Properties

Label 900.4.a.j.1.1
Level $900$
Weight $4$
Character 900.1
Self dual yes
Analytic conductor $53.102$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [900,4,Mod(1,900)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(900, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("900.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 900 = 2^{2} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 900.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(53.1017190052\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 180)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 900.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{7} +O(q^{10})\) \(q-2.00000 q^{7} +30.0000 q^{11} +4.00000 q^{13} -90.0000 q^{17} -28.0000 q^{19} -120.000 q^{23} +210.000 q^{29} -4.00000 q^{31} -200.000 q^{37} +240.000 q^{41} +136.000 q^{43} +120.000 q^{47} -339.000 q^{49} +30.0000 q^{53} -450.000 q^{59} -166.000 q^{61} -908.000 q^{67} -1020.00 q^{71} +250.000 q^{73} -60.0000 q^{77} -916.000 q^{79} +1140.00 q^{83} -420.000 q^{89} -8.00000 q^{91} -1538.00 q^{97} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −2.00000 −0.107990 −0.0539949 0.998541i \(-0.517195\pi\)
−0.0539949 + 0.998541i \(0.517195\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 30.0000 0.822304 0.411152 0.911567i \(-0.365127\pi\)
0.411152 + 0.911567i \(0.365127\pi\)
\(12\) 0 0
\(13\) 4.00000 0.0853385 0.0426692 0.999089i \(-0.486414\pi\)
0.0426692 + 0.999089i \(0.486414\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −90.0000 −1.28401 −0.642006 0.766700i \(-0.721898\pi\)
−0.642006 + 0.766700i \(0.721898\pi\)
\(18\) 0 0
\(19\) −28.0000 −0.338086 −0.169043 0.985609i \(-0.554068\pi\)
−0.169043 + 0.985609i \(0.554068\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −120.000 −1.08790 −0.543951 0.839117i \(-0.683072\pi\)
−0.543951 + 0.839117i \(0.683072\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 210.000 1.34469 0.672345 0.740238i \(-0.265287\pi\)
0.672345 + 0.740238i \(0.265287\pi\)
\(30\) 0 0
\(31\) −4.00000 −0.0231749 −0.0115874 0.999933i \(-0.503688\pi\)
−0.0115874 + 0.999933i \(0.503688\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −200.000 −0.888643 −0.444322 0.895867i \(-0.646555\pi\)
−0.444322 + 0.895867i \(0.646555\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 240.000 0.914188 0.457094 0.889418i \(-0.348890\pi\)
0.457094 + 0.889418i \(0.348890\pi\)
\(42\) 0 0
\(43\) 136.000 0.482321 0.241161 0.970485i \(-0.422472\pi\)
0.241161 + 0.970485i \(0.422472\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 120.000 0.372421 0.186211 0.982510i \(-0.440379\pi\)
0.186211 + 0.982510i \(0.440379\pi\)
\(48\) 0 0
\(49\) −339.000 −0.988338
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 30.0000 0.0777513 0.0388756 0.999244i \(-0.487622\pi\)
0.0388756 + 0.999244i \(0.487622\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −450.000 −0.992966 −0.496483 0.868046i \(-0.665376\pi\)
−0.496483 + 0.868046i \(0.665376\pi\)
\(60\) 0 0
\(61\) −166.000 −0.348428 −0.174214 0.984708i \(-0.555738\pi\)
−0.174214 + 0.984708i \(0.555738\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −908.000 −1.65567 −0.827835 0.560972i \(-0.810428\pi\)
−0.827835 + 0.560972i \(0.810428\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −1020.00 −1.70495 −0.852477 0.522765i \(-0.824901\pi\)
−0.852477 + 0.522765i \(0.824901\pi\)
\(72\) 0 0
\(73\) 250.000 0.400826 0.200413 0.979712i \(-0.435772\pi\)
0.200413 + 0.979712i \(0.435772\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −60.0000 −0.0888004
\(78\) 0 0
\(79\) −916.000 −1.30453 −0.652266 0.757990i \(-0.726182\pi\)
