Properties

Label 900.3.l.f.757.1
Level $900$
Weight $3$
Character 900.757
Analytic conductor $24.523$
Analytic rank $0$
Dimension $4$
CM discriminant -3
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [900,3,Mod(757,900)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(900, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("900.757");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 900 = 2^{2} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 900.l (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(24.5232237924\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(i, \sqrt{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{49}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{4}]$

Embedding invariants

Embedding label 757.1
Root \(-1.22474 - 1.22474i\) of defining polynomial
Character \(\chi\) \(=\) 900.757
Dual form 900.3.l.f.793.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-9.79796 - 9.79796i) q^{7} +O(q^{10})\) \(q+(-9.79796 - 9.79796i) q^{7} +(-9.79796 + 9.79796i) q^{13} +26.0000i q^{19} +46.0000 q^{31} +(48.9898 + 48.9898i) q^{37} +(58.7878 - 58.7878i) q^{43} +143.000i q^{49} +74.0000 q^{61} +(-39.1918 - 39.1918i) q^{67} +(-97.9796 + 97.9796i) q^{73} +142.000i q^{79} +192.000 q^{91} +(-137.171 - 137.171i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 184 q^{31} + 296 q^{61} + 768 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/900\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(451\) \(577\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −9.79796 9.79796i −1.39971 1.39971i −0.800869 0.598839i \(-0.795629\pi\)
−0.598839 0.800869i \(-0.704371\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(12\) 0 0
\(13\) −9.79796 + 9.79796i −0.753689 + 0.753689i −0.975166 0.221477i \(-0.928912\pi\)
0.221477 + 0.975166i \(0.428912\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(18\) 0 0
\(19\) 26.0000i 1.36842i 0.729285 + 0.684211i \(0.239853\pi\)
−0.729285 + 0.684211i \(0.760147\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(30\) 0 0
\(31\) 46.0000 1.48387 0.741935 0.670471i \(-0.233908\pi\)
0.741935 + 0.670471i \(0.233908\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 48.9898 + 48.9898i 1.32405 + 1.32405i 0.910467 + 0.413581i \(0.135722\pi\)
0.413581 + 0.910467i \(0.364278\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) 0 0
\(43\) 58.7878 58.7878i 1.36716 1.36716i 0.502691 0.864466i \(-0.332343\pi\)
0.864466 0.502691i \(-0.167657\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(48\) 0 0
\(49\) 143.000i 2.91837i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(60\) 0 0
\(61\) 74.0000 1.21311 0.606557 0.795040i \(-0.292550\pi\)
0.606557 + 0.795040i \(0.292550\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −39.1918 39.1918i −0.584953 0.584953i 0.351307 0.936260i \(-0.385737\pi\)
−0.936260 + 0.351307i \(0.885737\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) −97.9796 + 97.9796i −1.34219 + 1.34219i −0.448306 + 0.893880i \(0.647973\pi\)
−0.893880 + 0.448306i \(0.852027\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 142.000i 1.79747i 0.438494 + 0.898734i \(0.355512\pi\)
−0.438494 + 0.898734i \(0.644488\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(90\) 0 0
\(91\) 192.000 2.10989
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −137.171 137.171i −1.41414 1.41414i −0.714359 0.699779i \(-0.753282\pi\)
−0.699779 0.714359i \(-0.746718\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(102\) 0 0
\(103\) −48.9898 + 48.9898i −0.475629 + 0.475629i −0.903731 0.428102i \(-0.859183\pi\)
0.428102 + 0.903731i \(0.359183\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(108\) 0 0
\(109\) 214.000i 1.96330i 0.190684 + 0.981651i \(0.438929\pi\)
−0.190684 + 0.981651i \(0.561071\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −121.000 −1.00000
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 146.969 + 146.969i 1.15724 + 1.15724i 0.985067 + 0.172172i \(0.0550786\pi\)
0.172172 + 0.985067i \(0.444921\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 0 0
\(133\) 254.747 254.747i 1.91539 1.91539i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(138\) 0 0
\(139\) 22.0000i 0.158273i −0.996864 0.0791367i \(-0.974784\pi\)
0.996864 0.0791367i \(-0.0252164\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(150\) 0 0
\(151\) 286.000 1.89404 0.947020 0.321175i \(-0.104078\pi\)
0.947020 + 0.321175i \(0.104078\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 205.757 + 205.757i 1.31056 + 1.31056i 0.921006 + 0.389549i \(0.127369\pi\)
