Properties

Label 900.4.a.p.1.1
Level $900$
Weight $4$
Character 900.1
Self dual yes
Analytic conductor $53.102$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [900,4,Mod(1,900)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(900, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("900.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 900 = 2^{2} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 900.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(53.1017190052\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 100)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 900.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+26.0000 q^{7} +O(q^{10})\) \(q+26.0000 q^{7} -45.0000 q^{11} +44.0000 q^{13} -117.000 q^{17} -91.0000 q^{19} +18.0000 q^{23} -144.000 q^{29} +26.0000 q^{31} -214.000 q^{37} +459.000 q^{41} -460.000 q^{43} +468.000 q^{47} +333.000 q^{49} -558.000 q^{53} +72.0000 q^{59} -118.000 q^{61} +251.000 q^{67} -108.000 q^{71} +299.000 q^{73} -1170.00 q^{77} -898.000 q^{79} -927.000 q^{83} -351.000 q^{89} +1144.00 q^{91} +386.000 q^{97} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 26.0000 1.40387 0.701934 0.712242i \(-0.252320\pi\)
0.701934 + 0.712242i \(0.252320\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −45.0000 −1.23346 −0.616728 0.787177i \(-0.711542\pi\)
−0.616728 + 0.787177i \(0.711542\pi\)
\(12\) 0 0
\(13\) 44.0000 0.938723 0.469362 0.883006i \(-0.344484\pi\)
0.469362 + 0.883006i \(0.344484\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −117.000 −1.66922 −0.834608 0.550845i \(-0.814306\pi\)
−0.834608 + 0.550845i \(0.814306\pi\)
\(18\) 0 0
\(19\) −91.0000 −1.09878 −0.549390 0.835566i \(-0.685140\pi\)
−0.549390 + 0.835566i \(0.685140\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 18.0000 0.163185 0.0815926 0.996666i \(-0.473999\pi\)
0.0815926 + 0.996666i \(0.473999\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −144.000 −0.922073 −0.461037 0.887381i \(-0.652522\pi\)
−0.461037 + 0.887381i \(0.652522\pi\)
\(30\) 0 0
\(31\) 26.0000 0.150637 0.0753184 0.997160i \(-0.476003\pi\)
0.0753184 + 0.997160i \(0.476003\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −214.000 −0.950848 −0.475424 0.879757i \(-0.657705\pi\)
−0.475424 + 0.879757i \(0.657705\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 459.000 1.74838 0.874192 0.485580i \(-0.161392\pi\)
0.874192 + 0.485580i \(0.161392\pi\)
\(42\) 0 0
\(43\) −460.000 −1.63138 −0.815690 0.578489i \(-0.803642\pi\)
−0.815690 + 0.578489i \(0.803642\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 468.000 1.45244 0.726221 0.687461i \(-0.241275\pi\)
0.726221 + 0.687461i \(0.241275\pi\)
\(48\) 0 0
\(49\) 333.000 0.970845
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −558.000 −1.44617 −0.723087 0.690757i \(-0.757277\pi\)
−0.723087 + 0.690757i \(0.757277\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 72.0000 0.158875 0.0794373 0.996840i \(-0.474688\pi\)
0.0794373 + 0.996840i \(0.474688\pi\)
\(60\) 0 0
\(61\) −118.000 −0.247678 −0.123839 0.992302i \(-0.539521\pi\)
−0.123839 + 0.992302i \(0.539521\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 251.000 0.457680 0.228840 0.973464i \(-0.426507\pi\)
0.228840 + 0.973464i \(0.426507\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −108.000 −0.180525 −0.0902623 0.995918i \(-0.528771\pi\)
−0.0902623 + 0.995918i \(0.528771\pi\)
\(72\) 0 0
\(73\) 299.000 0.479388 0.239694 0.970849i \(-0.422953\pi\)
0.239694 + 0.970849i \(0.422953\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −1170.00 −1.73161
\(78\) 0 0
\(79\) −898.000 −1.27890 −0.639449 0.768834i \(-0.720837\pi\)