−0.652266 + 0.757990i \(0.726182\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 1140.00 1.50761 0.753803 0.657101i \(-0.228217\pi\)
0.753803 + 0.657101i \(0.228217\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −420.000 −0.500224 −0.250112 0.968217i \(-0.580467\pi\)
−0.250112 + 0.968217i \(0.580467\pi\)
\(90\) 0 0
\(91\) −8.00000 −0.00921569
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −1538.00 −1.60990 −0.804950 0.593343i \(-0.797808\pi\)
−0.804950 + 0.593343i \(0.797808\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 450.000 0.443333 0.221667 0.975122i \(-0.428850\pi\)
0.221667 + 0.975122i \(0.428850\pi\)
\(102\) 0 0
\(103\) 1150.00 1.10012 0.550062 0.835124i \(-0.314604\pi\)
0.550062 + 0.835124i \(0.314604\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1620.00 1.46366 0.731829 0.681489i \(-0.238667\pi\)
0.731829 + 0.681489i \(0.238667\pi\)
\(108\) 0 0
\(109\) −1702.00 −1.49561 −0.747807 0.663916i \(-0.768893\pi\)
−0.747807 + 0.663916i \(0.768893\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −1350.00 −1.12387 −0.561935 0.827181i \(-0.689943\pi\)
−0.561935 + 0.827181i \(0.689943\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 180.000 0.138660
\(120\) 0 0
\(121\) −431.000 −0.323817
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −2450.00 −1.71183 −0.855915 0.517117i \(-0.827005\pi\)
−0.855915 + 0.517117i \(0.827005\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 690.000 0.460195 0.230098 0.973168i \(-0.426095\pi\)
0.230098 + 0.973168i \(0.426095\pi\)
\(132\) 0 0
\(133\) 56.0000 0.0365099
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −2070.00 −1.29089 −0.645445 0.763806i \(-0.723328\pi\)
−0.645445 + 0.763806i \(0.723328\pi\)
\(138\) 0 0
\(139\) −1924.00 −1.17404 −0.587020 0.809572i \(-0.699699\pi\)
−0.587020 + 0.809572i \(0.699699\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 120.000 0.0701742
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 2910.00 1.59998 0.799988 0.600016i \(-0.204839\pi\)
0.799988 + 0.600016i \(0.204839\pi\)
\(150\) 0 0
\(151\) 176.000 0.0948522 0.0474261 0.998875i \(-0.484898\pi\)
0.0474261 + 0.998875i \(0.484898\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −2348.00 −1.19357 −0.596786 0.802400i \(-0.703556\pi\)
−0.596786 + 0.802400i \(0.703556\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 240.000 0.117482
\(162\) 0 0
\(163\) 1996.00 0.959134 0.479567 0.877505i \(-0.340794\pi\)
0.479567 + 0.877505i \(0.340794\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −3120.00 −1.44571 −0.722853 0.691002i \(-0.757170\pi\)
−0.722853 + 0.691002i \(0.757170\pi\)
\(168\) 0 0
\(169\) −2181.00 −0.992717
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −1770.00 −0.777865 −0.388932 0.921266i \(-0.627156\pi\)
−0.388932 + 0.921266i \(0.627156\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −2130.00 −0.889406 −0.444703 0.895678i \(-0.646691\pi\)
−0.444703 + 0.895678i \(0.646691\pi\)
\(180\) 0 0
\(181\) −1654.00 −0.679231 −0.339616 0.940564i \(-0.610297\pi\)
−0.339616 + 0.940564i \(0.610297\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −2700.00 −1.05585
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 1740.00 0.659173 0.329586 0.944125i \(-0.393091\pi\)
0.329586 + 0.944125i \(0.393091\pi\)
\(192\) 0 0
\(193\) −86.0000 −0.0320747 −0.0160373 0.999871i \(-0.505105\pi\)
−0.0160373 + 0.999871i \(0.505105\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 2490.00 0.900534 0.450267 0.892894i \(-0.351329\pi\)
0.450267 + 0.892894i \(0.351329\pi\)
\(198\) 0 0
\(199\) −832.000 −0.296376 −0.148188 0.988959i \(-0.547344\pi\)
−0.148188 + 0.988959i \(0.547344\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −420.000 −0.145213
