Properties

Label 90.9.g.b.73.2
Level $90$
Weight $9$
Character 90.73
Analytic conductor $36.664$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [90,9,Mod(37,90)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("90.37"); S:= CuspForms(chi, 9); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(90, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 9, names="a")
 
Level: \( N \) \(=\) \( 90 = 2 \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 90.g (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,32,0,0,-90] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(36.6640749055\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(i, \sqrt{249})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 125x^{2} + 3844 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2\cdot 5^{2} \)
Twist minimal: no (minimal twist has level 10)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 73.2
Root \(7.38987i\) of defining polynomial
Character \(\chi\) \(=\) 90.73
Dual form 90.9.g.b.37.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(8.00000 - 8.00000i) q^{2} -128.000i q^{4} +(490.341 - 387.544i) q^{5} +(-2624.01 + 2624.01i) q^{7} +(-1024.00 - 1024.00i) q^{8} +(822.379 - 7023.08i) q^{10} -5372.73 q^{11} +(27972.7 + 27972.7i) q^{13} +41984.2i q^{14} -16384.0 q^{16} +(-53444.2 + 53444.2i) q^{17} +144788. i q^{19} +(-49605.6 - 62763.7i) q^{20} +(-42981.8 + 42981.8i) q^{22} +(-52148.7 - 52148.7i) q^{23} +(90244.3 - 380058. i) q^{25} +447564. q^{26} +(335873. + 335873. i) q^{28} -41723.4i q^{29} +244148. q^{31} +(-131072. + 131072. i) q^{32} +855108. i q^{34} +(-269741. + 2.30358e6i) q^{35} +(-2.00653e6 + 2.00653e6i) q^{37} +(1.15830e6 + 1.15830e6i) q^{38} +(-898955. - 105264. i) q^{40} +4.17322e6 q^{41} +(4.01446e6 + 4.01446e6i) q^{43} +687709. i q^{44} -834380. q^{46} +(-2.26940e6 + 2.26940e6i) q^{47} -8.00606e6i q^{49} +(-2.31851e6 - 3.76242e6i) q^{50} +(3.58051e6 - 3.58051e6i) q^{52} +(3.72734e6 + 3.72734e6i) q^{53} +(-2.63447e6 + 2.08217e6i) q^{55} +5.37397e6 q^{56} +(-333787. - 333787. i) q^{58} +1.12165e7i q^{59} +2.02002e7 q^{61} +(1.95319e6 - 1.95319e6i) q^{62} +2.09715e6i q^{64} +(2.45569e7 + 2.87552e6i) q^{65} +(-1.30857e7 + 1.30857e7i) q^{67} +(6.84086e6 + 6.84086e6i) q^{68} +(1.62707e7 + 2.05866e7i) q^{70} -2.61041e7 q^{71} +(-1.85930e7 - 1.85930e7i) q^{73} +3.21044e7i q^{74} +1.85329e7 q^{76} +(1.40981e7 - 1.40981e7i) q^{77} +3.07594e6i q^{79} +(-8.03375e6 + 6.34952e6i) q^{80} +(3.33858e7 - 3.33858e7i) q^{82} +(-2.41522e7 - 2.41522e7i) q^{83} +(-5.49393e6 + 4.69179e7i) q^{85} +6.42313e7 q^{86} +(5.50167e6 + 5.50167e6i) q^{88} +5.76618e6i q^{89} -1.46802e8 q^{91} +(-6.67504e6 + 6.67504e6i) q^{92} +3.63104e7i q^{94} +(5.61117e7 + 7.09955e7i) q^{95} +(2.86891e7 - 2.86891e7i) q^{97} +(-6.40485e7 - 6.40485e7i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 32 q^{2} - 90 q^{5} - 1186 q^{7} - 4096 q^{8} - 1760 q^{10} + 19852 q^{11} + 73704 q^{13} - 65536 q^{16} - 198944 q^{17} - 16640 q^{20} + 158816 q^{22} - 631334 q^{23} + 545600 q^{25} + 1179264 q^{26}+ \cdots - 167860352 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/90\mathbb{Z}\right)^\times\).

