Properties

Label 900.4.a.f.1.1
Level $900$
Weight $4$
Character 900.1
Self dual yes
Analytic conductor $53.102$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [900,4,Mod(1,900)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(900, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("900.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 900 = 2^{2} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 900.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(53.1017190052\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 300)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 900.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-13.0000 q^{7} +O(q^{10})\) \(q-13.0000 q^{7} -6.00000 q^{11} +5.00000 q^{13} +78.0000 q^{17} +65.0000 q^{19} -138.000 q^{23} -66.0000 q^{29} +299.000 q^{31} -214.000 q^{37} -360.000 q^{41} +203.000 q^{43} -78.0000 q^{47} -174.000 q^{49} -636.000 q^{53} -786.000 q^{59} +467.000 q^{61} -217.000 q^{67} +360.000 q^{71} -286.000 q^{73} +78.0000 q^{77} +272.000 q^{79} -498.000 q^{83} -65.0000 q^{91} -511.000 q^{97} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −13.0000 −0.701934 −0.350967 0.936388i \(-0.614147\pi\)
−0.350967 + 0.936388i \(0.614147\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −6.00000 −0.164461 −0.0822304 0.996613i \(-0.526204\pi\)
−0.0822304 + 0.996613i \(0.526204\pi\)
\(12\) 0 0
\(13\) 5.00000 0.106673 0.0533366 0.998577i \(-0.483014\pi\)
0.0533366 + 0.998577i \(0.483014\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 78.0000 1.11281 0.556405 0.830911i \(-0.312180\pi\)
0.556405 + 0.830911i \(0.312180\pi\)
\(18\) 0 0
\(19\) 65.0000 0.784843 0.392422 0.919785i \(-0.371637\pi\)
0.392422 + 0.919785i \(0.371637\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −138.000 −1.25109 −0.625543 0.780189i \(-0.715123\pi\)
−0.625543 + 0.780189i \(0.715123\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −66.0000 −0.422617 −0.211308 0.977419i \(-0.567772\pi\)
−0.211308 + 0.977419i \(0.567772\pi\)
\(30\) 0 0
\(31\) 299.000 1.73232 0.866161 0.499765i \(-0.166580\pi\)
0.866161 + 0.499765i \(0.166580\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −214.000 −0.950848 −0.475424 0.879757i \(-0.657705\pi\)
−0.475424 + 0.879757i \(0.657705\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −360.000 −1.37128 −0.685641 0.727940i \(-0.740478\pi\)
−0.685641 + 0.727940i \(0.740478\pi\)
\(42\) 0 0
\(43\) 203.000 0.719935 0.359968 0.932965i \(-0.382788\pi\)
0.359968 + 0.932965i \(0.382788\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −78.0000 −0.242074 −0.121037 0.992648i \(-0.538622\pi\)
−0.121037 + 0.992648i \(0.538622\pi\)
\(48\) 0 0
\(49\) −174.000 −0.507289
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −636.000 −1.64833 −0.824163 0.566352i \(-0.808354\pi\)
−0.824163 + 0.566352i \(0.808354\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −786.000 −1.73438 −0.867191 0.497976i \(-0.834077\pi\)
−0.867191 + 0.497976i \(0.834077\pi\)
\(60\) 0 0
\(61\) 467.000 0.980217 0.490108 0.871662i \(-0.336957\pi\)
0.490108 + 0.871662i \(0.336957\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −217.000 −0.395683 −0.197842 0.980234i \(-0.563393\pi\)
−0.197842 + 0.980234i \(0.563393\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 360.000 0.601748 0.300874 0.953664i \(-0.402722\pi\)
0.300874 + 0.953664i \(0.402722\pi\)
\(72\) 0 0
\(73\) −286.000 −0.458545 −0.229272 0.973362i \(-0.573635\pi\)
−0.229272 + 0.973362i \(0.573635\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 78.0000 0.115441
\(78\) 0 0
\(79\) 272.000 0.387372 0.193686 0.981064i \(-0.437956\pi\)
