Properties

Label 900.3.c.i
Level $900$
Weight $3$
Character orbit 900.c
Analytic conductor $24.523$
Analytic rank $0$
Dimension $2$
CM discriminant -15
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [900,3,Mod(451,900)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("900.451"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(900, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 0])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 900 = 2^{2} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 900.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,1,0,-7,0,0,0,-11,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(24.5232237924\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-15}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 180)
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{-15})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta + 1) q^{2} + ( - \beta - 3) q^{4} + (3 \beta - 7) q^{8} + (7 \beta + 5) q^{16} + 14 q^{17} + (16 \beta - 8) q^{19} + (16 \beta - 8) q^{23} + ( - 32 \beta + 16) q^{31} + ( - 5 \beta + 33) q^{32}+ \cdots + ( - 49 \beta + 49) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{2} - 7 q^{4} - 11 q^{8} + 17 q^{16} + 28 q^{17} + 61 q^{32} + 14 q^{34} + 120 q^{38} + 120 q^{46} + 98 q^{49} + 172 q^{53} + 236 q^{61} - 240 q^{62} - 7 q^{64} - 98 q^{68} + 120 q^{76} + 120 q^{92}+ \cdots + 49 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/900\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(451\) \(577\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
451.1
0.500000 + 1.93649i
0.500000 1.93649i
0.500000 1.93649i 0 −3.50000 1.93649i 0 0 0 −5.50000 + 5.80948i 0 0
451.2 0.500000 + 1.93649i 0 −3.50000 + 1.93649i 0 0 0 −5.50000 5.80948i 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
15.d odd 2 1 CM by \(\Q(\sqrt{-15}) \)
4.b odd 2 1 inner
60.h even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 900.3.c.i 2
3.b odd 2 1 900.3.c.g 2
4.b odd 2 1 inner 900.3.c.i 2
5.b even 2 1 900.3.c.g 2
5.c odd 4 2 180.3.f.f 4
12.b even 2 1 900.3.c.g 2
15.d odd 2 1 CM 900.3.c.i 2
15.e even 4 2 180.3.f.f 4
20.d odd 2 1 900.3.c.g 2
20.e even 4 2 180.3.f.f 4
60.h even 2 1 inner 900.3.c.i 2
60.l odd 4 2 180.3.f.f 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
180.3.f.f 4 5.c odd 4 2
180.3.f.f 4 15.e even 4 2
180.3.f.f 4 20.e even 4 2
180.3.f.f 4 60.l odd 4 2
900.3.c.g 2 3.b odd 2 1
900.3.c.g 2 5.b even 2 1
900.3.c.g 2 12.b even 2 1
900.3.c.g 2 20.d odd 2 1
900.3.c.i 2 1.a even 1 1 trivial
900.3.c.i 2 4.b odd 2 1 inner
900.3.c.i 2 15.d odd 2 1 CM
900.3.c.i 2 60.h even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{3}^{\mathrm{new}}(900, [\chi])\):

\( T_{7} \) Copy content Toggle raw display
\( T_{13} \) Copy content Toggle raw display
\( T_{17} - 14 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - T + 4 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} \) Copy content Toggle raw display
$13$ \( T^{2} \) Copy content Toggle raw display
$17$ \( (T - 14)^{2} \) Copy content Toggle raw display
$19$ \( T^{2} + 960 \) Copy content Toggle raw display
$23$ \( T^{2} + 960 \) Copy content Toggle raw display
$29$ \( T^{2} \) Copy content Toggle raw display
$31$ \( T^{2} + 3840 \) Copy content Toggle raw display
$37$ \( T^{2} \) Copy content Toggle raw display
$41$ \( T^{2} \) Copy content Toggle raw display
$43$ \( T^{2} \) Copy content Toggle raw display
$47$ \( T^{2} + 8640 \) Copy content Toggle raw display
$53$ \( (T - 86)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} \) Copy content Toggle raw display
$61$ \( (T - 118)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} \) Copy content Toggle raw display
$71$ \( T^{2} \) Copy content Toggle raw display
$73$ \( T^{2} \) Copy content Toggle raw display
$79$ \( T^{2} + 15360 \) Copy content Toggle raw display
$83$ \( T^{2} + 3840 \) Copy content Toggle raw display
$89$ \( T^{2} \) Copy content Toggle raw display
$97$ \( T^{2} \) Copy content Toggle raw display
show more
show less