0.389549 + 0.921006i \(0.372631\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −137.171 + 137.171i −0.841542 + 0.841542i −0.989060 0.147517i \(-0.952872\pi\)
0.147517 + 0.989060i \(0.452872\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(168\) 0 0
\(169\) 23.0000i 0.136095i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(180\) 0 0
\(181\) −314.000 −1.73481 −0.867403 0.497606i \(-0.834213\pi\)
−0.867403 + 0.497606i \(0.834213\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 0 0
\(193\) 39.1918 39.1918i 0.203067 0.203067i −0.598246 0.801313i \(-0.704135\pi\)
0.801313 + 0.598246i \(0.204135\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(198\) 0 0
\(199\) 386.000i 1.93970i −0.243706 0.969849i \(-0.578363\pi\)
0.243706 0.969849i \(-0.421637\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −166.000 −0.786730 −0.393365 0.919382i \(-0.628689\pi\)
−0.393365 + 0.919382i \(0.628689\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −450.706 450.706i −2.07699 2.07699i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −205.757 + 205.757i −0.922678 + 0.922678i −0.997218 0.0745403i \(-0.976251\pi\)
0.0745403 + 0.997218i \(0.476251\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(228\) 0 0
\(229\) 26.0000i 0.113537i 0.998387 + 0.0567686i \(0.0180797\pi\)
−0.998387 + 0.0567686i \(0.981920\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(240\) 0 0
\(241\) −286.000 −1.18672 −0.593361 0.804936i \(-0.702199\pi\)
−0.593361 + 0.804936i \(0.702199\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −254.747 254.747i −1.03136 1.03136i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(258\) 0 0
\(259\) 960.000i 3.70656i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(270\) 0 0
\(271\) 242.000 0.892989 0.446494 0.894786i \(-0.352672\pi\)
0.446494 + 0.894786i \(0.352672\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 382.120 + 382.120i 1.37950 + 1.37950i 0.845465 + 0.534031i \(0.179324\pi\)
0.534031 + 0.845465i \(0.320676\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(282\) 0 0
\(283\) 235.151 235.151i 0.830922 0.830922i −0.156721 0.987643i \(-0.550092\pi\)
0.987643 + 0.156721i \(0.0500922\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 289.000i 1.00000i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) −1152.00 −3.82724
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 352.727 + 352.727i 1.14895 + 1.14895i 0.986760 + 0.162186i \(0.0518545\pi\)
0.162186 + 0.986760i \(0.448145\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) −431.110 + 431.110i −1.37735 + 1.37735i −0.528276 + 0.849072i \(0.677162\pi\)
−0.849072 + 0.528276i \(0.822838\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 362.000 1.09366 0.546828 0.837245i \(-0.315835\pi\)
0.546828 + 0.837245i \(0.315835\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 333.131 + 333.131i 0.988518 + 0.988518i 0.999935 0.0114167i \(-0.00363413\pi\)
−0.0114167 + 0.999935i \(0.503634\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 921.008 921.008i 2.68515 2.68515i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(348\) 0 0
\(349\) 502.000i 1.43840i −0.694805 0.719198i \(-0.744510\pi\)
0.694805 0.719198i \(-0.255490\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(360\) 0 0
\(361\) −315.000 −0.872576
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −107.778 107.778i −0.293672 0.293672i 0.544857 0.838529i \(-0.316584\pi\)
−0.838529 + 0.544857i \(0.816584\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −186.161 + 186.161i −0.499092 + 0.499092i −0.911155 0.412063i \(-0.864808\pi\)
0.412063 + 0.911155i \(0.364808\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 694.000i 1.83113i −0.402165 0.915567i \(-0.631742\pi\)
0.402165 0.915567i \(-0.368258\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −499.696 499.696i −1.25868 1.25868i −0.951724 0.306956i \(-0.900689\pi\)
−0.306956 0.951724i \(-0.599311\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(402\) 0 0
\(403\) −450.706 + 450.706i −1.11838 + 1.11838i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 626.000i 1.53056i 0.643696 + 0.765281i \(0.277400\pi\)
−0.643696 + 0.765281i \(0.722600\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(420\) 0 0
\(421\) 358.000 0.850356 0.425178 0.905110i \(-0.360211\pi\)
0.425178 + 0.905110i \(0.360211\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −725.049 725.049i −1.69801 1.69801i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0 0
\(433\) −58.7878 + 58.7878i −0.135768 + 0.135768i −0.771725 0.635956i \(-0.780606\pi\)
