\(915\) | 0 | 0 | ||||||||
\(916\) | 0 | 0 | ||||||||
\(917\) | − 32760.0i | − 1.17975i | ||||||||
\(918\) | 0 | 0 | ||||||||
\(919\) | 6994.00 | 0.251045 | 0.125523 | − | 0.992091i | \(-0.459939\pi\) | ||||
0.125523 | + | 0.992091i | \(0.459939\pi\) | |||||||
\(920\) | 0 | 0 | ||||||||
\(921\) | 0 | 0 | ||||||||
\(922\) | 0 | 0 | ||||||||
\(923\) | − 4752.00i | − 0.169463i | ||||||||
\(924\) | 0 | 0 | ||||||||
\(925\) | 0 | 0 | ||||||||
\(926\) | 0 | 0 | ||||||||
\(927\) | 0 | 0 | ||||||||
\(928\) | 0 | 0 | ||||||||
\(929\) | 19422.0 | 0.685915 | 0.342958 | − | 0.939351i | \(-0.388571\pi\) | ||||
0.342958 | + | 0.939351i | \(0.388571\pi\) | |||||||
\(930\) | 0 | 0 | ||||||||
\(931\) | −30303.0 | −1.06675 | ||||||||
\(932\) | 0 | 0 | ||||||||
\(933\) | 0 | 0 | ||||||||
\(934\) | 0 | 0 | ||||||||
\(935\) | 0 | 0 | ||||||||
\(936\) | 0 | 0 | ||||||||
\(937\) | − 11699.0i | − 0.407887i | −0.978983 | − | 0.203943i | \(-0.934624\pi\) | ||||
0.978983 | − | 0.203943i | \(-0.0653758\pi\) | |||||||
\(938\) | 0 | 0 | ||||||||
\(939\) | 0 | 0 | ||||||||
\(940\) | 0 | 0 | ||||||||
\(941\) | 42948.0 | 1.48785 | 0.743924 | − | 0.668264i | \(-0.232962\pi\) | ||||
0.743924 | + | 0.668264i | \(0.232962\pi\) | |||||||
\(942\) | 0 | 0 | ||||||||
\(943\) | 8262.00i | 0.285310i | ||||||||
\(944\) | 0 | 0 | ||||||||
\(945\) | 0 | 0 | ||||||||
\(946\) | 0 | 0 | ||||||||
\(947\) | − 3816.00i | − 0.130943i | −0.997854 | − | 0.0654717i | \(-0.979145\pi\) | ||||
0.997854 | − | 0.0654717i | \(-0.0208552\pi\) | |||||||
\(948\) | 0 | 0 | ||||||||
\(949\) | −13156.0 | −0.450012 | ||||||||
\(950\) | 0 | 0 | ||||||||
\(951\) | 0 | 0 | ||||||||
\(952\) | 0 | 0 | ||||||||
\(953\) | 43407.0i | 1.47544i | 0.675109 | + | 0.737718i | \(0.264097\pi\) | ||||
−0.675109 | + | 0.737718i | \(0.735903\pi\) | |||||||
\(954\) | 0 | 0 | ||||||||
\(955\) | 0 | 0 | ||||||||
\(956\) | 0 | 0 | ||||||||
\(957\) | 0 | 0 | ||||||||
\(958\) | 0 | 0 | ||||||||
\(959\) | −23166.0 | −0.780051 | ||||||||
\(960\) | 0 | 0 | ||||||||
\(961\) | −29115.0 | −0.977309 | ||||||||
\(962\) | 0 | 0 | ||||||||
\(963\) | 0 | 0 | ||||||||
\(964\) | 0 | 0 | ||||||||
\(965\) | 0 | 0 | ||||||||
\(966\) | 0 | 0 | ||||||||
\(967\) | 43216.0i | 1.43716i | 0.695445 | + | 0.718580i | \(0.255207\pi\) | ||||
−0.695445 | + | 0.718580i | \(0.744793\pi\) | |||||||
\(968\) | 0 | 0 | ||||||||
\(969\) | 0 | 0 | ||||||||
\(970\) | 0 | 0 | ||||||||
\(971\) | 47619.0 | 1.57381 | 0.786903 | − | 0.617076i | \(-0.211683\pi\) | ||||
0.786903 | + | 0.617076i | \(0.211683\pi\) | |||||||
\(972\) | 0 | 0 | ||||||||
\(973\) | 10114.0i | 0.333237i | ||||||||
\(974\) | 0 | 0 | ||||||||
\(975\) | 0 | 0 | ||||||||
\(976\) | 0 | 0 | ||||||||