\(n\) \(11\) \(37\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 8.00000 8.00000i 0.500000 0.500000i
\(3\) 0 0
\(4\) 128.000i 0.500000i
\(5\) 490.341 387.544i 0.784546 0.620070i
\(6\) 0 0
\(7\) −2624.01 + 2624.01i −1.09288 + 1.09288i −0.0976629 + 0.995220i \(0.531137\pi\)
−0.995220 + 0.0976629i \(0.968863\pi\)
\(8\) −1024.00 1024.00i −0.250000 0.250000i
\(9\) 0 0
\(10\) 822.379 7023.08i 0.0822379 0.702308i
\(11\) −5372.73 −0.366964 −0.183482 0.983023i \(-0.558737\pi\)
−0.183482 + 0.983023i \(0.558737\pi\)
\(12\) 0 0
\(13\) 27972.7 + 27972.7i 0.979403 + 0.979403i 0.999792 0.0203888i \(-0.00649040\pi\)
−0.0203888 + 0.999792i \(0.506490\pi\)
\(14\) 41984.2i 1.09288i
\(15\) 0 0
\(16\) −16384.0 −0.250000
\(17\) −53444.2 + 53444.2i −0.639890 + 0.639890i −0.950528 0.310638i \(-0.899457\pi\)
0.310638 + 0.950528i \(0.399457\pi\)
\(18\) 0 0
\(19\) 144788.i 1.11101i 0.831513 + 0.555505i \(0.187475\pi\)
−0.831513 + 0.555505i \(0.812525\pi\)
\(20\) −49605.6 62763.7i −0.310035 0.392273i
\(21\) 0 0
\(22\) −42981.8 + 42981.8i −0.183482 + 0.183482i
\(23\) −52148.7 52148.7i −0.186351 0.186351i 0.607765 0.794117i \(-0.292066\pi\)
−0.794117 + 0.607765i \(0.792066\pi\)
\(24\) 0 0
\(25\) 90244.3 380058.i 0.231025 0.972948i
\(26\) 447564. 0.979403
\(27\) 0 0
\(28\) 335873. + 335873.i 0.546441 + 0.546441i
\(29\) 41723.4i 0.0589913i −0.999565 0.0294956i \(-0.990610\pi\)
0.999565 0.0294956i \(-0.00939012\pi\)
\(30\) 0 0
\(31\) 244148. 0.264367 0.132183 0.991225i \(-0.457801\pi\)
0.132183 + 0.991225i \(0.457801\pi\)
\(32\) −131072. + 131072.i −0.125000 + 0.125000i
\(33\) 0 0
\(34\) 855108.i 0.639890i
\(35\) −269741. + 2.30358e6i −0.179753 + 1.53508i
\(36\) 0 0
\(37\) −2.00653e6 + 2.00653e6i −1.07063 + 1.07063i −0.0733185 + 0.997309i \(0.523359\pi\)
−0.997309 + 0.0733185i \(0.976641\pi\)
\(38\) 1.15830e6 + 1.15830e6i 0.555505 + 0.555505i
\(39\) 0 0
\(40\) −898955. 105264.i −0.351154 0.0411189i
\(41\) 4.17322e6 1.47685 0.738424 0.674336i \(-0.235570\pi\)
0.738424 + 0.674336i \(0.235570\pi\)
\(42\) 0 0
\(43\) 4.01446e6 + 4.01446e6i 1.17423 + 1.17423i 0.981191 + 0.193038i \(0.0618340\pi\)
0.193038 + 0.981191i \(0.438166\pi\)
\(44\) 687709.i 0.183482i
\(45\) 0 0
\(46\) −834380. −0.186351
\(47\) −2.26940e6 + 2.26940e6i −0.465071 + 0.465071i −0.900313 0.435242i \(-0.856663\pi\)