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −840.000 −0.278010
\(210\) 0 0
\(211\) 2084.00 0.679945 0.339973 0.940435i \(-0.389582\pi\)
0.339973 + 0.940435i \(0.389582\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 8.00000 0.00250265
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −360.000 −0.109576
\(222\) 0 0
\(223\) 1174.00 0.352542 0.176271 0.984342i \(-0.443597\pi\)
0.176271 + 0.984342i \(0.443597\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 3120.00 0.912254 0.456127 0.889915i \(-0.349236\pi\)
0.456127 + 0.889915i \(0.349236\pi\)
\(228\) 0 0
\(229\) −58.0000 −0.0167369 −0.00836845 0.999965i \(-0.502664\pi\)
−0.00836845 + 0.999965i \(0.502664\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 5910.00 1.66170 0.830852 0.556494i \(-0.187854\pi\)
0.830852 + 0.556494i \(0.187854\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 3300.00 0.893135 0.446567 0.894750i \(-0.352646\pi\)
0.446567 + 0.894750i \(0.352646\pi\)
\(240\) 0 0
\(241\) −2986.00 −0.798113 −0.399056 0.916926i \(-0.630662\pi\)
−0.399056 + 0.916926i \(0.630662\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −112.000 −0.0288518
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −6630.00 −1.66726 −0.833629 0.552324i \(-0.813741\pi\)
−0.833629 + 0.552324i \(0.813741\pi\)
\(252\) 0 0
\(253\) −3600.00 −0.894585
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 1530.00 0.371357 0.185679 0.982611i \(-0.440552\pi\)
0.185679 + 0.982611i \(0.440552\pi\)
\(258\) 0 0
\(259\) 400.000 0.0959644
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −2640.00 −0.618971 −0.309486 0.950904i \(-0.600157\pi\)
−0.309486 + 0.950904i \(0.600157\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −7350.00 −1.66594 −0.832969 0.553319i \(-0.813361\pi\)
−0.832969 + 0.553319i \(0.813361\pi\)
\(270\) 0 0
\(271\) 3512.00 0.787228 0.393614 0.919276i \(-0.371225\pi\)
0.393614 + 0.919276i \(0.371225\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 5368.00 1.16437 0.582187 0.813055i \(-0.302197\pi\)
0.582187 + 0.813055i \(0.302197\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −3060.00 −0.649624 −0.324812 0.945779i \(-0.605301\pi\)
−0.324812 + 0.945779i \(0.605301\pi\)
\(282\) 0 0
\(283\) 5044.00 1.05949 0.529743 0.848158i \(-0.322288\pi\)
0.529743 + 0.848158i \(0.322288\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −480.000 −0.0987230
\(288\) 0 0
\(289\) 3187.00 0.648687
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 2010.00 0.400769 0.200385 0.979717i \(-0.435781\pi\)
0.200385 + 0.979717i \(0.435781\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −480.000 −0.0928399
\(300\) 0 0
\(301\) −272.000 −0.0520858
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 2752.00 0.511612 0.255806 0.966728i \(-0.417659\pi\)
0.255806 + 0.966728i \(0.417659\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 9540.00 1.73943 0.869717 0.493551i \(-0.164301\pi\)
0.869717 + 0.493551i \(0.164301\pi\)
\(312\) 0 0
\(313\) −9254.00 −1.67114 −0.835570 0.549384i \(-0.814863\pi\)
−0.835570 + 0.549384i \(0.814863\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −150.000 −0.0265768 −0.0132884 0.999912i \(-0.504230\pi\)
−0.0132884 + 0.999912i \(0.504230\pi\)
\(318\) 0 0
\(319\) 6300.00 1.10574
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 2520.00 0.434107
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −240.000 −0.0402177
\(330\) 0 0
\(331\) 1892.00 0.314180 0.157090 0.987584i \(-0.449789\pi\)
0.157090 + 0.987584i \(0.449789\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 7378.00 1.19260 0.596299 0.802763i \(-0.296637\pi\)
0.596299 + 0.802763i \(0.296637\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −120.000 −0.0190568