−0.639449 + 0.768834i \(0.720837\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −927.000 −1.22592 −0.612961 0.790113i \(-0.710022\pi\)
−0.612961 + 0.790113i \(0.710022\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −351.000 −0.418044 −0.209022 0.977911i \(-0.567028\pi\)
−0.209022 + 0.977911i \(0.567028\pi\)
\(90\) 0 0
\(91\) 1144.00 1.31784
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 386.000 0.404045 0.202022 0.979381i \(-0.435249\pi\)
0.202022 + 0.979381i \(0.435249\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 954.000 0.939867 0.469933 0.882702i \(-0.344278\pi\)
0.469933 + 0.882702i \(0.344278\pi\)
\(102\) 0 0
\(103\) −772.000 −0.738519 −0.369259 0.929326i \(-0.620389\pi\)
−0.369259 + 0.929326i \(0.620389\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −1197.00 −1.08148 −0.540740 0.841190i \(-0.681856\pi\)
−0.540740 + 0.841190i \(0.681856\pi\)
\(108\) 0 0
\(109\) −802.000 −0.704749 −0.352375 0.935859i \(-0.614626\pi\)
−0.352375 + 0.935859i \(0.614626\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −1143.00 −0.951543 −0.475772 0.879569i \(-0.657831\pi\)
−0.475772 + 0.879569i \(0.657831\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −3042.00 −2.34336
\(120\) 0 0
\(121\) 694.000 0.521412
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −2374.00 −1.65873 −0.829364 0.558709i \(-0.811297\pi\)
−0.829364 + 0.558709i \(0.811297\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 1260.00 0.840357 0.420178 0.907442i \(-0.361968\pi\)
0.420178 + 0.907442i \(0.361968\pi\)
\(132\) 0 0
\(133\) −2366.00 −1.54254
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 891.000 0.555644 0.277822 0.960633i \(-0.410387\pi\)
0.277822 + 0.960633i \(0.410387\pi\)
\(138\) 0 0
\(139\) 389.000 0.237371 0.118685 0.992932i \(-0.462132\pi\)
0.118685 + 0.992932i \(0.462132\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −1980.00 −1.15787
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −1296.00 −0.712567 −0.356283 0.934378i \(-0.615956\pi\)
−0.356283 + 0.934378i \(0.615956\pi\)
\(150\) 0 0
\(151\) −2710.00 −1.46051 −0.730254 0.683176i \(-0.760598\pi\)
−0.730254 + 0.683176i \(0.760598\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −1846.00 −0.938388 −0.469194 0.883095i \(-0.655455\pi\)
−0.469194 + 0.883095i \(0.655455\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 468.000 0.229090
\(162\) 0 0
\(163\) 1475.00 0.708779 0.354389 0.935098i \(-0.384689\pi\)
0.354389 + 0.935098i \(0.384689\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 1476.00 0.683930 0.341965 0.939713i \(-0.388908\pi\)
0.341965 + 0.939713i \(0.388908\pi\)
\(168\) 0 0
\(169\) −261.000 −0.118798
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −1368.00 −0.601197 −0.300599 0.953751i \(-0.597186\pi\)
−0.300599 + 0.953751i \(0.597186\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 1503.00 0.627595 0.313797 0.949490i \(-0.398399\pi\)
0.313797 + 0.949490i \(0.398399\pi\)
\(180\) 0 0
\(181\) 3770.00 1.54819 0.774094 0.633071i \(-0.218206\pi\)
0.774094 + 0.633071i \(0.218206\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 5265.00 2.05890
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 4122.00 1.56156 0.780779 0.624808i \(-0.214823\pi\)
0.780779 + 0.624808i \(0.214823\pi\)
\(192\) 0 0
\(193\) −1963.00 −0.732123 −0.366062 0.930591i \(-0.619294\pi\)
−0.366062 + 0.930591i \(0.619294\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −2934.00 −1.06111 −0.530555 0.847650i \(-0.678017\pi\)
−0.530555 + 0.847650i \(0.678017\pi\)
\(198\) 0 0
\(199\) 1412.00 0.502985 0.251493 0.967859i \(-0.419079\pi\)
0.251493 + 0.967859i \(0.419079\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −3744.00 −1.29447
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 4095.00 1.35530
