Properties

Label 900.2.d.b
Level 900
Weight 2
Character orbit 900.d
Analytic conductor 7.187
Analytic rank 0
Dimension 2
CM discriminant -3
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 900 = 2^{2} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 900.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(7.18653618192\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 36)
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 4 i q^{7} +O(q^{10})\) \( q + 4 i q^{7} + 2 i q^{13} -8 q^{19} -4 q^{31} + 10 i q^{37} + 8 i q^{43} -9 q^{49} + 14 q^{61} + 16 i q^{67} -10 i q^{73} + 4 q^{79} -8 q^{91} -14 i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q + O(q^{10}) \) \( 2q - 16q^{19} - 8q^{31} - 18q^{49} + 28q^{61} + 8q^{79} - 16q^{91} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/900\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(451\) \(577\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
649.1
1.00000i
1.00000i
0 0 0 0 0 4.00000i 0 0 0
649.2 0 0 0 0 0 4.00000i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by \(\Q(\sqrt{-3}) \)
5.b even 2 1 inner
15.d odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 900.2.d.b 2
3.b odd 2 1 CM 900.2.d.b 2
4.b odd 2 1 3600.2.f.m 2
5.b even 2 1 inner 900.2.d.b 2
5.c odd 4 1 36.2.a.a 1
5.c odd 4 1 900.2.a.g 1
12.b even 2 1 3600.2.f.m 2
15.d odd 2 1 inner 900.2.d.b 2
15.e even 4 1 36.2.a.a 1
15.e even 4 1 900.2.a.g 1
20.d odd 2 1 3600.2.f.m 2
20.e even 4 1 144.2.a.a 1
20.e even 4 1 3600.2.a.e 1
35.f even 4 1 1764.2.a.e 1
35.k even 12 2 1764.2.k.g 2
35.l odd 12 2 1764.2.k.h 2
40.i odd 4 1 576.2.a.e 1
40.k even 4 1 576.2.a.f 1
45.k odd 12 2 324.2.e.c 2
45.l even 12 2 324.2.e.c 2
55.e even 4 1 4356.2.a.g 1
60.h even 2 1 3600.2.f.m 2
60.l odd 4 1 144.2.a.a 1
60.l odd 4 1 3600.2.a.e 1
65.f even 4 1 6084.2.b.f 2
65.h odd 4 1 6084.2.a.i 1
65.k even 4 1 6084.2.b.f 2
80.i odd 4 1 2304.2.d.q 2
80.j even 4 1 2304.2.d.a 2
80.s even 4 1 2304.2.d.a 2
80.t odd 4 1 2304.2.d.q 2
105.k odd 4 1 1764.2.a.e 1
105.w odd 12 2 1764.2.k.g 2
105.x even 12 2 1764.2.k.h 2
120.q odd 4 1 576.2.a.f 1
120.w even 4 1 576.2.a.e 1
140.j odd 4 1 7056.2.a.bb 1
165.l odd 4 1 4356.2.a.g 1
180.v odd 12 2 1296.2.i.h 2
180.x even 12 2 1296.2.i.h 2
195.j odd 4 1 6084.2.b.f 2
195.s even 4 1 6084.2.a.i 1
195.u odd 4 1 6084.2.b.f 2
240.z odd 4 1 2304.2.d.a 2
240.bb even 4 1 2304.2.d.q 2
240.bd odd 4 1 2304.2.d.a 2
240.bf even 4 1 2304.2.d.q 2
420.w even 4 1 7056.2.a.bb 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
36.2.a.a 1 5.c odd 4 1
36.2.a.a 1 15.e even 4 1
144.2.a.a 1 20.e even 4 1
144.2.a.a 1 60.l odd 4 1
324.2.e.c 2 45.k odd 12 2
324.2.e.c 2 45.l even 12 2
576.2.a.e 1 40.i odd 4 1
576.2.a.e 1 120.w even 4 1
576.2.a.f 1 40.k even 4 1
576.2.a.f 1 120.q odd 4 1
900.2.a.g 1 5.c odd 4 1
900.2.a.g 1 15.e even 4 1
900.2.d.b 2 1.a even 1 1 trivial
900.2.d.b 2 3.b odd 2 1 CM
900.2.d.b 2 5.b even 2 1 inner
900.2.d.b 2 15.d odd 2 1 inner
1296.2.i.h 2 180.v odd 12 2
1296.2.i.h 2 180.x even 12 2
1764.2.a.e 1 35.f even 4 1
1764.2.a.e 1 105.k odd 4 1
1764.2.k.g 2 35.k even 12 2
1764.2.k.g 2 105.w odd 12 2
1764.2.k.h 2 35.l odd 12 2
1764.2.k.h 2 105.x even 12 2
2304.2.d.a 2 80.j even 4 1
2304.2.d.a 2 80.s even 4 1
2304.2.d.a 2 240.z odd 4 1
2304.2.d.a 2 240.bd odd 4 1
2304.2.d.q 2 80.i odd 4 1
2304.2.d.q 2 80.t odd 4 1
2304.2.d.q 2 240.bb even 4 1
2304.2.d.q 2 240.bf even 4 1
3600.2.a.e 1 20.e even 4 1
3600.2.a.e 1 60.l odd 4 1
3600.2.f.m 2 4.b odd 2 1
3600.2.f.m 2 12.b even 2 1
3600.2.f.m 2 20.d odd 2 1
3600.2.f.m 2 60.h even 2 1
4356.2.a.g 1 55.e even 4 1
4356.2.a.g 1 165.l odd 4 1
6084.2.a.i 1 65.h odd 4 1
6084.2.a.i 1 195.s even 4 1
6084.2.b.f 2 65.f even 4 1
6084.2.b.f 2 65.k even 4 1
6084.2.b.f 2 195.j odd 4 1
6084.2.b.f 2 195.u odd 4 1
7056.2.a.bb 1 140.j odd 4 1
7056.2.a.bb 1 420.w even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(900, [\chi])\):