\(977\) | − 4671.00i | − 0.152957i | −0.997071 | − | 0.0764783i | \(-0.975632\pi\) | ||||
0.997071 | − | 0.0764783i | \(-0.0243676\pi\) | |||||||
\(978\) | 0 | 0 | ||||||||
\(979\) | −15795.0 | −0.515639 | ||||||||
\(980\) | 0 | 0 | ||||||||
\(981\) | 0 | 0 | ||||||||
\(982\) | 0 | 0 | ||||||||
\(983\) | − 9054.00i | − 0.293772i | −0.989153 | − | 0.146886i | \(-0.953075\pi\) | ||||
0.989153 | − | 0.146886i | \(-0.0469250\pi\) | |||||||
\(984\) | 0 | 0 | ||||||||
\(985\) | 0 | 0 | ||||||||
\(986\) | 0 | 0 | ||||||||
\(987\) | 0 | 0 | ||||||||
\(988\) | 0 | 0 | ||||||||
\(989\) | 8280.00 | 0.266217 | ||||||||
\(990\) | 0 | 0 | ||||||||
\(991\) | 8126.00 | 0.260475 | 0.130238 | − | 0.991483i | \(-0.458426\pi\) | ||||
0.130238 | + | 0.991483i | \(0.458426\pi\) | |||||||
\(992\) | 0 | 0 | ||||||||
\(993\) | 0 | 0 | ||||||||
\(994\) | 0 | 0 | ||||||||
\(995\) | 0 | 0 | ||||||||
\(996\) | 0 | 0 | ||||||||
\(997\) | − 38468.0i | − 1.22196i | −0.791646 | − | 0.610980i | \(-0.790776\pi\) | ||||
0.791646 | − | 0.610980i | \(-0.209224\pi\) | |||||||
\(998\) | 0 | 0 | ||||||||
\(999\) | 0 | 0 |
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
Twists
By twisting character | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Type | Twist | Min | Dim | |
1.1 | even | 1 | trivial | 900.4.d.a.649.1 | 2 | ||
3.2 | odd | 2 | 100.4.c.b.49.2 | 2 | |||
5.2 | odd | 4 | 900.4.a.p.1.1 | 1 | |||
5.3 | odd | 4 | 900.4.a.c.1.1 | 1 | |||
5.4 | even | 2 | inner | 900.4.d.a.649.2 | 2 | ||
12.11 | even | 2 | 400.4.c.l.49.1 | 2 | |||
15.2 | even | 4 | 100.4.a.c.1.1 | yes | 1 | ||
15.8 | even | 4 | 100.4.a.b.1.1 | ✓ | 1 | ||
15.14 | odd | 2 | 100.4.c.b.49.1 | 2 | |||
60.23 | odd | 4 | 400.4.a.l.1.1 | 1 | |||
60.47 | odd | 4 | 400.4.a.i.1.1 | 1 | |||
60.59 | even | 2 | 400.4.c.l.49.2 | 2 | |||
120.53 | even | 4 | 1600.4.a.bc.1.1 | 1 | |||
120.77 | even | 4 | 1600.4.a.x.1.1 | 1 | |||
120.83 | odd | 4 | 1600.4.a.y.1.1 | 1 | |||
120.107 | odd | 4 | 1600.4.a.bd.1.1 | 1 |
By twisted newform | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Type | |
100.4.a.b.1.1 | ✓ | 1 | 15.8 | even | 4 | ||
100.4.a.c.1.1 | yes | 1 | 15.2 | even | 4 | ||
100.4.c.b.49.1 | 2 | 15.14 | odd | 2 | |||
100.4.c.b.49.2 | 2 | 3.2 | odd | 2 | |||
400.4.a.i.1.1 | 1 | 60.47 | odd | 4 | |||
400.4.a.l.1.1 | 1 | 60.23 | odd | 4 | |||
400.4.c.l.49.1 | 2 | 12.11 | even | 2 | |||
400.4.c.l.49.2 | 2 | 60.59 | even | 2 | |||
900.4.a.c.1.1 | 1 | 5.3 | odd | 4 | |||
900.4.a.p.1.1 | 1 | 5.2 | odd | 4 | |||
900.4.d.a.649.1 | 2 | 1.1 | even | 1 | trivial | ||
900.4.d.a.649.2 | 2 | 5.4 | even | 2 | inner | ||
1600.4.a.x.1.1 | 1 | 120.77 | even | 4 | |||
1600.4.a.y.1.1 | 1 | 120.83 | odd | 4 | |||
1600.4.a.bc.1.1 | 1 | 120.53 | even | 4 | |||
1600.4.a.bd.1.1 | 1 | 120.107 | odd | 4 |