Properties

 Label 900.3.l.d Level $900$ Weight $3$ Character orbit 900.l Analytic conductor $24.523$ Analytic rank $0$ Dimension $4$ CM no Inner twists $4$

Related objects

Newspace parameters

 Level: $$N$$ $$=$$ $$900 = 2^{2} \cdot 3^{2} \cdot 5^{2}$$ Weight: $$k$$ $$=$$ $$3$$ Character orbit: $$[\chi]$$ $$=$$ 900.l (of order $$4$$, degree $$2$$, minimal)

Newform invariants

 Self dual: no Analytic conductor: $$24.5232237924$$ Analytic rank: $$0$$ Dimension: $$4$$ Relative dimension: $$2$$ over $$\Q(i)$$ Coefficient field: $$\Q(i, \sqrt{6})$$ Defining polynomial: $$x^{4} + 9$$ Coefficient ring: $$\Z[a_1, \ldots, a_{19}]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 300) Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a basis $$1,\beta_1,\beta_2,\beta_3$$ for the coefficient ring described below. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + 3 \beta_{1} q^{7} +O(q^{10})$$ $$q + 3 \beta_{1} q^{7} -6 q^{11} -5 \beta_{3} q^{13} -18 \beta_{1} q^{17} -25 \beta_{2} q^{19} -6 \beta_{3} q^{23} + 42 \beta_{2} q^{29} + 49 q^{31} + 4 \beta_{1} q^{37} + 60 q^{41} + \beta_{3} q^{43} -42 \beta_{1} q^{47} -22 \beta_{2} q^{49} -12 \beta_{3} q^{53} -78 \beta_{2} q^{59} -13 q^{61} -43 \beta_{1} q^{67} + 60 q^{71} -52 \beta_{3} q^{73} -18 \beta_{1} q^{77} + 106 \beta_{2} q^{79} -66 \beta_{3} q^{83} -60 \beta_{2} q^{89} + 45 q^{91} -99 \beta_{1} q^{97} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$4q + O(q^{10})$$ $$4q - 24q^{11} + 196q^{31} + 240q^{41} - 52q^{61} + 240q^{71} + 180q^{91} + O(q^{100})$$

Basis of coefficient ring in terms of a root $$\nu$$ of $$x^{4} + 9$$:

 $$\beta_{0}$$ $$=$$ $$1$$ $$\beta_{1}$$ $$=$$ $$\nu$$ $$\beta_{2}$$ $$=$$ $$\nu^{2}$$$$/3$$ $$\beta_{3}$$ $$=$$ $$\nu^{3}$$$$/3$$
 $$1$$ $$=$$ $$\beta_0$$ $$\nu$$ $$=$$ $$\beta_{1}$$ $$\nu^{2}$$ $$=$$ $$3 \beta_{2}$$ $$\nu^{3}$$ $$=$$ $$3 \beta_{3}$$

Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/900\mathbb{Z}\right)^\times$$.

 $$n$$ $$101$$ $$451$$ $$577$$ $$\chi(n)$$ $$1$$ $$1$$ $$\beta_{2}$$

Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
757.1
 −1.22474 − 1.22474i 1.22474 + 1.22474i −1.22474 + 1.22474i 1.22474 − 1.22474i
0 0 0 0 0 −3.67423 3.67423i 0 0 0
757.2 0 0 0 0 0 3.67423 + 3.67423i 0 0 0
793.1 0 0 0 0 0 −3.67423 + 3.67423i 0 0 0
793.2 0 0 0 0 0 3.67423 3.67423i 0 0 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner
5.c odd 4 2 inner

Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 900.3.l.d 4
3.b odd 2 1 300.3.k.c 4
5.b even 2 1 inner 900.3.l.d 4
5.c odd 4 2 inner 900.3.l.d 4
12.b even 2 1 1200.3.bg.i 4
15.d odd 2 1 300.3.k.c 4
15.e even 4 2 300.3.k.c 4
60.h even 2 1 1200.3.bg.i 4
60.l odd 4 2 1200.3.bg.i 4

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
300.3.k.c 4 3.b odd 2 1
300.3.k.c 4 15.d odd 2 1
300.3.k.c 4 15.e even 4 2
900.3.l.d 4 1.a even 1 1 trivial
900.3.l.d 4 5.b even 2 1 inner
900.3.l.d 4 5.c odd 4 2 inner
1200.3.bg.i 4 12.b even 2 1
1200.3.bg.i 4 60.h even 2 1
1200.3.bg.i 4 60.l odd 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{3}^{\mathrm{new}}(900, [\chi])$$:

 $$T_{7}^{4} + 729$$ $$T_{11} + 6$$

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{4}$$
$3$ $$T^{4}$$
$5$ $$T^{4}$$
$7$ $$729 + T^{4}$$
$11$ $$( 6 + T )^{4}$$
$13$ $$5625 + T^{4}$$
$17$ $$944784 + T^{4}$$
$19$ $$( 625 + T^{2} )^{2}$$
$23$ $$11664 + T^{4}$$
$29$ $$( 1764 + T^{2} )^{2}$$
$31$ $$( -49 + T )^{4}$$
$37$ $$2304 + T^{4}$$
$41$ $$( -60 + T )^{4}$$
$43$ $$9 + T^{4}$$
$47$ $$28005264 + T^{4}$$
$53$ $$186624 + T^{4}$$
$59$ $$( 6084 + T^{2} )^{2}$$
$61$ $$( 13 + T )^{4}$$
$67$ $$30769209 + T^{4}$$
$71$ $$( -60 + T )^{4}$$
$73$ $$65804544 + T^{4}$$
$79$ $$( 11236 + T^{2} )^{2}$$
$83$ $$170772624 + T^{4}$$
$89$ $$( 3600 + T^{2} )^{2}$$
$97$ $$864536409 + T^{4}$$