0.193686 + 0.981064i \(0.437956\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −498.000 −0.658586 −0.329293 0.944228i \(-0.606810\pi\)
−0.329293 + 0.944228i \(0.606810\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) 0 0
\(91\) −65.0000 −0.0748775
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −511.000 −0.534889 −0.267444 0.963573i \(-0.586179\pi\)
−0.267444 + 0.963573i \(0.586179\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 1812.00 1.78516 0.892578 0.450893i \(-0.148894\pi\)
0.892578 + 0.450893i \(0.148894\pi\)
\(102\) 0 0
\(103\) −1708.00 −1.63392 −0.816962 0.576691i \(-0.804344\pi\)
−0.816962 + 0.576691i \(0.804344\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −1236.00 −1.11672 −0.558358 0.829600i \(-0.688568\pi\)
−0.558358 + 0.829600i \(0.688568\pi\)
\(108\) 0 0
\(109\) −1543.00 −1.35590 −0.677948 0.735110i \(-0.737130\pi\)
−0.677948 + 0.735110i \(0.737130\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −1884.00 −1.56842 −0.784212 0.620494i \(-0.786932\pi\)
−0.784212 + 0.620494i \(0.786932\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −1014.00 −0.781120
\(120\) 0 0
\(121\) −1295.00 −0.972953
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 2072.00 1.44772 0.723859 0.689948i \(-0.242366\pi\)
0.723859 + 0.689948i \(0.242366\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 2508.00 1.67271 0.836355 0.548188i \(-0.184682\pi\)
0.836355 + 0.548188i \(0.184682\pi\)
\(132\) 0 0
\(133\) −845.000 −0.550908
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −1566.00 −0.976587 −0.488293 0.872679i \(-0.662380\pi\)
−0.488293 + 0.872679i \(0.662380\pi\)
\(138\) 0 0
\(139\) −196.000 −0.119601 −0.0598004 0.998210i \(-0.519046\pi\)
−0.0598004 + 0.998210i \(0.519046\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −30.0000 −0.0175435
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 1278.00 0.702670 0.351335 0.936250i \(-0.385728\pi\)
0.351335 + 0.936250i \(0.385728\pi\)
\(150\) 0 0
\(151\) 1385.00 0.746422 0.373211 0.927747i \(-0.378257\pi\)
0.373211 + 0.927747i \(0.378257\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −481.000 −0.244509 −0.122255 0.992499i \(-0.539012\pi\)
−0.122255 + 0.992499i \(0.539012\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 1794.00 0.878180
\(162\) 0 0
\(163\) −2815.00 −1.35269 −0.676343 0.736587i \(-0.736436\pi\)
−0.676343 + 0.736587i \(0.736436\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −1956.00 −0.906346 −0.453173 0.891423i \(-0.649708\pi\)
−0.453173 + 0.891423i \(0.649708\pi\)
\(168\) 0 0
\(169\) −2172.00 −0.988621
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −2382.00 −1.04682 −0.523411 0.852081i \(-0.675341\pi\)
−0.523411 + 0.852081i \(0.675341\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −4386.00 −1.83142 −0.915712 0.401834i \(-0.868373\pi\)
−0.915712 + 0.401834i \(0.868373\pi\)
\(180\) 0 0
\(181\) −2275.00 −0.934251 −0.467125 0.884191i \(-0.654710\pi\)
−0.467125 + 0.884191i \(0.654710\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −468.000 −0.183014
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −714.000 −0.270488 −0.135244 0.990812i \(-0.543182\pi\)
−0.135244 + 0.990812i \(0.543182\pi\)
\(192\) 0 0
\(193\) 1547.00 0.576971 0.288486 0.957484i \(-0.406848\pi\)
0.288486 + 0.957484i \(0.406848\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −438.000 −0.158407 −0.0792036 0.996858i \(-0.525238\pi\)
−0.0792036 + 0.996858i \(0.525238\pi\)
\(198\) 0 0
\(199\) 437.000 0.155669 0.0778344 0.996966i \(-0.475199\pi\)
0.0778344 + 0.996966i \(0.475199\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 858.000 0.296649
