Properties

Label 900.2.w
Level $900$
Weight $2$
Character orbit 900.w
Rep. character $\chi_{900}(109,\cdot)$
Character field $\Q(\zeta_{10})$
Dimension $48$
Newform subspaces $3$
Sturm bound $360$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 900 = 2^{2} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 900.w (of order \(10\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 25 \)
Character field: \(\Q(\zeta_{10})\)
Newform subspaces: \( 3 \)
Sturm bound: \(360\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(900, [\chi])\).

Total New Old
Modular forms 768 48 720
Cusp forms 672 48 624
Eisenstein series 96 0 96

Trace form

\( 48 q - 3 q^{5} + q^{11} - 5 q^{17} + 4 q^{19} - 20 q^{23} - 19 q^{25} + 4 q^{29} + 11 q^{35} - 3 q^{41} - 5 q^{47} - 26 q^{49} + 30 q^{53} + 43 q^{55} + 27 q^{59} - 12 q^{61} + 25 q^{65} + 35 q^{67} - 39 q^{71}+ \cdots + 5 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(900, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
900.2.w.a 900.w 25.e $8$ $7.187$ 8.0.58140625.2 None 100.2.i.a \(0\) \(0\) \(-5\) \(0\) $\mathrm{SU}(2)[C_{10}]$ \(q+(-2\beta _{1}-\beta _{2}-\beta _{5}-\beta _{7})q^{5}+(-\beta _{2}+\cdots)q^{7}+\cdots\)
900.2.w.b 900.w 25.e $16$ $7.187$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 900.2.w.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{10}]$ \(q+\beta _{12}q^{5}+(-\beta _{3}-\beta _{4}+\beta _{9})q^{7}+(-\beta _{11}+\cdots)q^{11}+\cdots\)
900.2.w.c 900.w 25.e $24$ $7.187$ None 300.2.o.a \(0\) \(0\) \(2\) \(0\) $\mathrm{SU}(2)[C_{10}]$

Decomposition of \(S_{2}^{\mathrm{old}}(900, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(900, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(25, [\chi])\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(50, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(75, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(100, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(150, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(225, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(300, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(450, [\chi])\)\(^{\oplus 2}\)