\(342\) 0 0
\(343\) 1364.00 0.214720
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −6720.00 −1.03962 −0.519811 0.854282i \(-0.673997\pi\)
−0.519811 + 0.854282i \(0.673997\pi\)
\(348\) 0 0
\(349\) 5186.00 0.795416 0.397708 0.917512i \(-0.369806\pi\)
0.397708 + 0.917512i \(0.369806\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −3330.00 −0.502091 −0.251045 0.967975i \(-0.580774\pi\)
−0.251045 + 0.967975i \(0.580774\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 9000.00 1.32312 0.661562 0.749890i \(-0.269894\pi\)
0.661562 + 0.749890i \(0.269894\pi\)
\(360\) 0 0
\(361\) −6075.00 −0.885698
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 8758.00 1.24568 0.622839 0.782350i \(-0.285979\pi\)
0.622839 + 0.782350i \(0.285979\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −60.0000 −0.00839635
\(372\) 0 0
\(373\) −4724.00 −0.655763 −0.327881 0.944719i \(-0.606335\pi\)
−0.327881 + 0.944719i \(0.606335\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 840.000 0.114754
\(378\) 0 0
\(379\) 7292.00 0.988298 0.494149 0.869377i \(-0.335480\pi\)
0.494149 + 0.869377i \(0.335480\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −14520.0 −1.93717 −0.968587 0.248676i \(-0.920004\pi\)
−0.968587 + 0.248676i \(0.920004\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 7110.00 0.926713 0.463356 0.886172i \(-0.346645\pi\)
0.463356 + 0.886172i \(0.346645\pi\)
\(390\) 0 0
\(391\) 10800.0 1.39688
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 11488.0 1.45231 0.726154 0.687532i \(-0.241306\pi\)
0.726154 + 0.687532i \(0.241306\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 780.000 0.0971355 0.0485678 0.998820i \(-0.484534\pi\)
0.0485678 + 0.998820i \(0.484534\pi\)
\(402\) 0 0
\(403\) −16.0000 −0.00197771
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −6000.00 −0.730735
\(408\) 0 0
\(409\) 5402.00 0.653085 0.326542 0.945183i \(-0.394116\pi\)
0.326542 + 0.945183i \(0.394116\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 900.000 0.107230
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −2190.00 −0.255342 −0.127671 0.991817i \(-0.540750\pi\)
−0.127671 + 0.991817i \(0.540750\pi\)
\(420\) 0 0
\(421\) −7162.00 −0.829108 −0.414554 0.910025i \(-0.636062\pi\)
−0.414554 + 0.910025i \(0.636062\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 332.000 0.0376267
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 9360.00 1.04607 0.523034 0.852312i \(-0.324800\pi\)
0.523034 + 0.852312i \(0.324800\pi\)
\(432\) 0 0
\(433\) −12806.0 −1.42129 −0.710643 0.703552i \(-0.751596\pi\)
−0.710643 + 0.703552i \(0.751596\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 3360.00 0.367805
\(438\) 0 0
\(439\) 11288.0 1.22721 0.613607 0.789612i \(-0.289718\pi\)
0.613607 + 0.789612i \(0.289718\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 8520.00 0.913764 0.456882 0.889527i \(-0.348966\pi\)
0.456882 + 0.889527i \(0.348966\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −1260.00 −0.132434 −0.0662172 0.997805i \(-0.521093\pi\)
−0.0662172 + 0.997805i \(0.521093\pi\)
\(450\) 0 0
\(451\) 7200.00 0.751740
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 13750.0 1.40744 0.703718 0.710480i \(-0.251522\pi\)
0.703718 + 0.710480i \(0.251522\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −3210.00 −0.324305 −0.162152 0.986766i \(-0.551844\pi\)
−0.162152 + 0.986766i \(0.551844\pi\)
\(462\) 0 0
\(463\) 12850.0 1.28983 0.644914 0.764255i \(-0.276893\pi\)
0.644914 + 0.764255i \(0.276893\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 8220.00 0.814510 0.407255 0.913314i \(-0.366486\pi\)
0.407255 + 0.913314i \(0.366486\pi\)
\(468\) 0 0
\(469\) 1816.00 0.178795