0.635956 + 0.771725i \(0.280606\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 94.0000i 0.214123i 0.994252 + 0.107062i \(0.0341442\pi\)
−0.994252 + 0.107062i \(0.965856\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 293.939 + 293.939i 0.643192 + 0.643192i 0.951339 0.308147i \(-0.0997088\pi\)
−0.308147 + 0.951339i \(0.599709\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(462\) 0 0
\(463\) −538.888 + 538.888i −1.16390 + 1.16390i −0.180291 + 0.983613i \(0.557704\pi\)
−0.983613 + 0.180291i \(0.942296\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(468\) 0 0
\(469\) 768.000i 1.63753i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(480\) 0 0
\(481\) −960.000 −1.99584
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 107.778 + 107.778i 0.221309 + 0.221309i 0.809050 0.587740i \(-0.199982\pi\)
−0.587740 + 0.809050i \(0.699982\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 26.0000i 0.0521042i −0.999661 0.0260521i \(-0.991706\pi\)
0.999661 0.0260521i \(-0.00829358\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(510\) 0 0
\(511\) 1920.00 3.75734
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(522\) 0 0
\(523\) 254.747 254.747i 0.487088 0.487088i −0.420298 0.907386i \(-0.638075\pi\)
0.907386 + 0.420298i \(0.138075\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 529.000i 1.00000i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 1034.00 1.91128 0.955638 0.294545i \(-0.0951680\pi\)
0.955638 + 0.294545i \(0.0951680\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 685.857 + 685.857i 1.25385 + 1.25385i 0.953979 + 0.299873i \(0.0969443\pi\)
0.299873 + 0.953979i \(0.403056\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 1391.31 1391.31i 2.51593 2.51593i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(558\) 0 0
\(559\) 1152.00i 2.06082i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(570\) 0 0
\(571\) −886.000 −1.55166 −0.775832 0.630940i \(-0.782670\pi\)
−0.775832 + 0.630940i \(0.782670\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 450.706 + 450.706i 0.781120 + 0.781120i 0.980020 0.198900i \(-0.0637369\pi\)
−0.198900 + 0.980020i \(0.563737\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(588\) 0 0
\(589\) 1196.00i 2.03056i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(600\) 0 0
\(601\) 526.000 0.875208 0.437604 0.899168i \(-0.355827\pi\)
0.437604 + 0.899168i \(0.355827\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 636.867 + 636.867i 1.04920 + 1.04920i 0.998725 + 0.0504797i \(0.0160750\pi\)
0.0504797 + 0.998725i \(0.483925\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −342.929 + 342.929i −0.559427 + 0.559427i −0.929144 0.369718i \(-0.879454\pi\)
0.369718 + 0.929144i \(0.379454\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(618\) 0 0
\(619\) 214.000i 0.345719i 0.984947 + 0.172859i \(0.0553006\pi\)
−0.984947 + 0.172859i \(0.944699\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 674.000 1.06815 0.534073 0.845438i \(-0.320661\pi\)
0.534073 + 0.845438i \(0.320661\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −1401.11 1401.11i −2.19954 2.19954i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(642\) 0 0
\(643\) −881.816 + 881.816i −1.37141 + 1.37141i −0.513052 + 0.858358i \(0.671485\pi\)
−0.858358 + 0.513052i \(0.828515\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(660\) 0 0
\(661\) −122.000 −0.184569 −0.0922844 0.995733i \(-0.529417\pi\)
−0.0922844 + 0.995733i \(0.529417\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 489.898 489.898i 0.727932 0.727932i −0.242276 0.970207i \(-0.577894\pi\)
0.970207 + 0.242276i \(0.0778939\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(678\) 0 0
\(679\) 2688.00i 3.95876i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 1318.00 1.90738 0.953690 0.300790i \(-0.0972504\pi\)
0.953690 + 0.300790i \(0.0972504\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(702\) 0 0
\(703\) −1273.73 + 1273.73i −1.81186 + 1.81186i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 934.000i 1.31735i −0.752428 0.658674i \(-0.771118\pi\)
0.752428 0.658674i \(-0.228882\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(720\) 0 0
\(721\) 960.000 1.33148
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −969.998 969.998i −1.33425 1.33425i −0.901529 0.432718i \(-0.857554\pi\)
−0.432718 0.901529i \(-0.642446\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) −734.847 + 734.847i −1.00252 + 1.00252i −0.00252286 + 0.999997i \(0.500803\pi\)