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −390.000 −0.129076
\(210\) 0 0
\(211\) 1625.00 0.530188 0.265094 0.964223i \(-0.414597\pi\)
0.265094 + 0.964223i \(0.414597\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −3887.00 −1.21598
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 390.000 0.118707
\(222\) 0 0
\(223\) 875.000 0.262755 0.131377 0.991332i \(-0.458060\pi\)
0.131377 + 0.991332i \(0.458060\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 4680.00 1.36838 0.684191 0.729303i \(-0.260156\pi\)
0.684191 + 0.729303i \(0.260156\pi\)
\(228\) 0 0
\(229\) 1469.00 0.423905 0.211953 0.977280i \(-0.432018\pi\)
0.211953 + 0.977280i \(0.432018\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −3960.00 −1.11343 −0.556713 0.830705i \(-0.687938\pi\)
−0.556713 + 0.830705i \(0.687938\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −2652.00 −0.717756 −0.358878 0.933385i \(-0.616841\pi\)
−0.358878 + 0.933385i \(0.616841\pi\)
\(240\) 0 0
\(241\) 5753.00 1.53769 0.768845 0.639435i \(-0.220832\pi\)
0.768845 + 0.639435i \(0.220832\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 325.000 0.0837217
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −3588.00 −0.902281 −0.451141 0.892453i \(-0.648983\pi\)
−0.451141 + 0.892453i \(0.648983\pi\)
\(252\) 0 0
\(253\) 828.000 0.205755
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 564.000 0.136892 0.0684462 0.997655i \(-0.478196\pi\)
0.0684462 + 0.997655i \(0.478196\pi\)
\(258\) 0 0
\(259\) 2782.00 0.667433
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −1248.00 −0.292604 −0.146302 0.989240i \(-0.546737\pi\)
−0.146302 + 0.989240i \(0.546737\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 7266.00 1.64690 0.823450 0.567390i \(-0.192047\pi\)
0.823450 + 0.567390i \(0.192047\pi\)
\(270\) 0 0
\(271\) 3224.00 0.722672 0.361336 0.932436i \(-0.382321\pi\)
0.361336 + 0.932436i \(0.382321\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −151.000 −0.0327535 −0.0163767 0.999866i \(-0.505213\pi\)
−0.0163767 + 0.999866i \(0.505213\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −7566.00 −1.60623 −0.803113 0.595826i \(-0.796825\pi\)
−0.803113 + 0.595826i \(0.796825\pi\)
\(282\) 0 0
\(283\) 1469.00 0.308562 0.154281 0.988027i \(-0.450694\pi\)
0.154281 + 0.988027i \(0.450694\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 4680.00 0.962549
\(288\) 0 0
\(289\) 1171.00 0.238347
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 306.000 0.0610127 0.0305063 0.999535i \(-0.490288\pi\)
0.0305063 + 0.999535i \(0.490288\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −690.000 −0.133457
\(300\) 0 0
\(301\) −2639.00 −0.505347
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 4661.00 0.866506 0.433253 0.901272i \(-0.357366\pi\)
0.433253 + 0.901272i \(0.357366\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −2514.00 −0.458379 −0.229189 0.973382i \(-0.573608\pi\)
−0.229189 + 0.973382i \(0.573608\pi\)
\(312\) 0 0
\(313\) 6707.00 1.21119 0.605594 0.795774i \(-0.292935\pi\)
0.605594 + 0.795774i \(0.292935\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −4632.00 −0.820691 −0.410345 0.911930i \(-0.634592\pi\)
−0.410345 + 0.911930i \(0.634592\pi\)
\(318\) 0 0
\(319\) 396.000 0.0695039
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 5070.00 0.873382
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 1014.00 0.169920
\(330\) 0 0
\(331\) −988.000 −0.164065 −0.0820323 0.996630i \(-0.526141\pi\)
−0.0820323 + 0.996630i \(0.526141\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −9079.00 −1.46755 −0.733775 0.679392i \(-0.762244\pi\)
−0.733775 + 0.679392i \(0.762244\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −1794.00 −0.284899
