Properties

Label 900.3.c.s
Level $900$
Weight $3$
Character orbit 900.c
Analytic conductor $24.523$
Analytic rank $0$
Dimension $8$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [900,3,Mod(451,900)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("900.451"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(900, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 0])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 900 = 2^{2} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 900.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,16,0,0,0,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(24.5232237924\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.77720518656.9
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 121x^{4} + 14641 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{12} \)
Twist minimal: no (minimal twist has level 180)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_{2} + \beta_1) q^{2} + ( - \beta_{5} + 2) q^{4} - \beta_{3} q^{7} - 4 \beta_{2} q^{8} - \beta_{7} q^{11} - \beta_{4} q^{13} + (\beta_{7} + \beta_{6}) q^{14} + ( - 4 \beta_{5} - 8) q^{16}+ \cdots + (39 \beta_{2} - 39 \beta_1) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 16 q^{4} - 64 q^{16} + 144 q^{34} - 224 q^{46} - 312 q^{49} - 464 q^{61} - 512 q^{64} - 576 q^{76} + 32 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} - 121x^{4} + 14641 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( 2\nu^{2} ) / 11 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 2\nu^{6} ) / 1331 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -2\nu^{5} - 22\nu^{3} + 242\nu ) / 121 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -4\nu^{7} + 22\nu^{5} + 242\nu^{3} + 2662\nu ) / 1331 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 4\nu^{4} - 242 ) / 121 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( -2\nu^{5} + 22\nu^{3} + 242\nu ) / 121 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 4\nu^{7} + 22\nu^{5} - 242\nu^{3} + 2662\nu ) / 1331 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{7} + \beta_{6} + \beta_{4} + \beta_{3} ) / 8 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 11\beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 11\beta_{6} - 11\beta_{3} ) / 4 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 121\beta_{5} + 242 ) / 4 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 121\beta_{7} - 121\beta_{6} + 121\beta_{4} - 121\beta_{3} ) / 8 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( 1331\beta_{2} ) / 2 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( 1331\beta_{7} + 1331\beta_{6} - 1331\beta_{4} - 1331\beta_{3} ) / 8 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/900\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(451\) \(577\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
451.1
0.858406 + 3.20361i
−0.858406 3.20361i
−0.858406 + 3.20361i
0.858406 3.20361i
−3.20361 0.858406i
3.20361 + 0.858406i
3.20361 0.858406i
−3.20361 + 0.858406i
−1.73205 1.00000i 0 2.00000 + 3.46410i 0 0 9.38083i 8.00000i 0 0
451.2 −1.73205 1.00000i 0 2.00000 + 3.46410i 0 0 9.38083i 8.00000i 0 0
451.3 −1.73205 + 1.00000i 0 2.00000 3.46410i 0 0 9.38083i 8.00000i 0 0
451.4 −1.73205 + 1.00000i 0 2.00000 3.46410i 0 0 9.38083i 8.00000i 0 0
451.5 1.73205 1.00000i 0 2.00000 3.46410i 0 0 9.38083i 8.00000i 0 0
451.6 1.73205 1.00000i 0 2.00000 3.46410i 0 0 9.38083i 8.00000i 0 0
451.7 1.73205 + 1.00000i 0 2.00000 + 3.46410i 0 0 9.38083i 8.00000i 0 0
451.8 1.73205 + 1.00000i 0 2.00000 + 3.46410i 0 0 9.38083i 8.00000i 0 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 451.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
4.b odd 2 1 inner
5.b even 2 1 inner
12.b even 2 1 inner
15.d odd 2 1 inner
20.d odd 2 1 inner
60.h even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 900.3.c.s 8
3.b odd 2 1 inner 900.3.c.s 8
4.b odd 2 1 inner 900.3.c.s 8
5.b even 2 1 inner 900.3.c.s 8
5.c odd 4 1 180.3.f.d 4
5.c odd 4 1 180.3.f.g yes 4
12.b even 2 1 inner 900.3.c.s 8
15.d odd 2 1 inner 900.3.c.s 8
15.e even 4 1 180.3.f.d 4
15.e even 4 1 180.3.f.g yes 4
20.d odd 2 1 inner 900.3.c.s 8
20.e even 4 1 180.3.f.d 4
20.e even 4 1 180.3.f.g yes 4
60.h even 2 1 inner 900.3.c.s 8
60.l odd 4 1 180.3.f.d 4
60.l odd 4 1 180.3.f.g yes 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
180.3.f.d 4 5.c odd 4 1
180.3.f.d 4 15.e even 4 1
180.3.f.d 4 20.e even 4 1
180.3.f.d 4 60.l odd 4 1
180.3.f.g yes 4 5.c odd 4 1
180.3.f.g yes 4 15.e even 4 1
180.3.f.g yes 4 20.e even 4 1
180.3.f.g yes 4 60.l odd 4 1
900.3.c.s 8 1.a even 1 1 trivial
900.3.c.s 8 3.b odd 2 1 inner
900.3.c.s 8 4.b odd 2 1 inner
900.3.c.s 8 5.b even 2 1 inner
900.3.c.s 8 12.b even 2 1 inner
900.3.c.s 8 15.d odd 2 1 inner
900.3.c.s 8 20.d odd 2 1 inner
900.3.c.s 8 60.h even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{3}^{\mathrm{new}}(900, [\chi])\):

\( T_{7}^{2} + 88 \) Copy content Toggle raw display
\( T_{13}^{2} - 264 \) Copy content Toggle raw display
\( T_{17}^{2} - 108 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{4} - 4 T^{2} + 16)^{2} \) Copy content Toggle raw display
$3$ \( T^{8} \) Copy content Toggle raw display
$5$ \( T^{8} \) Copy content Toggle raw display
$7$ \( (T^{2} + 88)^{4} \) Copy content Toggle raw display
$11$ \( (T^{2} + 264)^{4} \) Copy content Toggle raw display
$13$ \( (T^{2} - 264)^{4} \) Copy content Toggle raw display
$17$ \( (T^{2} - 108)^{4} \) Copy content Toggle raw display
$19$ \( (T^{2} + 432)^{4} \) Copy content Toggle raw display
$23$ \( (T^{2} + 784)^{4} \) Copy content Toggle raw display
$29$ \( (T^{2} - 88)^{4} \) Copy content Toggle raw display
$31$ \( (T^{2} + 1200)^{4} \) Copy content Toggle raw display
$37$ \( (T^{2} - 2376)^{4} \) Copy content Toggle raw display
$41$ \( (T^{2} - 352)^{4} \) Copy content Toggle raw display
$43$ \( (T^{2} + 1408)^{4} \) Copy content Toggle raw display
$47$ \( (T^{2} + 16)^{4} \) Copy content Toggle raw display
$53$ \( (T^{2} - 972)^{4} \) Copy content Toggle raw display
$59$ \( (T^{2} + 264)^{4} \) Copy content Toggle raw display
$61$ \( (T + 58)^{8} \) Copy content Toggle raw display
$67$ \( (T^{2} + 352)^{4} \) Copy content Toggle raw display
$71$ \( (T^{2} + 9504)^{4} \) Copy content Toggle raw display
$73$ \( T^{8} \) Copy content Toggle raw display
$79$ \( (T^{2} + 48)^{4} \) Copy content Toggle raw display
$83$ \( (T^{2} + 1024)^{4} \) Copy content Toggle raw display
$89$ \( (T^{2} - 5632)^{4} \) Copy content Toggle raw display
$97$ \( (T^{2} - 26400)^{4} \) Copy content Toggle raw display
show more
show less