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 4080.00 0.396614
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −7020.00 −0.669628 −0.334814 0.942284i \(-0.608674\pi\)
−0.334814 + 0.942284i \(0.608674\pi\)
\(480\) 0 0
\(481\) −800.000 −0.0758355
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 8122.00 0.755735 0.377868 0.925860i \(-0.376657\pi\)
0.377868 + 0.925860i \(0.376657\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −13470.0 −1.23807 −0.619035 0.785363i \(-0.712476\pi\)
−0.619035 + 0.785363i \(0.712476\pi\)
\(492\) 0 0
\(493\) −18900.0 −1.72660
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 2040.00 0.184118
\(498\) 0 0
\(499\) 2468.00 0.221409 0.110704 0.993853i \(-0.464689\pi\)
0.110704 + 0.993853i \(0.464689\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 4440.00 0.393578 0.196789 0.980446i \(-0.436949\pi\)
0.196789 + 0.980446i \(0.436949\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −11190.0 −0.974436 −0.487218 0.873280i \(-0.661988\pi\)
−0.487218 + 0.873280i \(0.661988\pi\)
\(510\) 0 0
\(511\) −500.000 −0.0432851
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 3600.00 0.306243
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −4020.00 −0.338041 −0.169021 0.985613i \(-0.554060\pi\)
−0.169021 + 0.985613i \(0.554060\pi\)
\(522\) 0 0
\(523\) 9076.00 0.758826 0.379413 0.925228i \(-0.376126\pi\)
0.379413 + 0.925228i \(0.376126\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 360.000 0.0297568
\(528\) 0 0
\(529\) 2233.00 0.183529
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 960.000 0.0780154
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −10170.0 −0.812714
\(540\) 0 0
\(541\) −7486.00 −0.594914 −0.297457 0.954735i \(-0.596138\pi\)
−0.297457 + 0.954735i \(0.596138\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −7400.00 −0.578430 −0.289215 0.957264i \(-0.593394\pi\)
−0.289215 + 0.957264i \(0.593394\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −5880.00 −0.454621
\(552\) 0 0
\(553\) 1832.00 0.140876
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −11490.0 −0.874052 −0.437026 0.899449i \(-0.643968\pi\)
−0.437026 + 0.899449i \(0.643968\pi\)
\(558\) 0 0
\(559\) 544.000 0.0411606
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 19320.0 1.44625 0.723127 0.690715i \(-0.242704\pi\)
0.723127 + 0.690715i \(0.242704\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 8340.00 0.614466 0.307233 0.951634i \(-0.400597\pi\)
0.307233 + 0.951634i \(0.400597\pi\)
\(570\) 0 0
\(571\) 21044.0 1.54232 0.771159 0.636642i \(-0.219677\pi\)
0.771159 + 0.636642i \(0.219677\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −1418.00 −0.102309 −0.0511543 0.998691i \(-0.516290\pi\)
−0.0511543 + 0.998691i \(0.516290\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −2280.00 −0.162806
\(582\) 0 0
\(583\) 900.000 0.0639351
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 22020.0 1.54832 0.774159 0.632991i \(-0.218173\pi\)
0.774159 + 0.632991i \(0.218173\pi\)
\(588\) 0 0
\(589\) 112.000 0.00783511
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −25230.0 −1.74717 −0.873585 0.486671i \(-0.838211\pi\)
−0.873585 + 0.486671i \(0.838211\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 8280.00 0.564794 0.282397 0.959298i \(-0.408870\pi\)
0.282397 + 0.959298i \(0.408870\pi\)
\(600\) 0 0
\(601\) −18874.0 −1.28101 −0.640505 0.767954i \(-0.721275\pi\)
−0.640505 + 0.767954i \(0.721275\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −10550.0 −0.705455 −0.352728 0.935726i \(-0.614746\pi\)
−0.352728 + 0.935726i \(0.614746\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 480.000 0.0317819
\(612\) 0 0
\(613\) −11000.0 −0.724773 −0.362386 0.932028i \(-0.618038\pi\)