0.435242 + 0.900313i \(0.356663\pi\)
\(48\) 0 0
\(49\) 8.00606e6i 1.38878i
\(50\) −2.31851e6 3.76242e6i −0.370961 0.601987i
\(51\) 0 0
\(52\) 3.58051e6 3.58051e6i 0.489702 0.489702i
\(53\) 3.72734e6 + 3.72734e6i 0.472384 + 0.472384i 0.902685 0.430301i \(-0.141593\pi\)
−0.430301 + 0.902685i \(0.641593\pi\)
\(54\) 0 0
\(55\) −2.63447e6 + 2.08217e6i −0.287901 + 0.227544i
\(56\) 5.37397e6 0.546441
\(57\) 0 0
\(58\) −333787. 333787.i −0.0294956 0.0294956i
\(59\) 1.12165e7i 0.925653i 0.886449 + 0.462826i \(0.153165\pi\)
−0.886449 + 0.462826i \(0.846835\pi\)
\(60\) 0 0
\(61\) 2.02002e7 1.45893 0.729467 0.684016i \(-0.239768\pi\)
0.729467 + 0.684016i \(0.239768\pi\)
\(62\) 1.95319e6 1.95319e6i 0.132183 0.132183i
\(63\) 0 0
\(64\) 2.09715e6i 0.125000i
\(65\) 2.45569e7 + 2.87552e6i 1.37569 + 0.161088i
\(66\) 0 0
\(67\) −1.30857e7 + 1.30857e7i −0.649377 + 0.649377i −0.952843 0.303465i \(-0.901856\pi\)
0.303465 + 0.952843i \(0.401856\pi\)
\(68\) 6.84086e6 + 6.84086e6i 0.319945 + 0.319945i
\(69\) 0 0
\(70\) 1.62707e7 + 2.05866e7i 0.677664 + 0.857417i
\(71\) −2.61041e7 −1.02725 −0.513624 0.858015i \(-0.671697\pi\)
−0.513624 + 0.858015i \(0.671697\pi\)
\(72\) 0 0
\(73\) −1.85930e7 1.85930e7i −0.654722 0.654722i 0.299404 0.954126i \(-0.403212\pi\)
−0.954126 + 0.299404i \(0.903212\pi\)
\(74\) 3.21044e7i 1.07063i
\(75\) 0 0
\(76\) 1.85329e7 0.555505
\(77\) 1.40981e7 1.40981e7i 0.401049 0.401049i
\(78\) 0 0
\(79\) 3.07594e6i 0.0789714i 0.999220 + 0.0394857i \(0.0125720\pi\)
−0.999220 + 0.0394857i \(0.987428\pi\)
\(80\) −8.03375e6 + 6.34952e6i −0.196137 + 0.155018i
\(81\) 0 0
\(82\) 3.33858e7 3.33858e7i 0.738424 0.738424i
\(83\) −2.41522e7 2.41522e7i −0.508914 0.508914i 0.405279 0.914193i \(-0.367174\pi\)
−0.914193 + 0.405279i \(0.867174\pi\)
\(84\) 0 0
\(85\) −5.49393e6 + 4.69179e7i −0.105246 + 0.898800i
\(86\) 6.42313e7 1.17423
\(87\) 0 0
\(88\) 5.50167e6 + 5.50167e6i 0.0917411 + 0.0917411i
\(89\) 5.76618e6i 0.0919027i 0.998944 + 0.0459513i \(0.0146319\pi\)
−0.998944 + 0.0459513i \(0.985368\pi\)
\(90\) 0 0
\(91\) −1.46802e8 −2.14075
\(92\) −6.67504e6 + 6.67504e6i −0.0931756 + 0.0931756i
\(93\) 0 0
\(94\) 3.63104e7i 0.465071i
\(95\) 5.61117e7 + 7.09955e7i 0.688905 + 0.871639i
\(96\) 0 0