\(342\) 0 0
\(343\) 6721.00 1.05802
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 5994.00 0.927305 0.463652 0.886017i \(-0.346539\pi\)
0.463652 + 0.886017i \(0.346539\pi\)
\(348\) 0 0
\(349\) −286.000 −0.0438660 −0.0219330 0.999759i \(-0.506982\pi\)
−0.0219330 + 0.999759i \(0.506982\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 11466.0 1.72882 0.864410 0.502787i \(-0.167692\pi\)
0.864410 + 0.502787i \(0.167692\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 624.000 0.0917367 0.0458683 0.998947i \(-0.485395\pi\)
0.0458683 + 0.998947i \(0.485395\pi\)
\(360\) 0 0
\(361\) −2634.00 −0.384021
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 8477.00 1.20571 0.602855 0.797851i \(-0.294030\pi\)
0.602855 + 0.797851i \(0.294030\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 8268.00 1.15702
\(372\) 0 0
\(373\) −11257.0 −1.56264 −0.781321 0.624130i \(-0.785454\pi\)
−0.781321 + 0.624130i \(0.785454\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −330.000 −0.0450819
\(378\) 0 0
\(379\) −1213.00 −0.164400 −0.0822000 0.996616i \(-0.526195\pi\)
−0.0822000 + 0.996616i \(0.526195\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 11076.0 1.47769 0.738847 0.673873i \(-0.235370\pi\)
0.738847 + 0.673873i \(0.235370\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 8016.00 1.04480 0.522400 0.852700i \(-0.325037\pi\)
0.522400 + 0.852700i \(0.325037\pi\)
\(390\) 0 0
\(391\) −10764.0 −1.39222
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 6851.00 0.866100 0.433050 0.901370i \(-0.357437\pi\)
0.433050 + 0.901370i \(0.357437\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −12636.0 −1.57360 −0.786798 0.617211i \(-0.788262\pi\)
−0.786798 + 0.617211i \(0.788262\pi\)
\(402\) 0 0
\(403\) 1495.00 0.184792
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 1284.00 0.156377
\(408\) 0 0
\(409\) 10829.0 1.30919 0.654596 0.755979i \(-0.272839\pi\)
0.654596 + 0.755979i \(0.272839\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 10218.0 1.21742
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 6252.00 0.728950 0.364475 0.931213i \(-0.381248\pi\)
0.364475 + 0.931213i \(0.381248\pi\)
\(420\) 0 0
\(421\) −15730.0 −1.82098 −0.910491 0.413529i \(-0.864296\pi\)
−0.910491 + 0.413529i \(0.864296\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −6071.00 −0.688047
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 10062.0 1.12452 0.562262 0.826959i \(-0.309931\pi\)
0.562262 + 0.826959i \(0.309931\pi\)
\(432\) 0 0
\(433\) 707.000 0.0784671 0.0392335 0.999230i \(-0.487508\pi\)
0.0392335 + 0.999230i \(0.487508\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −8970.00 −0.981907
\(438\) 0 0
\(439\) −12493.0 −1.35822 −0.679110 0.734037i \(-0.737634\pi\)
−0.679110 + 0.734037i \(0.737634\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 5928.00 0.635774 0.317887 0.948129i \(-0.397027\pi\)
0.317887 + 0.948129i \(0.397027\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 2028.00 0.213156 0.106578 0.994304i \(-0.466011\pi\)
0.106578 + 0.994304i \(0.466011\pi\)
\(450\) 0 0
\(451\) 2160.00 0.225522
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 17030.0 1.74317 0.871586 0.490242i \(-0.163092\pi\)
0.871586 + 0.490242i \(0.163092\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 1044.00 0.105475 0.0527374 0.998608i \(-0.483205\pi\)
0.0527374 + 0.998608i \(0.483205\pi\)
\(462\) 0 0
\(463\) 9704.00 0.974046 0.487023 0.873389i \(-0.338083\pi\)
0.487023 + 0.873389i \(0.338083\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 4194.00 0.415579 0.207789 0.978174i \(-0.433373\pi\)