−0.362386 + 0.932028i \(0.618038\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 11310.0 0.737963 0.368982 0.929437i \(-0.379706\pi\)
0.368982 + 0.929437i \(0.379706\pi\)
\(618\) 0 0
\(619\) −17572.0 −1.14100 −0.570499 0.821298i \(-0.693250\pi\)
−0.570499 + 0.821298i \(0.693250\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 840.000 0.0540191
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 18000.0 1.14103
\(630\) 0 0
\(631\) 1604.00 0.101195 0.0505976 0.998719i \(-0.483887\pi\)
0.0505976 + 0.998719i \(0.483887\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −1356.00 −0.0843433
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 31320.0 1.92990 0.964950 0.262435i \(-0.0845254\pi\)
0.964950 + 0.262435i \(0.0845254\pi\)
\(642\) 0 0
\(643\) 31300.0 1.91968 0.959838 0.280555i \(-0.0905186\pi\)
0.959838 + 0.280555i \(0.0905186\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −10920.0 −0.663539 −0.331769 0.943361i \(-0.607646\pi\)
−0.331769 + 0.943361i \(0.607646\pi\)
\(648\) 0 0
\(649\) −13500.0 −0.816520
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 3210.00 0.192369 0.0961845 0.995364i \(-0.469336\pi\)
0.0961845 + 0.995364i \(0.469336\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −11910.0 −0.704018 −0.352009 0.935997i \(-0.614501\pi\)
−0.352009 + 0.935997i \(0.614501\pi\)
\(660\) 0 0
\(661\) −3382.00 −0.199008 −0.0995042 0.995037i \(-0.531726\pi\)
−0.0995042 + 0.995037i \(0.531726\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −25200.0 −1.46289
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −4980.00 −0.286514
\(672\) 0 0
\(673\) −15950.0 −0.913562 −0.456781 0.889579i \(-0.650998\pi\)
−0.456781 + 0.889579i \(0.650998\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −32190.0 −1.82742 −0.913709 0.406369i \(-0.866795\pi\)
−0.913709 + 0.406369i \(0.866795\pi\)
\(678\) 0 0
\(679\) 3076.00 0.173853
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −22140.0 −1.24036 −0.620178 0.784461i \(-0.712940\pi\)
−0.620178 + 0.784461i \(0.712940\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 120.000 0.00663518
\(690\) 0 0
\(691\) −6172.00 −0.339789 −0.169894 0.985462i \(-0.554343\pi\)
−0.169894 + 0.985462i \(0.554343\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −21600.0 −1.17383
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 19170.0 1.03287 0.516434 0.856327i \(-0.327259\pi\)
0.516434 + 0.856327i \(0.327259\pi\)
\(702\) 0 0
\(703\) 5600.00 0.300438
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −900.000 −0.0478755
\(708\) 0 0
\(709\) −21898.0 −1.15994 −0.579969 0.814638i \(-0.696936\pi\)
−0.579969 + 0.814638i \(0.696936\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 480.000 0.0252120
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 16680.0 0.865173 0.432586 0.901593i \(-0.357601\pi\)
0.432586 + 0.901593i \(0.357601\pi\)
\(720\) 0 0
\(721\) −2300.00 −0.118802
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −6518.00 −0.332516 −0.166258 0.986082i \(-0.553168\pi\)
−0.166258 + 0.986082i \(0.553168\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −12240.0 −0.619306
\(732\) 0 0
\(733\) 23200.0 1.16905 0.584524 0.811377i \(-0.301281\pi\)
0.584524 + 0.811377i \(0.301281\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −27240.0 −1.36146
\(738\) 0 0
\(739\) −16324.0 −0.812568 −0.406284 0.913747i \(-0.633176\pi\)
−0.406284 + 0.913747i \(0.633176\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 120.000 0.00592513 0.00296257 0.999996i \(-0.499057\pi\)
0.00296257 + 0.999996i \(0.499057\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −3240.00 −0.158060
\(750\) 0 0
\(751\) 30548.0 1.48430 0.742152 0.670232i \(-0.233805\pi\)
