Defining parameters
Level: | \( N \) | \(=\) | \( 900 = 2^{2} \cdot 3^{2} \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 900.w (of order \(10\) and degree \(4\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 25 \) |
Character field: | \(\Q(\zeta_{10})\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(360\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(900, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 768 | 48 | 720 |
Cusp forms | 672 | 48 | 624 |
Eisenstein series | 96 | 0 | 96 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(900, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
900.2.w.a | $8$ | $7.187$ | 8.0.58140625.2 | None | \(0\) | \(0\) | \(-5\) | \(0\) | \(q+(-2\beta _{1}-\beta _{2}-\beta _{5}-\beta _{7})q^{5}+(-\beta _{2}+\cdots)q^{7}+\cdots\) |
900.2.w.b | $16$ | $7.187$ | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{12}q^{5}+(-\beta _{3}-\beta _{4}+\beta _{9})q^{7}+(-\beta _{11}+\cdots)q^{11}+\cdots\) |
900.2.w.c | $24$ | $7.187$ | None | \(0\) | \(0\) | \(2\) | \(0\) |
Decomposition of \(S_{2}^{\mathrm{old}}(900, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(900, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(25, [\chi])\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(50, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(75, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(100, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(150, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(225, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(300, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(450, [\chi])\)\(^{\oplus 2}\)