\(210\) 0 0
\(211\) 3419.00 1.11552 0.557758 0.830004i \(-0.311662\pi\)
0.557758 + 0.830004i \(0.311662\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 676.000 0.211474
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −5148.00 −1.56693
\(222\) 0 0
\(223\) −100.000 −0.0300291 −0.0150146 0.999887i \(-0.504779\pi\)
−0.0150146 + 0.999887i \(0.504779\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −4212.00 −1.23154 −0.615771 0.787925i \(-0.711156\pi\)
−0.615771 + 0.787925i \(0.711156\pi\)
\(228\) 0 0
\(229\) −3484.00 −1.00537 −0.502684 0.864470i \(-0.667654\pi\)
−0.502684 + 0.864470i \(0.667654\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −918.000 −0.258112 −0.129056 0.991637i \(-0.541195\pi\)
−0.129056 + 0.991637i \(0.541195\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −3744.00 −1.01330 −0.506651 0.862151i \(-0.669117\pi\)
−0.506651 + 0.862151i \(0.669117\pi\)
\(240\) 0 0
\(241\) −4231.00 −1.13088 −0.565441 0.824789i \(-0.691294\pi\)
−0.565441 + 0.824789i \(0.691294\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −4004.00 −1.03145
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 2925.00 0.735555 0.367778 0.929914i \(-0.380119\pi\)
0.367778 + 0.929914i \(0.380119\pi\)
\(252\) 0 0
\(253\) −810.000 −0.201282
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 18.0000 0.00436891 0.00218445 0.999998i \(-0.499305\pi\)
0.00218445 + 0.999998i \(0.499305\pi\)
\(258\) 0 0
\(259\) −5564.00 −1.33487
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 6786.00 1.59104 0.795518 0.605929i \(-0.207199\pi\)
0.795518 + 0.605929i \(0.207199\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −7632.00 −1.72986 −0.864928 0.501896i \(-0.832636\pi\)
−0.864928 + 0.501896i \(0.832636\pi\)
\(270\) 0 0
\(271\) 650.000 0.145700 0.0728500 0.997343i \(-0.476791\pi\)
0.0728500 + 0.997343i \(0.476791\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −3232.00 −0.701054 −0.350527 0.936553i \(-0.613998\pi\)
−0.350527 + 0.936553i \(0.613998\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −4446.00 −0.943865 −0.471933 0.881635i \(-0.656443\pi\)
−0.471933 + 0.881635i \(0.656443\pi\)
\(282\) 0 0
\(283\) 2483.00 0.521551 0.260776 0.965399i \(-0.416022\pi\)
0.260776 + 0.965399i \(0.416022\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 11934.0 2.45450
\(288\) 0 0
\(289\) 8776.00 1.78628
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 4050.00 0.807521 0.403760 0.914865i \(-0.367703\pi\)
0.403760 + 0.914865i \(0.367703\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 792.000 0.153186
\(300\) 0 0
\(301\) −11960.0 −2.29024
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 2321.00 0.431487 0.215743 0.976450i \(-0.430783\pi\)
0.215743 + 0.976450i \(0.430783\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 3258.00 0.594033 0.297016 0.954872i \(-0.404008\pi\)
0.297016 + 0.954872i \(0.404008\pi\)
\(312\) 0 0
\(313\) 3626.00 0.654804 0.327402 0.944885i \(-0.393827\pi\)
0.327402 + 0.944885i \(0.393827\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −3852.00 −0.682492 −0.341246 0.939974i \(-0.610849\pi\)
−0.341246 + 0.939974i \(0.610849\pi\)
\(318\) 0 0
\(319\) 6480.00 1.13734
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 10647.0 1.83410
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 12168.0 2.03904
\(330\) 0 0
\(331\) 7553.00 1.25423 0.627115 0.778926i \(-0.284235\pi\)
0.627115 + 0.778926i \(0.284235\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −109.000 −0.0176190 −0.00880951 0.999961i \(-0.502804\pi\)
−0.00880951 + 0.999961i \(0.502804\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −1170.00 −0.185804
\(342\) 0 0