0.742152 + 0.670232i \(0.233805\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −16952.0 −0.813911 −0.406956 0.913448i \(-0.633410\pi\)
−0.406956 + 0.913448i \(0.633410\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −20220.0 −0.963173 −0.481586 0.876399i \(-0.659939\pi\)
−0.481586 + 0.876399i \(0.659939\pi\)
\(762\) 0 0
\(763\) 3404.00 0.161511
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −1800.00 −0.0847382
\(768\) 0 0
\(769\) −20722.0 −0.971722 −0.485861 0.874036i \(-0.661494\pi\)
−0.485861 + 0.874036i \(0.661494\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −4350.00 −0.202404 −0.101202 0.994866i \(-0.532269\pi\)
−0.101202 + 0.994866i \(0.532269\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −6720.00 −0.309074
\(780\) 0 0
\(781\) −30600.0 −1.40199
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −41972.0 −1.90107 −0.950534 0.310621i \(-0.899463\pi\)
−0.950534 + 0.310621i \(0.899463\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 2700.00 0.121367
\(792\) 0 0
\(793\) −664.000 −0.0297343
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 39510.0 1.75598 0.877990 0.478679i \(-0.158884\pi\)
0.877990 + 0.478679i \(0.158884\pi\)
\(798\) 0 0
\(799\) −10800.0 −0.478193
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 7500.00 0.329601
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 16680.0 0.724892 0.362446 0.932005i \(-0.381942\pi\)
0.362446 + 0.932005i \(0.381942\pi\)
\(810\) 0 0
\(811\) −15484.0 −0.670428 −0.335214 0.942142i \(-0.608809\pi\)
−0.335214 + 0.942142i \(0.608809\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −3808.00 −0.163066
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 4170.00 0.177264 0.0886322 0.996064i \(-0.471750\pi\)
0.0886322 + 0.996064i \(0.471750\pi\)
\(822\) 0 0
\(823\) 30226.0 1.28021 0.640105 0.768288i \(-0.278891\pi\)
0.640105 + 0.768288i \(0.278891\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 14760.0 0.620623 0.310312 0.950635i \(-0.399567\pi\)
0.310312 + 0.950635i \(0.399567\pi\)
\(828\) 0 0
\(829\) −9934.00 −0.416191 −0.208095 0.978109i \(-0.566726\pi\)
−0.208095 + 0.978109i \(0.566726\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 30510.0 1.26904
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −23520.0 −0.967820 −0.483910 0.875118i \(-0.660784\pi\)
−0.483910 + 0.875118i \(0.660784\pi\)
\(840\) 0 0
\(841\) 19711.0 0.808192
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 862.000 0.0349689
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 24000.0 0.966756
\(852\) 0 0
\(853\) −29816.0 −1.19681 −0.598406 0.801193i \(-0.704199\pi\)
−0.598406 + 0.801193i \(0.704199\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 35430.0 1.41221 0.706106 0.708106i \(-0.250450\pi\)
0.706106 + 0.708106i \(0.250450\pi\)
\(858\) 0 0
\(859\) −36196.0 −1.43771 −0.718854 0.695161i \(-0.755333\pi\)
−0.718854 + 0.695161i \(0.755333\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −480.000 −0.0189332 −0.00946662 0.999955i \(-0.503013\pi\)
−0.00946662 + 0.999955i \(0.503013\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −27480.0 −1.07272
\(870\) 0 0
\(871\) −3632.00 −0.141292
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −28532.0 −1.09858 −0.549291 0.835631i \(-0.685102\pi\)
−0.549291 + 0.835631i \(0.685102\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −20340.0 −0.777834 −0.388917 0.921273i \(-0.627151\pi\)
−0.388917 + 0.921273i \(0.627151\pi\)
\(882\) 0 0
\(883\) 10756.0 0.409930 0.204965 0.978769i \(-0.434292\pi\)
0.204965 + 0.978769i \(0.434292\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −600.000 −0.0227125 −0.0113563 0.999936i \(-0.503615\pi\)