\(97\) 2.86891e7 2.86891e7i 0.324063 0.324063i −0.526260 0.850324i \(-0.676406\pi\)
0.850324 + 0.526260i \(0.176406\pi\)
\(98\) −6.40485e7 6.40485e7i −0.694392 0.694392i
\(99\) 0 0
\(100\) −4.86474e7 1.15513e7i −0.486474 0.115513i
\(101\) −7.95260e7 −0.764229 −0.382115 0.924115i \(-0.624804\pi\)
−0.382115 + 0.924115i \(0.624804\pi\)
\(102\) 0 0
\(103\) 4.96462e7 + 4.96462e7i 0.441100 + 0.441100i 0.892382 0.451282i \(-0.149033\pi\)
−0.451282 + 0.892382i \(0.649033\pi\)
\(104\) 5.72882e7i 0.489702i
\(105\) 0 0
\(106\) 5.96374e7 0.472384
\(107\) −6.12534e7 + 6.12534e7i −0.467300 + 0.467300i −0.901039 0.433739i \(-0.857194\pi\)
0.433739 + 0.901039i \(0.357194\pi\)
\(108\) 0 0
\(109\) 9.33557e7i 0.661355i −0.943744 0.330678i \(-0.892723\pi\)
0.943744 0.330678i \(-0.107277\pi\)
\(110\) −4.41842e6 + 3.77331e7i −0.0301784 + 0.257722i
\(111\) 0 0
\(112\) 4.29918e7 4.29918e7i 0.273221 0.273221i
\(113\) −1.17246e8 1.17246e8i −0.719093 0.719093i 0.249327 0.968419i \(-0.419791\pi\)
−0.968419 + 0.249327i \(0.919791\pi\)
\(114\) 0 0
\(115\) −4.57806e7 5.36075e6i −0.261752 0.0306503i
\(116\) −5.34060e6 −0.0294956
\(117\) 0 0
\(118\) 8.97318e7 + 8.97318e7i 0.462826 + 0.462826i
\(119\) 2.80477e8i 1.39865i
\(120\) 0 0
\(121\) −1.85493e8 −0.865337
\(122\) 1.61601e8 1.61601e8i 0.729467 0.729467i
\(123\) 0 0
\(124\) 3.12510e7i 0.132183i
\(125\) −1.03039e8 2.21332e8i −0.422046 0.906574i
\(126\) 0 0
\(127\) 1.16482e7 1.16482e7i 0.0447759 0.0447759i −0.684364 0.729140i \(-0.739920\pi\)
0.729140 + 0.684364i \(0.239920\pi\)
\(128\) 1.67772e7 + 1.67772e7i 0.0625000 + 0.0625000i
\(129\) 0 0
\(130\) 2.19459e8 1.73451e8i 0.768387 0.607299i
\(131\) −3.83537e8 −1.30233 −0.651167 0.758934i \(-0.725720\pi\)
−0.651167 + 0.758934i \(0.725720\pi\)
\(132\) 0 0
\(133\) −3.79925e8 3.79925e8i −1.21420 1.21420i
\(134\) 2.09371e8i 0.649377i
\(135\) 0 0
\(136\) 1.09454e8 0.319945
\(137\) 1.46786e7 1.46786e7i 0.0416681 0.0416681i −0.685966 0.727634i \(-0.740620\pi\)
0.727634 + 0.685966i \(0.240620\pi\)
\(138\) 0 0
\(139\) 4.00314e8i 1.07236i −0.844103 0.536181i \(-0.819866\pi\)
0.844103 0.536181i \(-0.180134\pi\)
\(140\) 2.94858e8 + 3.45269e7i 0.767540 + 0.0898763i
\(141\) 0 0
\(142\) −2.08833e8 + 2.08833e8i −0.513624 + 0.513624i
\(143\) −1.50290e8 1.50290e8i −0.359406 0.359406i
\(144\) 0 0