0.207789 + 0.978174i \(0.433373\pi\)
\(468\) 0 0
\(469\) 2821.00 0.277743
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −1218.00 −0.118401
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 12174.0 1.16126 0.580631 0.814167i \(-0.302806\pi\)
0.580631 + 0.814167i \(0.302806\pi\)
\(480\) 0 0
\(481\) −1070.00 −0.101430
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −1651.00 −0.153622 −0.0768110 0.997046i \(-0.524474\pi\)
−0.0768110 + 0.997046i \(0.524474\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 6456.00 0.593391 0.296696 0.954972i \(-0.404115\pi\)
0.296696 + 0.954972i \(0.404115\pi\)
\(492\) 0 0
\(493\) −5148.00 −0.470293
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −4680.00 −0.422388
\(498\) 0 0
\(499\) −559.000 −0.0501489 −0.0250744 0.999686i \(-0.507982\pi\)
−0.0250744 + 0.999686i \(0.507982\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 14208.0 1.25945 0.629725 0.776818i \(-0.283168\pi\)
0.629725 + 0.776818i \(0.283168\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 8082.00 0.703789 0.351894 0.936040i \(-0.385538\pi\)
0.351894 + 0.936040i \(0.385538\pi\)
\(510\) 0 0
\(511\) 3718.00 0.321868
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 468.000 0.0398116
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −20502.0 −1.72401 −0.862005 0.506900i \(-0.830791\pi\)
−0.862005 + 0.506900i \(0.830791\pi\)
\(522\) 0 0
\(523\) 2069.00 0.172985 0.0864924 0.996253i \(-0.472434\pi\)
0.0864924 + 0.996253i \(0.472434\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 23322.0 1.92775
\(528\) 0 0
\(529\) 6877.00 0.565217
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −1800.00 −0.146279
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 1044.00 0.0834291
\(540\) 0 0
\(541\) 1553.00 0.123417 0.0617086 0.998094i \(-0.480345\pi\)
0.0617086 + 0.998094i \(0.480345\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 12584.0 0.983643 0.491822 0.870696i \(-0.336331\pi\)
0.491822 + 0.870696i \(0.336331\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −4290.00 −0.331688
\(552\) 0 0
\(553\) −3536.00 −0.271910
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −20754.0 −1.57877 −0.789385 0.613898i \(-0.789601\pi\)
−0.789385 + 0.613898i \(0.789601\pi\)
\(558\) 0 0
\(559\) 1015.00 0.0767977
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −14370.0 −1.07571 −0.537854 0.843038i \(-0.680765\pi\)
−0.537854 + 0.843038i \(0.680765\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −15774.0 −1.16218 −0.581090 0.813839i \(-0.697374\pi\)
−0.581090 + 0.813839i \(0.697374\pi\)
\(570\) 0 0
\(571\) −3055.00 −0.223902 −0.111951 0.993714i \(-0.535710\pi\)
−0.111951 + 0.993714i \(0.535710\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −25021.0 −1.80526 −0.902632 0.430412i \(-0.858368\pi\)
−0.902632 + 0.430412i \(0.858368\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 6474.00 0.462284
\(582\) 0 0
\(583\) 3816.00 0.271085
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 18828.0 1.32388 0.661938 0.749559i \(-0.269734\pi\)
0.661938 + 0.749559i \(0.269734\pi\)
\(588\) 0 0
\(589\) 19435.0 1.35960
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −19968.0 −1.38278 −0.691389 0.722483i \(-0.743001\pi\)
−0.691389 + 0.722483i \(0.743001\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −9684.00 −0.660563 −0.330282 0.943882i \(-0.607144\pi\)
−0.330282 + 0.943882i \(0.607144\pi\)
\(600\) 0 0
\(601\) 23243.0 1.57754 0.788770 0.614688i \(-0.210718\pi\)
0.788770 + 0.614688i \(0.210718\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −22984.0 −1.53689 −0.768445 0.639916i \(-0.778969\pi\)