\(343\) −260.000 −0.0409291
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 2835.00 0.438590 0.219295 0.975659i \(-0.429624\pi\)
0.219295 + 0.975659i \(0.429624\pi\)
\(348\) 0 0
\(349\) 2990.00 0.458599 0.229299 0.973356i \(-0.426356\pi\)
0.229299 + 0.973356i \(0.426356\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −9126.00 −1.37600 −0.688000 0.725711i \(-0.741511\pi\)
−0.688000 + 0.725711i \(0.741511\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 9594.00 1.41045 0.705226 0.708983i \(-0.250846\pi\)
0.705226 + 0.708983i \(0.250846\pi\)
\(360\) 0 0
\(361\) 1422.00 0.207319
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 9764.00 1.38876 0.694382 0.719606i \(-0.255678\pi\)
0.694382 + 0.719606i \(0.255678\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −14508.0 −2.03024
\(372\) 0 0
\(373\) 6722.00 0.933115 0.466558 0.884491i \(-0.345494\pi\)
0.466558 + 0.884491i \(0.345494\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −6336.00 −0.865572
\(378\) 0 0
\(379\) −13537.0 −1.83469 −0.917347 0.398089i \(-0.869674\pi\)
−0.917347 + 0.398089i \(0.869674\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 8658.00 1.15510 0.577550 0.816355i \(-0.304009\pi\)
0.577550 + 0.816355i \(0.304009\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 8874.00 1.15663 0.578316 0.815813i \(-0.303710\pi\)
0.578316 + 0.815813i \(0.303710\pi\)
\(390\) 0 0
\(391\) −2106.00 −0.272391
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 5876.00 0.742841 0.371421 0.928465i \(-0.378871\pi\)
0.371421 + 0.928465i \(0.378871\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 1755.00 0.218555 0.109277 0.994011i \(-0.465146\pi\)
0.109277 + 0.994011i \(0.465146\pi\)
\(402\) 0 0
\(403\) 1144.00 0.141406
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 9630.00 1.17283
\(408\) 0 0
\(409\) 4589.00 0.554796 0.277398 0.960755i \(-0.410528\pi\)
0.277398 + 0.960755i \(0.410528\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 1872.00 0.223039
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −5409.00 −0.630661 −0.315330 0.948982i \(-0.602115\pi\)
−0.315330 + 0.948982i \(0.602115\pi\)
\(420\) 0 0
\(421\) 12116.0 1.40261 0.701304 0.712863i \(-0.252602\pi\)
0.701304 + 0.712863i \(0.252602\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −3068.00 −0.347707
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −9126.00 −1.01992 −0.509958 0.860199i \(-0.670339\pi\)
−0.509958 + 0.860199i \(0.670339\pi\)
\(432\) 0 0
\(433\) 629.000 0.0698102 0.0349051 0.999391i \(-0.488887\pi\)
0.0349051 + 0.999391i \(0.488887\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −1638.00 −0.179305
\(438\) 0 0
\(439\) 4472.00 0.486189 0.243094 0.970003i \(-0.421838\pi\)
0.243094 + 0.970003i \(0.421838\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 3393.00 0.363897 0.181948 0.983308i \(-0.441760\pi\)
0.181948 + 0.983308i \(0.441760\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 5031.00 0.528792 0.264396 0.964414i \(-0.414827\pi\)
0.264396 + 0.964414i \(0.414827\pi\)
\(450\) 0 0
\(451\) −20655.0 −2.15655
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −6487.00 −0.664002 −0.332001 0.943279i \(-0.607724\pi\)
−0.332001 + 0.943279i \(0.607724\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −2700.00 −0.272780 −0.136390 0.990655i \(-0.543550\pi\)
−0.136390 + 0.990655i \(0.543550\pi\)
\(462\) 0 0
\(463\) −2932.00 −0.294302 −0.147151 0.989114i \(-0.547010\pi\)
−0.147151 + 0.989114i \(0.547010\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 15660.0 1.55173 0.775866 0.630898i \(-0.217314\pi\)
0.775866 + 0.630898i \(0.217314\pi\)
\(468\) 0 0
\(469\) 6526.00 0.642522
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 20700.0 2.01223