\(145\) −1.61697e7 2.04587e7i −0.0365788 0.0462814i
\(146\) −2.97487e8 −0.654722
\(147\) 0 0
\(148\) 2.56836e8 + 2.56836e8i 0.535314 + 0.535314i
\(149\) 5.62457e8i 1.14115i 0.821244 + 0.570577i \(0.193281\pi\)
−0.821244 + 0.570577i \(0.806719\pi\)
\(150\) 0 0
\(151\) −2.75254e7 −0.0529452 −0.0264726 0.999650i \(-0.508427\pi\)
−0.0264726 + 0.999650i \(0.508427\pi\)
\(152\) 1.48263e8 1.48263e8i 0.277753 0.277753i
\(153\) 0 0
\(154\) 2.25569e8i 0.401049i
\(155\) 1.19716e8 9.46182e7i 0.207408 0.163926i
\(156\) 0 0
\(157\) −3.22628e8 + 3.22628e8i −0.531010 + 0.531010i −0.920873 0.389863i \(-0.872522\pi\)
0.389863 + 0.920873i \(0.372522\pi\)
\(158\) 2.46075e7 + 2.46075e7i 0.0394857 + 0.0394857i
\(159\) 0 0
\(160\) −1.34739e7 + 1.15066e8i −0.0205595 + 0.175577i
\(161\) 2.73678e8 0.407320
\(162\) 0 0
\(163\) 2.36679e8 + 2.36679e8i 0.335281 + 0.335281i 0.854588 0.519307i \(-0.173810\pi\)
−0.519307 + 0.854588i \(0.673810\pi\)
\(164\) 5.34172e8i 0.738424i
\(165\) 0 0
\(166\) −3.86435e8 −0.508914
\(167\) 5.45436e8 5.45436e8i 0.701258 0.701258i −0.263422 0.964681i \(-0.584851\pi\)
0.964681 + 0.263422i \(0.0848512\pi\)
\(168\) 0 0
\(169\) 7.49218e8i 0.918462i
\(170\) 3.31392e8 + 4.19295e8i 0.396777 + 0.502023i
\(171\) 0 0
\(172\) 5.13850e8 5.13850e8i 0.587115 0.587115i
\(173\) 6.41655e8 + 6.41655e8i 0.716337 + 0.716337i 0.967853 0.251516i \(-0.0809291\pi\)
−0.251516 + 0.967853i \(0.580929\pi\)
\(174\) 0 0
\(175\) 7.60474e8 + 1.23408e9i 0.810834 + 1.31580i
\(176\) 8.80267e7 0.0917411
\(177\) 0 0
\(178\) 4.61294e7 + 4.61294e7i 0.0459513 + 0.0459513i
\(179\) 9.41081e8i 0.916673i 0.888779 + 0.458337i \(0.151555\pi\)
−0.888779 + 0.458337i \(0.848445\pi\)
\(180\) 0 0
\(181\) −4.09543e8 −0.381580 −0.190790 0.981631i \(-0.561105\pi\)
−0.190790 + 0.981631i \(0.561105\pi\)
\(182\) −1.17441e9 + 1.17441e9i −1.07037 + 1.07037i
\(183\) 0 0
\(184\) 1.06801e8i 0.0931756i
\(185\) −2.06266e8 + 1.76150e9i −0.176092 + 1.50382i
\(186\) 0 0
\(187\) 2.87141e8 2.87141e8i 0.234817 0.234817i
\(188\) 2.90483e8 + 2.90483e8i 0.232536 + 0.232536i
\(189\) 0 0
\(190\) 1.01686e9 + 1.19071e8i 0.780272 + 0.0913671i
\(191\) −5.56054e8 −0.417814 −0.208907 0.977935i \(-0.566991\pi\)
−0.208907 + 0.977935i \(0.566991\pi\)
\(192\) 0 0
\(193\) 1.72776e8 + 1.72776e8i 0.124524 + 0.124524i 0.766622 0.642098i \(-0.221936\pi\)