−0.768445 + 0.639916i \(0.778969\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −390.000 −0.0258228
\(612\) 0 0
\(613\) 13754.0 0.906230 0.453115 0.891452i \(-0.350313\pi\)
0.453115 + 0.891452i \(0.350313\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −9468.00 −0.617775 −0.308888 0.951099i \(-0.599957\pi\)
−0.308888 + 0.951099i \(0.599957\pi\)
\(618\) 0 0
\(619\) −28099.0 −1.82455 −0.912273 0.409582i \(-0.865674\pi\)
−0.912273 + 0.409582i \(0.865674\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −16692.0 −1.05811
\(630\) 0 0
\(631\) 14807.0 0.934164 0.467082 0.884214i \(-0.345305\pi\)
0.467082 + 0.884214i \(0.345305\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −870.000 −0.0541141
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −20844.0 −1.28438 −0.642191 0.766545i \(-0.721974\pi\)
−0.642191 + 0.766545i \(0.721974\pi\)
\(642\) 0 0
\(643\) 3692.00 0.226436 0.113218 0.993570i \(-0.463884\pi\)
0.113218 + 0.993570i \(0.463884\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 20004.0 1.21552 0.607758 0.794123i \(-0.292069\pi\)
0.607758 + 0.794123i \(0.292069\pi\)
\(648\) 0 0
\(649\) 4716.00 0.285238
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 17862.0 1.07044 0.535218 0.844714i \(-0.320230\pi\)
0.535218 + 0.844714i \(0.320230\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −18552.0 −1.09664 −0.548318 0.836270i \(-0.684732\pi\)
−0.548318 + 0.836270i \(0.684732\pi\)
\(660\) 0 0
\(661\) −12382.0 −0.728599 −0.364300 0.931282i \(-0.618692\pi\)
−0.364300 + 0.931282i \(0.618692\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 9108.00 0.528730
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −2802.00 −0.161207
\(672\) 0 0
\(673\) −1690.00 −0.0967975 −0.0483987 0.998828i \(-0.515412\pi\)
−0.0483987 + 0.998828i \(0.515412\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −5682.00 −0.322566 −0.161283 0.986908i \(-0.551563\pi\)
−0.161283 + 0.986908i \(0.551563\pi\)
\(678\) 0 0
\(679\) 6643.00 0.375456
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −31512.0 −1.76541 −0.882704 0.469930i \(-0.844279\pi\)
−0.882704 + 0.469930i \(0.844279\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −3180.00 −0.175832
\(690\) 0 0
\(691\) 20648.0 1.13674 0.568370 0.822773i \(-0.307574\pi\)
0.568370 + 0.822773i \(0.307574\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −28080.0 −1.52598
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 11874.0 0.639764 0.319882 0.947457i \(-0.396357\pi\)
0.319882 + 0.947457i \(0.396357\pi\)
\(702\) 0 0
\(703\) −13910.0 −0.746267
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −23556.0 −1.25306
\(708\) 0 0
\(709\) −10699.0 −0.566727 −0.283363 0.959013i \(-0.591450\pi\)
−0.283363 + 0.959013i \(0.591450\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −41262.0 −2.16728
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 5598.00 0.290362 0.145181 0.989405i \(-0.453624\pi\)
0.145181 + 0.989405i \(0.453624\pi\)
\(720\) 0 0
\(721\) 22204.0 1.14691
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 22859.0 1.16615 0.583077 0.812417i \(-0.301849\pi\)
0.583077 + 0.812417i \(0.301849\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 15834.0 0.801151
\(732\) 0 0
\(733\) −31642.0 −1.59444 −0.797220 0.603689i \(-0.793697\pi\)
−0.797220 + 0.603689i \(0.793697\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 1302.00 0.0650743
\(738\) 0 0
\(739\) −12220.0 −0.608281 −0.304141 0.952627i \(-0.598369\pi\)
−0.304141 + 0.952627i \(0.598369\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −17892.0 −0.883437 −0.441719 0.897154i \(-0.645631\pi\)