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −10134.0 −0.966669 −0.483334 0.875436i \(-0.660574\pi\)
−0.483334 + 0.875436i \(0.660574\pi\)
\(480\) 0 0
\(481\) −9416.00 −0.892583
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 1898.00 0.176605 0.0883025 0.996094i \(-0.471856\pi\)
0.0883025 + 0.996094i \(0.471856\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 6300.00 0.579053 0.289526 0.957170i \(-0.406502\pi\)
0.289526 + 0.957170i \(0.406502\pi\)
\(492\) 0 0
\(493\) 16848.0 1.53914
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −2808.00 −0.253433
\(498\) 0 0
\(499\) 18044.0 1.61876 0.809379 0.587286i \(-0.199804\pi\)
0.809379 + 0.587286i \(0.199804\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 6876.00 0.609514 0.304757 0.952430i \(-0.401425\pi\)
0.304757 + 0.952430i \(0.401425\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 4806.00 0.418511 0.209256 0.977861i \(-0.432896\pi\)
0.209256 + 0.977861i \(0.432896\pi\)
\(510\) 0 0
\(511\) 7774.00 0.672997
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −21060.0 −1.79152
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −7749.00 −0.651612 −0.325806 0.945437i \(-0.605636\pi\)
−0.325806 + 0.945437i \(0.605636\pi\)
\(522\) 0 0
\(523\) 8153.00 0.681655 0.340828 0.940126i \(-0.389293\pi\)
0.340828 + 0.940126i \(0.389293\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −3042.00 −0.251445
\(528\) 0 0
\(529\) −11843.0 −0.973371
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 20196.0 1.64125
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −14985.0 −1.19749
\(540\) 0 0
\(541\) −10576.0 −0.840476 −0.420238 0.907414i \(-0.638053\pi\)
−0.420238 + 0.907414i \(0.638053\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 7553.00 0.590389 0.295195 0.955437i \(-0.404615\pi\)
0.295195 + 0.955437i \(0.404615\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 13104.0 1.01316
\(552\) 0 0
\(553\) −23348.0 −1.79540
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −13500.0 −1.02695 −0.513477 0.858103i \(-0.671643\pi\)
−0.513477 + 0.858103i \(0.671643\pi\)
\(558\) 0 0
\(559\) −20240.0 −1.53141
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −23184.0 −1.73550 −0.867752 0.496997i \(-0.834436\pi\)
−0.867752 + 0.496997i \(0.834436\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 8055.00 0.593468 0.296734 0.954960i \(-0.404103\pi\)
0.296734 + 0.954960i \(0.404103\pi\)
\(570\) 0 0
\(571\) 3068.00 0.224854 0.112427 0.993660i \(-0.464138\pi\)
0.112427 + 0.993660i \(0.464138\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 12419.0 0.896031 0.448015 0.894026i \(-0.352131\pi\)
0.448015 + 0.894026i \(0.352131\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −24102.0 −1.72103
\(582\) 0 0
\(583\) 25110.0 1.78379
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 12393.0 0.871403 0.435702 0.900091i \(-0.356500\pi\)
0.435702 + 0.900091i \(0.356500\pi\)
\(588\) 0 0
\(589\) −2366.00 −0.165517
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −23751.0 −1.64475 −0.822375 0.568946i \(-0.807351\pi\)
−0.822375 + 0.568946i \(0.807351\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 11610.0 0.791939 0.395970 0.918264i \(-0.370409\pi\)
0.395970 + 0.918264i \(0.370409\pi\)
\(600\) 0 0
\(601\) 26675.0 1.81048 0.905238 0.424905i \(-0.139693\pi\)
0.905238 + 0.424905i \(0.139693\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 17264.0 1.15441 0.577203 0.816601i \(-0.304144\pi\)
0.577203 + 0.816601i \(0.304144\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 20592.0 1.36344
\(612\) 0 0
\(613\) −26026.0 −1.71481 −0.857406 0.514640i \(-0.827926\pi\)