\( T_{7}^{2} + 16 \)
\( T_{11} \)

Hecke Characteristic Polynomials

$p$ $F_p(T)$
$2$ \( \)
$3$ \( \)
$5$ \( \)
$7$ \( 1 + 2 T^{2} + 49 T^{4} \)
$11$ \( ( 1 + 11 T^{2} )^{2} \)
$13$ \( 1 - 22 T^{2} + 169 T^{4} \)
$17$ \( ( 1 - 17 T^{2} )^{2} \)
$19$ \( ( 1 + 8 T + 19 T^{2} )^{2} \)
$23$ \( ( 1 - 23 T^{2} )^{2} \)
$29$ \( ( 1 + 29 T^{2} )^{2} \)
$31$ \( ( 1 + 4 T + 31 T^{2} )^{2} \)
$37$ \( 1 + 26 T^{2} + 1369 T^{4} \)
$41$ \( ( 1 + 41 T^{2} )^{2} \)
$43$ \( 1 - 22 T^{2} + 1849 T^{4} \)
$47$ \( ( 1 - 47 T^{2} )^{2} \)
$53$ \( ( 1 - 53 T^{2} )^{2} \)
$59$ \( ( 1 + 59 T^{2} )^{2} \)
$61$ \( ( 1 - 14 T + 61 T^{2} )^{2} \)
$67$ \( 1 + 122 T^{2} + 4489 T^{4} \)
$71$ \( ( 1 + 71 T^{2} )^{2} \)
$73$ \( 1 - 46 T^{2} + 5329 T^{4} \)
$79$ \( ( 1 - 4 T + 79 T^{2} )^{2} \)
$83$ \( ( 1 - 83 T^{2} )^{2} \)
$89$ \( ( 1 + 89 T^{2} )^{2} \)
$97$ \( 1 + 2 T^{2} + 9409 T^{4} \)
show more
show less