−0.441719 + 0.897154i \(0.645631\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 16068.0 0.783861
\(750\) 0 0
\(751\) −16648.0 −0.808914 −0.404457 0.914557i \(-0.632539\pi\)
−0.404457 + 0.914557i \(0.632539\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 31733.0 1.52359 0.761794 0.647820i \(-0.224319\pi\)
0.761794 + 0.647820i \(0.224319\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 10068.0 0.479586 0.239793 0.970824i \(-0.422920\pi\)
0.239793 + 0.970824i \(0.422920\pi\)
\(762\) 0 0
\(763\) 20059.0 0.951749
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −3930.00 −0.185012
\(768\) 0 0
\(769\) 24323.0 1.14058 0.570292 0.821442i \(-0.306830\pi\)
0.570292 + 0.821442i \(0.306830\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 2184.00 0.101621 0.0508105 0.998708i \(-0.483820\pi\)
0.0508105 + 0.998708i \(0.483820\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −23400.0 −1.07624
\(780\) 0 0
\(781\) −2160.00 −0.0989640
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −37531.0 −1.69992 −0.849959 0.526849i \(-0.823373\pi\)
−0.849959 + 0.526849i \(0.823373\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 24492.0 1.10093
\(792\) 0 0
\(793\) 2335.00 0.104563
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −28644.0 −1.27305 −0.636526 0.771255i \(-0.719629\pi\)
−0.636526 + 0.771255i \(0.719629\pi\)
\(798\) 0 0
\(799\) −6084.00 −0.269382
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 1716.00 0.0754126
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 17316.0 0.752532 0.376266 0.926512i \(-0.377208\pi\)
0.376266 + 0.926512i \(0.377208\pi\)
\(810\) 0 0
\(811\) 425.000 0.0184017 0.00920084 0.999958i \(-0.497071\pi\)
0.00920084 + 0.999958i \(0.497071\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 13195.0 0.565036
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 25194.0 1.07098 0.535491 0.844541i \(-0.320126\pi\)
0.535491 + 0.844541i \(0.320126\pi\)
\(822\) 0 0
\(823\) −33961.0 −1.43840 −0.719202 0.694801i \(-0.755492\pi\)
−0.719202 + 0.694801i \(0.755492\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 1956.00 0.0822452 0.0411226 0.999154i \(-0.486907\pi\)
0.0411226 + 0.999154i \(0.486907\pi\)
\(828\) 0 0
\(829\) −47302.0 −1.98174 −0.990872 0.134803i \(-0.956960\pi\)
−0.990872 + 0.134803i \(0.956960\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −13572.0 −0.564516
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −30726.0 −1.26434 −0.632169 0.774831i \(-0.717835\pi\)
−0.632169 + 0.774831i \(0.717835\pi\)
\(840\) 0 0
\(841\) −20033.0 −0.821395
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 16835.0 0.682949
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 29532.0 1.18959
\(852\) 0 0
\(853\) −34489.0 −1.38439 −0.692193 0.721713i \(-0.743355\pi\)
−0.692193 + 0.721713i \(0.743355\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −8484.00 −0.338166 −0.169083 0.985602i \(-0.554081\pi\)
−0.169083 + 0.985602i \(0.554081\pi\)
\(858\) 0 0
\(859\) −520.000 −0.0206544 −0.0103272 0.999947i \(-0.503287\pi\)
−0.0103272 + 0.999947i \(0.503287\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 6864.00 0.270745 0.135373 0.990795i \(-0.456777\pi\)
0.135373 + 0.990795i \(0.456777\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −1632.00 −0.0637075
\(870\) 0 0
\(871\) −1085.00 −0.0422088
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −38857.0 −1.49613 −0.748066 0.663624i \(-0.769017\pi\)
−0.748066 + 0.663624i \(0.769017\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 10080.0 0.385475 0.192738 0.981250i \(-0.438263\pi\)
0.192738 + 0.981250i \(0.438263\pi\)
\(882\) 0 0
\(883\) −34549.0 −1.31672 −0.658362 0.752702i \(-0.728750\pi\)
