Properties

Label 900.1.x.a
Level $900$
Weight $1$
Character orbit 900.x
Analytic conductor $0.449$
Analytic rank $0$
Dimension $4$
Projective image $D_{5}$
CM discriminant -4
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 900 = 2^{2} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 900.x (of order \(10\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.449158511370\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
Defining polynomial: \(x^{4} - x^{3} + x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 100)
Projective image: \(D_{5}\)
Projective field: Galois closure of 5.1.6250000.1

$q$-expansion

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q -\zeta_{10}^{4} q^{2} -\zeta_{10}^{3} q^{4} -\zeta_{10}^{2} q^{5} -\zeta_{10}^{2} q^{8} +O(q^{10})\) \( q -\zeta_{10}^{4} q^{2} -\zeta_{10}^{3} q^{4} -\zeta_{10}^{2} q^{5} -\zeta_{10}^{2} q^{8} -\zeta_{10} q^{10} + ( -\zeta_{10}^{3} + \zeta_{10}^{4} ) q^{13} -\zeta_{10} q^{16} + ( \zeta_{10} + \zeta_{10}^{3} ) q^{17} - q^{20} + \zeta_{10}^{4} q^{25} + ( -\zeta_{10}^{2} + \zeta_{10}^{3} ) q^{26} + ( -\zeta_{10}^{2} - \zeta_{10}^{4} ) q^{29} - q^{32} + ( 1 + \zeta_{10}^{2} ) q^{34} + ( 1 + \zeta_{10}^{2} ) q^{37} + \zeta_{10}^{4} q^{40} + ( \zeta_{10}^{3} - \zeta_{10}^{4} ) q^{41} + q^{49} + \zeta_{10}^{3} q^{50} + ( -\zeta_{10} + \zeta_{10}^{2} ) q^{52} + ( -1 + \zeta_{10} ) q^{53} + ( -\zeta_{10} - \zeta_{10}^{3} ) q^{58} + ( -\zeta_{10} + \zeta_{10}^{2} ) q^{61} + \zeta_{10}^{4} q^{64} + ( -1 + \zeta_{10} ) q^{65} + ( \zeta_{10} - \zeta_{10}^{4} ) q^{68} + ( -\zeta_{10} + \zeta_{10}^{2} ) q^{73} + ( \zeta_{10} - \zeta_{10}^{4} ) q^{74} + \zeta_{10}^{3} q^{80} + ( \zeta_{10}^{2} - \zeta_{10}^{3} ) q^{82} + ( 1 - \zeta_{10}^{3} ) q^{85} + ( -1 + \zeta_{10}^{3} ) q^{89} + ( \zeta_{10}^{2} + \zeta_{10}^{4} ) q^{97} -\zeta_{10}^{4} q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + q^{2} - q^{4} + q^{5} + q^{8} + O(q^{10}) \) \( 4 q + q^{2} - q^{4} + q^{5} + q^{8} - q^{10} - 2 q^{13} - q^{16} + 2 q^{17} - 4 q^{20} - q^{25} + 2 q^{26} + 2 q^{29} - 4 q^{32} + 3 q^{34} + 3 q^{37} - q^{40} + 2 q^{41} + 4 q^{49} + q^{50} - 2 q^{52} - 3 q^{53} - 2 q^{58} - 2 q^{61} - q^{64} - 3 q^{65} + 2 q^{68} - 2 q^{73} + 2 q^{74} + q^{80} - 2 q^{82} + 3 q^{85} - 3 q^{89} - 2 q^{97} + q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/900\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(451\) \(577\)
\(\chi(n)\) \(1\) \(-1\) \(-\zeta_{10}^{3}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
91.1
0.809017 0.587785i
−0.309017 0.951057i
−0.309017 + 0.951057i
0.809017 + 0.587785i
0.809017 + 0.587785i 0 0.309017 + 0.951057i −0.309017 + 0.951057i 0 0 −0.309017 + 0.951057i 0 −0.809017 + 0.587785i
271.1 −0.309017 + 0.951057i 0 −0.809017 0.587785i 0.809017 0.587785i 0 0 0.809017 0.587785i 0 0.309017 + 0.951057i
631.1 −0.309017 0.951057i 0 −0.809017 + 0.587785i 0.809017 + 0.587785i 0 0 0.809017 + 0.587785i 0 0.309017 0.951057i
811.1 0.809017 0.587785i 0 0.309017 0.951057i −0.309017 0.951057i 0 0 −0.309017 0.951057i 0 −0.809017 0.587785i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 CM by \(\Q(\sqrt{-1}) \)
25.d even 5 1 inner
100.j odd 10 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 900.1.x.a 4
3.b odd 2 1 100.1.j.a 4
4.b odd 2 1 CM 900.1.x.a 4
12.b even 2 1 100.1.j.a 4
15.d odd 2 1 500.1.j.a 4
15.e even 4 2 500.1.h.a 8
24.f even 2 1 1600.1.bh.a 4
24.h odd 2 1 1600.1.bh.a 4
25.d even 5 1 inner 900.1.x.a 4
60.h even 2 1 500.1.j.a 4
60.l odd 4 2 500.1.h.a 8
75.h odd 10 1 500.1.j.a 4
75.h odd 10 1 2500.1.b.a 2
75.h odd 10 2 2500.1.j.b 4
75.j odd 10 1 100.1.j.a 4
75.j odd 10 1 2500.1.b.b 2
75.j odd 10 2 2500.1.j.a 4
75.l even 20 2 500.1.h.a 8
75.l even 20 2 2500.1.d.a 4
75.l even 20 4 2500.1.h.e 8
100.j odd 10 1 inner 900.1.x.a 4
300.n even 10 1 100.1.j.a 4
300.n even 10 1 2500.1.b.b 2
300.n even 10 2 2500.1.j.a 4
300.r even 10 1 500.1.j.a 4
300.r even 10 1 2500.1.b.a 2
300.r even 10 2 2500.1.j.b 4
300.u odd 20 2 500.1.h.a 8
300.u odd 20 2 2500.1.d.a 4
300.u odd 20 4 2500.1.h.e 8
600.bg even 10 1 1600.1.bh.a 4
600.bj odd 10 1 1600.1.bh.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
100.1.j.a 4 3.b odd 2 1
100.1.j.a 4 12.b even 2 1
100.1.j.a 4 75.j odd 10 1
100.1.j.a 4 300.n even 10 1
500.1.h.a 8 15.e even 4 2
500.1.h.a 8 60.l odd 4 2
500.1.h.a 8 75.l even 20 2
500.1.h.a 8 300.u odd 20 2
500.1.j.a 4 15.d odd 2 1
500.1.j.a 4 60.h even 2 1
500.1.j.a 4 75.h odd 10 1
500.1.j.a 4 300.r even 10 1
900.1.x.a 4 1.a even 1 1 trivial
900.1.x.a 4 4.b odd 2 1 CM
900.1.x.a 4 25.d even 5 1 inner
900.1.x.a 4 100.j odd 10 1 inner
1600.1.bh.a 4 24.f even 2 1
1600.1.bh.a 4 24.h odd 2 1
1600.1.bh.a 4 600.bg even 10 1
1600.1.bh.a 4 600.bj odd 10 1
2500.1.b.a 2 75.h odd 10 1
2500.1.b.a 2 300.r even 10 1
2500.1.b.b 2 75.j odd 10 1
2500.1.b.b 2 300.n even 10 1
2500.1.d.a 4 75.l even 20 2
2500.1.d.a 4 300.u odd 20 2
2500.1.h.e 8 75.l even 20 4
2500.1.h.e 8 300.u odd 20 4
2500.1.j.a 4 75.j odd 10 2
2500.1.j.a 4 300.n even 10 2
2500.1.j.b 4 75.h odd 10 2
2500.1.j.b 4 300.r even 10 2