−0.0113563 + 0.999936i \(0.503615\pi\)
\(888\) 0 0
\(889\) 4900.00 0.184860
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −3360.00 −0.125911
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −840.000 −0.0311630
\(900\) 0 0
\(901\) −2700.00 −0.0998336
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −25400.0 −0.929871 −0.464936 0.885345i \(-0.653923\pi\)
−0.464936 + 0.885345i \(0.653923\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −36240.0 −1.31799 −0.658993 0.752149i \(-0.729017\pi\)
−0.658993 + 0.752149i \(0.729017\pi\)
\(912\) 0 0
\(913\) 34200.0 1.23971
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −1380.00 −0.0496964
\(918\) 0 0
\(919\) 6572.00 0.235898 0.117949 0.993020i \(-0.462368\pi\)
0.117949 + 0.993020i \(0.462368\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −4080.00 −0.145498
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 2340.00 0.0826404 0.0413202 0.999146i \(-0.486844\pi\)
0.0413202 + 0.999146i \(0.486844\pi\)
\(930\) 0 0
\(931\) 9492.00 0.334144
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −2522.00 −0.0879297 −0.0439649 0.999033i \(-0.513999\pi\)
−0.0439649 + 0.999033i \(0.513999\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −52770.0 −1.82811 −0.914056 0.405589i \(-0.867067\pi\)
−0.914056 + 0.405589i \(0.867067\pi\)
\(942\) 0 0
\(943\) −28800.0 −0.994546
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −28200.0 −0.967663 −0.483832 0.875161i \(-0.660755\pi\)
−0.483832 + 0.875161i \(0.660755\pi\)
\(948\) 0 0
\(949\) 1000.00 0.0342059
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 15570.0 0.529236 0.264618 0.964353i \(-0.414754\pi\)
0.264618 + 0.964353i \(0.414754\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 4140.00 0.139403
\(960\) 0 0
\(961\) −29775.0 −0.999463
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 8350.00 0.277681 0.138841 0.990315i \(-0.455662\pi\)
0.138841 + 0.990315i \(0.455662\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 43650.0 1.44263 0.721316 0.692606i \(-0.243538\pi\)
0.721316 + 0.692606i \(0.243538\pi\)
\(972\) 0 0
\(973\) 3848.00 0.126784
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −18810.0 −0.615952 −0.307976 0.951394i \(-0.599652\pi\)
−0.307976 + 0.951394i \(0.599652\pi\)
\(978\) 0 0
\(979\) −12600.0 −0.411336
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 25320.0 0.821549 0.410774 0.911737i \(-0.365258\pi\)
0.410774 + 0.911737i \(0.365258\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −16320.0 −0.524718
\(990\) 0 0
\(991\) −6736.00 −0.215919 −0.107960 0.994155i \(-0.534432\pi\)
−0.107960 + 0.994155i \(0.534432\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 20500.0 0.651195 0.325598 0.945508i \(-0.394435\pi\)
0.325598 + 0.945508i \(0.394435\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 900.4.a.j.1.1 1
3.2 odd 2 900.4.a.i.1.1 1
5.2 odd 4 900.4.d.i.649.1 2
5.3 odd 4 900.4.d.i.649.2 2
5.4 even 2 180.4.a.e.1.1 yes 1
15.2 even 4 900.4.d.d.649.1 2
15.8 even 4 900.4.d.d.649.2 2
15.14 odd 2 180.4.a.b.1.1 1
20.19 odd 2 720.4.a.w.1.1 1
45.4 even 6 1620.4.i.c.541.1 2
45.14 odd 6 1620.4.i.i.541.1 2
45.29 odd 6 1620.4.i.i.1081.1 2
45.34 even 6 1620.4.i.c.1081.1 2
60.59 even 2 720.4.a.h.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
180.4.a.b.1.1 1 15.14 odd 2
180.4.a.e.1.1 yes 1 5.4 even 2
720.4.a.h.1.1 1 60.59 even 2
720.4.a.w.1.1 1 20.19 odd 2
900.4.a.i.1.1 1 3.2 odd 2
900.4.a.j.1.1 1 1.1 even 1 trivial
900.4.d.d.649.1 2 15.2 even 4
900.4.d.d.649.2 2 15.8 even 4
900.4.d.i.649.1 2 5.2 odd 4
900.4.d.i.649.2 2 5.3 odd 4
1620.4.i.c.541.1 2 45.4 even 6
1620.4.i.c.1081.1 2 45.34 even 6
1620.4.i.i.541.1 2 45.14 odd 6
1620.4.i.i.1081.1 2 45.29 odd 6