−0.658362 + 0.752702i \(0.728750\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 18798.0 0.711584 0.355792 0.934565i \(-0.384211\pi\)
0.355792 + 0.934565i \(0.384211\pi\)
\(888\) 0 0
\(889\) −26936.0 −1.01620
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −5070.00 −0.189990
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −19734.0 −0.732109
\(900\) 0 0
\(901\) −49608.0 −1.83428
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 50276.0 1.84056 0.920280 0.391261i \(-0.127961\pi\)
0.920280 + 0.391261i \(0.127961\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 20502.0 0.745622 0.372811 0.927907i \(-0.378394\pi\)
0.372811 + 0.927907i \(0.378394\pi\)
\(912\) 0 0
\(913\) 2988.00 0.108311
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −32604.0 −1.17413
\(918\) 0 0
\(919\) 37817.0 1.35742 0.678709 0.734407i \(-0.262540\pi\)
0.678709 + 0.734407i \(0.262540\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 1800.00 0.0641904
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 11778.0 0.415957 0.207978 0.978133i \(-0.433312\pi\)
0.207978 + 0.978133i \(0.433312\pi\)
\(930\) 0 0
\(931\) −11310.0 −0.398142
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −18409.0 −0.641831 −0.320916 0.947108i \(-0.603991\pi\)
−0.320916 + 0.947108i \(0.603991\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 9330.00 0.323219 0.161610 0.986855i \(-0.448331\pi\)
0.161610 + 0.986855i \(0.448331\pi\)
\(942\) 0 0
\(943\) 49680.0 1.71559
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −49146.0 −1.68641 −0.843205 0.537592i \(-0.819334\pi\)
−0.843205 + 0.537592i \(0.819334\pi\)
\(948\) 0 0
\(949\) −1430.00 −0.0489144
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 5928.00 0.201497 0.100749 0.994912i \(-0.467876\pi\)
0.100749 + 0.994912i \(0.467876\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 20358.0 0.685500
\(960\) 0 0
\(961\) 59610.0 2.00094
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −9520.00 −0.316590 −0.158295 0.987392i \(-0.550600\pi\)
−0.158295 + 0.987392i \(0.550600\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −12558.0 −0.415042 −0.207521 0.978231i \(-0.566539\pi\)
−0.207521 + 0.978231i \(0.566539\pi\)
\(972\) 0 0
\(973\) 2548.00 0.0839518
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 46206.0 1.51306 0.756531 0.653958i \(-0.226893\pi\)
0.756531 + 0.653958i \(0.226893\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 32676.0 1.06023 0.530113 0.847927i \(-0.322149\pi\)
0.530113 + 0.847927i \(0.322149\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −28014.0 −0.900701
\(990\) 0 0
\(991\) −8137.00 −0.260828 −0.130414 0.991460i \(-0.541631\pi\)
−0.130414 + 0.991460i \(0.541631\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 18578.0 0.590142 0.295071 0.955475i \(-0.404657\pi\)
0.295071 + 0.955475i \(0.404657\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 900.4.a.f.1.1 1
3.2 odd 2 300.4.a.a.1.1 1
5.2 odd 4 900.4.d.e.649.1 2
5.3 odd 4 900.4.d.e.649.2 2
5.4 even 2 900.4.a.l.1.1 1
12.11 even 2 1200.4.a.bi.1.1 1
15.2 even 4 300.4.d.c.49.2 2
15.8 even 4 300.4.d.c.49.1 2
15.14 odd 2 300.4.a.h.1.1 yes 1
60.23 odd 4 1200.4.f.k.49.2 2
60.47 odd 4 1200.4.f.k.49.1 2
60.59 even 2 1200.4.a.d.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
300.4.a.a.1.1 1 3.2 odd 2
300.4.a.h.1.1 yes 1 15.14 odd 2
300.4.d.c.49.1 2 15.8 even 4
300.4.d.c.49.2 2 15.2 even 4
900.4.a.f.1.1 1 1.1 even 1 trivial
900.4.a.l.1.1 1 5.4 even 2
900.4.d.e.649.1 2 5.2 odd 4
900.4.d.e.649.2 2 5.3 odd 4
1200.4.a.d.1.1 1 60.59 even 2
1200.4.a.bi.1.1 1 12.11 even 2
1200.4.f.k.49.1 2 60.47 odd 4
1200.4.f.k.49.2 2 60.23 odd 4