−0.857406 + 0.514640i \(0.827926\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −5022.00 −0.327679 −0.163840 0.986487i \(-0.552388\pi\)
−0.163840 + 0.986487i \(0.552388\pi\)
\(618\) 0 0
\(619\) 7820.00 0.507774 0.253887 0.967234i \(-0.418291\pi\)
0.253887 + 0.967234i \(0.418291\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −9126.00 −0.586879
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 25038.0 1.58717
\(630\) 0 0
\(631\) 15002.0 0.946466 0.473233 0.880937i \(-0.343087\pi\)
0.473233 + 0.880937i \(0.343087\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 14652.0 0.911355
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 918.000 0.0565660 0.0282830 0.999600i \(-0.490996\pi\)
0.0282830 + 0.999600i \(0.490996\pi\)
\(642\) 0 0
\(643\) −23452.0 −1.43835 −0.719173 0.694831i \(-0.755479\pi\)
−0.719173 + 0.694831i \(0.755479\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −20556.0 −1.24906 −0.624528 0.781002i \(-0.714709\pi\)
−0.624528 + 0.781002i \(0.714709\pi\)
\(648\) 0 0
\(649\) −3240.00 −0.195965
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −30654.0 −1.83703 −0.918517 0.395381i \(-0.870613\pi\)
−0.918517 + 0.395381i \(0.870613\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −8919.00 −0.527215 −0.263608 0.964630i \(-0.584912\pi\)
−0.263608 + 0.964630i \(0.584912\pi\)
\(660\) 0 0
\(661\) −22912.0 −1.34822 −0.674110 0.738631i \(-0.735473\pi\)
−0.674110 + 0.738631i \(0.735473\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −2592.00 −0.150469
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 5310.00 0.305500
\(672\) 0 0
\(673\) −1222.00 −0.0699920 −0.0349960 0.999387i \(-0.511142\pi\)
−0.0349960 + 0.999387i \(0.511142\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −144.000 −0.00817484 −0.00408742 0.999992i \(-0.501301\pi\)
−0.00408742 + 0.999992i \(0.501301\pi\)
\(678\) 0 0
\(679\) 10036.0 0.567226
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 12519.0 0.701356 0.350678 0.936496i \(-0.385951\pi\)
0.350678 + 0.936496i \(0.385951\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −24552.0 −1.35756
\(690\) 0 0
\(691\) 11873.0 0.653647 0.326824 0.945085i \(-0.394022\pi\)
0.326824 + 0.945085i \(0.394022\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −53703.0 −2.91843
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 3060.00 0.164871 0.0824355 0.996596i \(-0.473730\pi\)
0.0824355 + 0.996596i \(0.473730\pi\)
\(702\) 0 0
\(703\) 19474.0 1.04477
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 24804.0 1.31945
\(708\) 0 0
\(709\) 4004.00 0.212092 0.106046 0.994361i \(-0.466181\pi\)
0.106046 + 0.994361i \(0.466181\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 468.000 0.0245817
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −10314.0 −0.534975 −0.267488 0.963561i \(-0.586193\pi\)
−0.267488 + 0.963561i \(0.586193\pi\)
\(720\) 0 0
\(721\) −20072.0 −1.03678
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 9872.00 0.503621 0.251810 0.967777i \(-0.418974\pi\)
0.251810 + 0.967777i \(0.418974\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 53820.0 2.72313
\(732\) 0 0
\(733\) 7436.00 0.374700 0.187350 0.982293i \(-0.440010\pi\)
0.187350 + 0.982293i \(0.440010\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −11295.0 −0.564527
\(738\) 0 0
\(739\) −16900.0 −0.841240 −0.420620 0.907237i \(-0.638187\pi\)
−0.420620 + 0.907237i \(0.638187\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 23058.0 1.13851 0.569257 0.822160i \(-0.307231\pi\)
0.569257 + 0.822160i \(0.307231\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −31122.0 −1.51826
\(750\) 0 0
\(751\) −8224.00 −0.399598 −0.199799 0.979837i \(-0.564029\pi\)