Hecke kernels

This newform subspace is the entire newspace \(S_{1}^{\mathrm{new}}(900, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 1 - T + T^{2} - T^{3} + T^{4} \)
$3$ \( T^{4} \)
$5$ \( 1 - T + T^{2} - T^{3} + T^{4} \)
$7$ \( T^{4} \)
$11$ \( T^{4} \)
$13$ \( 1 + 3 T + 4 T^{2} + 2 T^{3} + T^{4} \)
$17$ \( 1 - 3 T + 4 T^{2} - 2 T^{3} + T^{4} \)
$19$ \( T^{4} \)
$23$ \( T^{4} \)
$29$ \( 1 - 3 T + 4 T^{2} - 2 T^{3} + T^{4} \)
$31$ \( T^{4} \)
$37$ \( 1 - 2 T + 4 T^{2} - 3 T^{3} + T^{4} \)
$41$ \( 1 - 3 T + 4 T^{2} - 2 T^{3} + T^{4} \)
$43$ \( T^{4} \)
$47$ \( T^{4} \)
$53$ \( 1 + 2 T + 4 T^{2} + 3 T^{3} + T^{4} \)
$59$ \( T^{4} \)
$61$ \( 1 + 3 T + 4 T^{2} + 2 T^{3} + T^{4} \)
$67$ \( T^{4} \)
$71$ \( T^{4} \)
$73$ \( 1 + 3 T + 4 T^{2} + 2 T^{3} + T^{4} \)
$79$ \( T^{4} \)
$83$ \( T^{4} \)
$89$ \( 1 + 2 T + 4 T^{2} + 3 T^{3} + T^{4} \)
$97$ \( 1 + 3 T + 4 T^{2} + 2 T^{3} + T^{4} \)
show more
show less