−0.642098 + 0.766622i \(0.721936\pi\)
\(194\) 4.59026e8i 0.324063i
\(195\) 0 0
\(196\) −1.02478e9 −0.694392
\(197\) 1.39026e9 1.39026e9i 0.923060 0.923060i −0.0741846 0.997245i \(-0.523635\pi\)
0.997245 + 0.0741846i \(0.0236354\pi\)
\(198\) 0 0
\(199\) 1.80023e8i 0.114793i 0.998351 + 0.0573964i \(0.0182799\pi\)
−0.998351 + 0.0573964i \(0.981720\pi\)
\(200\) −4.81589e8 + 2.96769e8i −0.300993 + 0.185481i
\(201\) 0 0
\(202\) −6.36208e8 + 6.36208e8i −0.382115 + 0.382115i
\(203\) 1.09483e8 + 1.09483e8i 0.0644705 + 0.0644705i
\(204\) 0 0
\(205\) 2.04630e9 1.61731e9i 1.15866 0.915750i
\(206\) 7.94339e8 0.441100
\(207\) 0 0
\(208\) −4.58305e8 4.58305e8i −0.244851 0.244851i
\(209\) 7.77906e8i 0.407701i
\(210\) 0 0
\(211\) −4.17651e8 −0.210709 −0.105355 0.994435i \(-0.533598\pi\)
−0.105355 + 0.994435i \(0.533598\pi\)
\(212\) 4.77100e8 4.77100e8i 0.236192 0.236192i
\(213\) 0 0
\(214\) 9.80055e8i 0.467300i
\(215\) 3.52423e9 + 4.12675e8i 1.64934 + 0.193132i
\(216\) 0 0
\(217\) −6.40648e8 + 6.40648e8i −0.288922 + 0.288922i
\(218\) −7.46845e8 7.46845e8i −0.330678 0.330678i
\(219\) 0 0
\(220\) 2.66517e8 + 3.37212e8i 0.113772 + 0.143950i
\(221\) −2.98996e9 −1.25342
\(222\) 0 0
\(223\) 1.19002e9 + 1.19002e9i 0.481210 + 0.481210i 0.905518 0.424308i \(-0.139483\pi\)
−0.424308 + 0.905518i \(0.639483\pi\)
\(224\) 6.87869e8i 0.273221i
\(225\) 0 0
\(226\) −1.87594e9 −0.719093
\(227\) −2.69749e9 + 2.69749e9i −1.01591 + 1.01591i −0.0160418 + 0.999871i \(0.505106\pi\)
−0.999871 + 0.0160418i \(0.994894\pi\)
\(228\) 0 0
\(229\) 4.90322e9i 1.78295i −0.453069 0.891475i \(-0.649671\pi\)
0.453069 0.891475i \(-0.350329\pi\)
\(230\) −4.09131e8 + 3.23359e8i −0.146201 + 0.115551i
\(231\) 0 0
\(232\) −4.27248e7 + 4.27248e7i −0.0147478 + 0.0147478i
\(233\) 2.60187e9 + 2.60187e9i 0.882798 + 0.882798i 0.993818 0.111020i \(-0.0354117\pi\)
−0.111020 + 0.993818i \(0.535412\pi\)
\(234\) 0 0
\(235\) −2.33288e8 + 1.99227e9i −0.0764929 + 0.653247i
\(236\) 1.43571e9 0.462826
\(237\) 0 0
\(238\) −2.24381e9 2.24381e9i −0.699324 0.699324i
\(239\) 4.57968e9i 1.40360i −0.712374 0.701800i \(-0.752380\pi\)
0.712374 0.701800i \(-0.247620\pi\)
\(240\) 0 0
\(241\) 5.82501e9 1.72675 0.863373 0.504566i \(-0.168348\pi\)
0.863373 + 0.504566i \(0.168348\pi\)
