Defining parameters
| Level: | \( N \) | \(=\) | \( 900 = 2^{2} \cdot 3^{2} \cdot 5^{2} \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 900.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 8 \) | ||
| Sturm bound: | \(360\) | ||
| Trace bound: | \(11\) | ||
| Distinguishing \(T_p\): | \(7\), \(11\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(900))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 216 | 8 | 208 |
| Cusp forms | 145 | 8 | 137 |
| Eisenstein series | 71 | 0 | 71 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(2\) | \(3\) | \(5\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | |||||||
| \(+\) | \(+\) | \(+\) | \(+\) | \(27\) | \(0\) | \(27\) | \(16\) | \(0\) | \(16\) | \(11\) | \(0\) | \(11\) | |||
| \(+\) | \(+\) | \(-\) | \(-\) | \(29\) | \(0\) | \(29\) | \(17\) | \(0\) | \(17\) | \(12\) | \(0\) | \(12\) | |||
| \(+\) | \(-\) | \(+\) | \(-\) | \(30\) | \(0\) | \(30\) | \(18\) | \(0\) | \(18\) | \(12\) | \(0\) | \(12\) | |||
| \(+\) | \(-\) | \(-\) | \(+\) | \(28\) | \(0\) | \(28\) | \(16\) | \(0\) | \(16\) | \(12\) | \(0\) | \(12\) | |||
| \(-\) | \(+\) | \(+\) | \(-\) | \(27\) | \(2\) | \(25\) | \(21\) | \(2\) | \(19\) | \(6\) | \(0\) | \(6\) | |||
| \(-\) | \(+\) | \(-\) | \(+\) | \(25\) | \(1\) | \(24\) | \(19\) | \(1\) | \(18\) | \(6\) | \(0\) | \(6\) | |||
| \(-\) | \(-\) | \(+\) | \(+\) | \(24\) | \(2\) | \(22\) | \(18\) | \(2\) | \(16\) | \(6\) | \(0\) | \(6\) | |||
| \(-\) | \(-\) | \(-\) | \(-\) | \(26\) | \(3\) | \(23\) | \(20\) | \(3\) | \(17\) | \(6\) | \(0\) | \(6\) | |||
| Plus space | \(+\) | \(104\) | \(3\) | \(101\) | \(69\) | \(3\) | \(66\) | \(35\) | \(0\) | \(35\) | |||||
| Minus space | \(-\) | \(112\) | \(5\) | \(107\) | \(76\) | \(5\) | \(71\) | \(36\) | \(0\) | \(36\) | |||||
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(900))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(900))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(900)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(20))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(30))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(36))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(45))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(50))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(75))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(90))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(100))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(150))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(180))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(225))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(300))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(450))\)\(^{\oplus 2}\)