−0.199799 + 0.979837i \(0.564029\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −7696.00 −0.369506 −0.184753 0.982785i \(-0.559148\pi\)
−0.184753 + 0.982785i \(0.559148\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 6363.00 0.303099 0.151550 0.988450i \(-0.451574\pi\)
0.151550 + 0.988450i \(0.451574\pi\)
\(762\) 0 0
\(763\) −20852.0 −0.989375
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 3168.00 0.149139
\(768\) 0 0
\(769\) 8333.00 0.390762 0.195381 0.980727i \(-0.437406\pi\)
0.195381 + 0.980727i \(0.437406\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −32760.0 −1.52431 −0.762157 0.647392i \(-0.775860\pi\)
−0.762157 + 0.647392i \(0.775860\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −41769.0 −1.92109
\(780\) 0 0
\(781\) 4860.00 0.222669
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −43732.0 −1.98078 −0.990392 0.138286i \(-0.955841\pi\)
−0.990392 + 0.138286i \(0.955841\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −29718.0 −1.33584
\(792\) 0 0
\(793\) −5192.00 −0.232501
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −16866.0 −0.749591 −0.374796 0.927107i \(-0.622287\pi\)
−0.374796 + 0.927107i \(0.622287\pi\)
\(798\) 0 0
\(799\) −54756.0 −2.42444
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −13455.0 −0.591303
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −16146.0 −0.701685 −0.350842 0.936434i \(-0.614105\pi\)
−0.350842 + 0.936434i \(0.614105\pi\)
\(810\) 0 0
\(811\) 32444.0 1.40476 0.702382 0.711801i \(-0.252120\pi\)
0.702382 + 0.711801i \(0.252120\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 41860.0 1.79253
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 2574.00 0.109419 0.0547096 0.998502i \(-0.482577\pi\)
0.0547096 + 0.998502i \(0.482577\pi\)
\(822\) 0 0
\(823\) −27604.0 −1.16916 −0.584578 0.811338i \(-0.698740\pi\)
−0.584578 + 0.811338i \(0.698740\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −11655.0 −0.490065 −0.245033 0.969515i \(-0.578799\pi\)
−0.245033 + 0.969515i \(0.578799\pi\)
\(828\) 0 0
\(829\) 33428.0 1.40049 0.700243 0.713905i \(-0.253075\pi\)
0.700243 + 0.713905i \(0.253075\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −38961.0 −1.62055
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 17712.0 0.728827 0.364414 0.931237i \(-0.381269\pi\)
0.364414 + 0.931237i \(0.381269\pi\)
\(840\) 0 0
\(841\) −3653.00 −0.149781
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 18044.0 0.731994
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −3852.00 −0.155164
\(852\) 0 0
\(853\) −10270.0 −0.412237 −0.206118 0.978527i \(-0.566083\pi\)
−0.206118 + 0.978527i \(0.566083\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −38709.0 −1.54291 −0.771455 0.636284i \(-0.780471\pi\)
−0.771455 + 0.636284i \(0.780471\pi\)
\(858\) 0 0
\(859\) 15509.0 0.616019 0.308009 0.951383i \(-0.400337\pi\)
0.308009 + 0.951383i \(0.400337\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −15912.0 −0.627637 −0.313819 0.949483i \(-0.601608\pi\)
−0.313819 + 0.949483i \(0.601608\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 40410.0 1.57746
\(870\) 0 0
\(871\) 11044.0 0.429635
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −10972.0 −0.422461 −0.211230 0.977436i \(-0.567747\pi\)
−0.211230 + 0.977436i \(0.567747\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 18738.0 0.716571 0.358286 0.933612i \(-0.383361\pi\)
0.358286 + 0.933612i \(0.383361\pi\)
\(882\) 0 0
\(883\) −21367.0 −0.814334 −0.407167 0.913354i \(-0.633483\pi\)
−0.407167 + 0.913354i \(0.633483\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −20124.0 −0.761779 −0.380889 0.924621i \(-0.624382\pi\)
−0.380889 + 0.924621i \(0.624382\pi\)
\(888\) 0 0
\(889\) −61724.0 −2.32864