−0.999997 + 0.00252286i \(0.999197\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 1222.00i 1.65359i −0.562506 0.826793i \(-0.690163\pi\)
0.562506 0.826793i \(-0.309837\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −1202.00 −1.60053 −0.800266 0.599645i \(-0.795309\pi\)
−0.800266 + 0.599645i \(0.795309\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −891.614 891.614i −1.17783 1.17783i −0.980297 0.197529i \(-0.936708\pi\)
−0.197529 0.980297i \(-0.563292\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(762\) 0 0
\(763\) 2096.76 2096.76i 2.74805 2.74805i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 1534.00i 1.99480i 0.0720749 + 0.997399i \(0.477038\pi\)
−0.0720749 + 0.997399i \(0.522962\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 137.171 + 137.171i 0.174297 + 0.174297i 0.788864 0.614568i \(-0.210669\pi\)
−0.614568 + 0.788864i \(0.710669\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −725.049 + 725.049i −0.914311 + 0.914311i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(810\) 0 0
\(811\) −1514.00 −1.86683 −0.933416 0.358797i \(-0.883187\pi\)
−0.933416 + 0.358797i \(0.883187\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 1528.48 + 1528.48i 1.87085 + 1.87085i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(822\) 0 0
\(823\) 891.614 891.614i 1.08337 1.08337i 0.0871782 0.996193i \(-0.472215\pi\)
0.996193 0.0871782i \(-0.0277849\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(828\) 0 0
\(829\) 458.000i 0.552473i 0.961090 + 0.276236i \(0.0890873\pi\)
−0.961090 + 0.276236i \(0.910913\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(840\) 0 0
\(841\) 841.000 1.00000
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 1185.55 + 1185.55i 1.39971 + 1.39971i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 284.141 284.141i 0.333108 0.333108i −0.520658 0.853765i \(-0.674313\pi\)
0.853765 + 0.520658i \(0.174313\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(858\) 0 0
\(859\) 1418.00i 1.65076i −0.564580 0.825378i \(-0.690962\pi\)
0.564580 0.825378i \(-0.309038\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 768.000 0.881745
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 1165.96 + 1165.96i 1.32948 + 1.32948i 0.905819 + 0.423664i \(0.139256\pi\)
0.423664 + 0.905819i \(0.360744\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(882\) 0 0
\(883\) −333.131 + 333.131i −0.377271 + 0.377271i −0.870117 0.492845i \(-0.835957\pi\)
0.492845 + 0.870117i \(0.335957\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(888\) 0 0
\(889\) 2880.00i 3.23960i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −1273.73 1273.73i −1.40434 1.40434i −0.785587 0.618751i \(-0.787639\pi\)
−0.618751 0.785587i \(-0.712361\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 866.000i 0.942329i 0.882045 + 0.471164i \(0.156166\pi\)
−0.882045 + 0.471164i \(0.843834\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(930\) 0 0
\(931\) −3718.00 −3.99356
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 1018.99 + 1018.99i 1.08750 + 1.08750i 0.995785 + 0.0917149i \(0.0292349\pi\)
0.0917149 + 0.995785i \(0.470765\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(948\) 0 0
\(949\) 1920.00i 2.02318i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 1155.00 1.20187
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −832.827 832.827i −0.861248 0.861248i 0.130235 0.991483i \(-0.458427\pi\)
−0.991483 + 0.130235i \(0.958427\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(972\) 0 0
\(973\) −215.555 + 215.555i −0.221537 + 0.221537i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) −46.0000 −0.0464178 −0.0232089 0.999731i \(-0.507388\pi\)
−0.0232089 + 0.999731i \(0.507388\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −440.908 440.908i −0.442235 0.442235i 0.450528 0.892762i \(-0.351236\pi\)
−0.892762 + 0.450528i \(0.851236\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 900.3.l.f.757.1 4
3.2 odd 2 CM 900.3.l.f.757.1 4
5.2 odd 4 inner 900.3.l.f.793.2 yes 4
5.3 odd 4 inner 900.3.l.f.793.1 yes 4
5.4 even 2 inner 900.3.l.f.757.2 yes 4
15.2 even 4 inner 900.3.l.f.793.2 yes 4
15.8 even 4 inner 900.3.l.f.793.1 yes 4
15.14 odd 2 inner 900.3.l.f.757.2 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
900.3.l.f.757.1 4 1.1 even 1 trivial
900.3.l.f.757.1 4 3.2 odd 2 CM
900.3.l.f.757.2 yes 4 5.4 even 2 inner
900.3.l.f.757.2 yes 4 15.14 odd 2 inner
900.3.l.f.793.1 yes 4 5.3 odd 4 inner
900.3.l.f.793.1 yes 4 15.8 even 4 inner
900.3.l.f.793.2 yes 4 5.2 odd 4 inner
900.3.l.f.793.2 yes 4 15.2 even 4 inner