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −42588.0 −1.59592
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −3744.00 −0.138898
\(900\) 0 0
\(901\) 65286.0 2.41398
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 23132.0 0.846842 0.423421 0.905933i \(-0.360829\pi\)
0.423421 + 0.905933i \(0.360829\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −31212.0 −1.13513 −0.567563 0.823330i \(-0.692114\pi\)
−0.567563 + 0.823330i \(0.692114\pi\)
\(912\) 0 0
\(913\) 41715.0 1.51212
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 32760.0 1.17975
\(918\) 0 0
\(919\) −6994.00 −0.251045 −0.125523 0.992091i \(-0.540061\pi\)
−0.125523 + 0.992091i \(0.540061\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −4752.00 −0.169463
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −19422.0 −0.685915 −0.342958 0.939351i \(-0.611429\pi\)
−0.342958 + 0.939351i \(0.611429\pi\)
\(930\) 0 0
\(931\) −30303.0 −1.06675
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 11699.0 0.407887 0.203943 0.978983i \(-0.434624\pi\)
0.203943 + 0.978983i \(0.434624\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 42948.0 1.48785 0.743924 0.668264i \(-0.232962\pi\)
0.743924 + 0.668264i \(0.232962\pi\)
\(942\) 0 0
\(943\) 8262.00 0.285310
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 3816.00 0.130943 0.0654717 0.997854i \(-0.479145\pi\)
0.0654717 + 0.997854i \(0.479145\pi\)
\(948\) 0 0
\(949\) 13156.0 0.450012
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 43407.0 1.47544 0.737718 0.675109i \(-0.235903\pi\)
0.737718 + 0.675109i \(0.235903\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 23166.0 0.780051
\(960\) 0 0
\(961\) −29115.0 −0.977309
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −43216.0 −1.43716 −0.718580 0.695445i \(-0.755207\pi\)
−0.718580 + 0.695445i \(0.755207\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 47619.0 1.57381 0.786903 0.617076i \(-0.211683\pi\)
0.786903 + 0.617076i \(0.211683\pi\)
\(972\) 0 0
\(973\) 10114.0 0.333237
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 4671.00 0.152957 0.0764783 0.997071i \(-0.475632\pi\)
0.0764783 + 0.997071i \(0.475632\pi\)
\(978\) 0 0
\(979\) 15795.0 0.515639
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −9054.00 −0.293772 −0.146886 0.989153i \(-0.546925\pi\)
−0.146886 + 0.989153i \(0.546925\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −8280.00 −0.266217
\(990\) 0 0
\(991\) 8126.00 0.260475 0.130238 0.991483i \(-0.458426\pi\)
0.130238 + 0.991483i \(0.458426\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 38468.0 1.22196 0.610980 0.791646i \(-0.290776\pi\)
0.610980 + 0.791646i \(0.290776\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 900.4.a.p.1.1 1
3.2 odd 2 100.4.a.c.1.1 yes 1
5.2 odd 4 900.4.d.a.649.2 2
5.3 odd 4 900.4.d.a.649.1 2
5.4 even 2 900.4.a.c.1.1 1
12.11 even 2 400.4.a.i.1.1 1
15.2 even 4 100.4.c.b.49.1 2
15.8 even 4 100.4.c.b.49.2 2
15.14 odd 2 100.4.a.b.1.1 1
24.5 odd 2 1600.4.a.x.1.1 1
24.11 even 2 1600.4.a.bd.1.1 1
60.23 odd 4 400.4.c.l.49.1 2
60.47 odd 4 400.4.c.l.49.2 2
60.59 even 2 400.4.a.l.1.1 1
120.29 odd 2 1600.4.a.bc.1.1 1
120.59 even 2 1600.4.a.y.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
100.4.a.b.1.1 1 15.14 odd 2
100.4.a.c.1.1 yes 1 3.2 odd 2
100.4.c.b.49.1 2 15.2 even 4
100.4.c.b.49.2 2 15.8 even 4
400.4.a.i.1.1 1 12.11 even 2
400.4.a.l.1.1 1 60.59 even 2
400.4.c.l.49.1 2 60.23 odd 4
400.4.c.l.49.2 2 60.47 odd 4
900.4.a.c.1.1 1 5.4 even 2
900.4.a.p.1.1 1 1.1 even 1 trivial
900.4.d.a.649.1 2 5.3 odd 4
900.4.d.a.649.2 2 5.2 odd 4
1600.4.a.x.1.1 1 24.5 odd 2
1600.4.a.y.1.1 1 120.59 even 2
1600.4.a.bc.1.1 1 120.29 odd 2
1600.4.a.bd.1.1 1 24.11 even 2