\(242\) −1.48394e9 + 1.48394e9i −0.432669 + 0.432669i
\(243\) 0 0
\(244\) 2.58562e9i 0.729467i
\(245\) −3.10270e9 3.92570e9i −0.861144 1.08957i
\(246\) 0 0
\(247\) −4.05012e9 + 4.05012e9i −1.08813 + 1.08813i
\(248\) −2.50008e8 2.50008e8i −0.0660917 0.0660917i
\(249\) 0 0
\(250\) −2.59496e9 9.46344e8i −0.664310 0.242264i
\(251\) 4.01845e9 1.01243 0.506214 0.862408i \(-0.331045\pi\)
0.506214 + 0.862408i \(0.331045\pi\)
\(252\) 0 0
\(253\) 2.80181e8 + 2.80181e8i 0.0683843 + 0.0683843i
\(254\) 1.86372e8i 0.0447759i
\(255\) 0 0
\(256\) 2.68435e8 0.0625000
\(257\) 1.77795e9 1.77795e9i 0.407556 0.407556i −0.473330 0.880885i \(-0.656948\pi\)
0.880885 + 0.473330i \(0.156948\pi\)
\(258\) 0 0
\(259\) 1.05303e10i 2.34014i
\(260\) 3.68067e8 3.14328e9i 0.0805440 0.687843i
\(261\) 0 0
\(262\) −3.06830e9 + 3.06830e9i −0.651167 + 0.651167i
\(263\) −1.87568e9 1.87568e9i −0.392046 0.392046i 0.483370 0.875416i \(-0.339412\pi\)
−0.875416 + 0.483370i \(0.839412\pi\)
\(264\) 0 0
\(265\) 3.27218e9 + 3.83161e8i 0.663519 + 0.0776958i
\(266\) −6.07880e9 −1.21420
\(267\) 0 0
\(268\) 1.67497e9 + 1.67497e9i 0.324689 + 0.324689i
\(269\) 5.91528e9i 1.12971i −0.825191 0.564854i \(-0.808932\pi\)
0.825191 0.564854i \(-0.191068\pi\)
\(270\) 0 0
\(271\) −1.60432e9 −0.297449 −0.148725 0.988879i \(-0.547517\pi\)
−0.148725 + 0.988879i \(0.547517\pi\)
\(272\) 8.75630e8 8.75630e8i 0.159972 0.159972i
\(273\) 0 0
\(274\) 2.34858e8i 0.0416681i
\(275\) −4.84858e8 + 2.04195e9i −0.0847781 + 0.357037i
\(276\) 0 0
\(277\) −1.67266e9 + 1.67266e9i −0.284111 + 0.284111i −0.834746 0.550635i \(-0.814386\pi\)
0.550635 + 0.834746i \(0.314386\pi\)
\(278\) −3.20251e9 3.20251e9i −0.536181 0.536181i
\(279\) 0 0
\(280\) 2.63508e9 2.08265e9i 0.428708 0.338832i
\(281\) −9.29346e9 −1.49057 −0.745285 0.666747i \(-0.767686\pi\)
−0.745285 + 0.666747i \(0.767686\pi\)
\(282\) 0 0
\(283\) 4.61061e9 + 4.61061e9i 0.718808 + 0.718808i 0.968361 0.249553i \(-0.0802836\pi\)
−0.249553 + 0.968361i \(0.580284\pi\)
\(284\) 3.34132e9i 0.513624i
\(285\) 0 0
\(286\) −2.40464e9 −0.359406
\(287\) −1.09506e10 + 1.09506e10i −1.61402 + 1.61402i
\(288\) 0 0
\(289\) 1.26318e9i 0.181082i
\(290\) −2.93027e8 3.43124e7i −0.0414301 0.00485132i
\(291\) 0 0
\(292\) −2.37990e9 + 2.37990e9i −0.327361 + 0.327361i
\(293\) 6.99292e9 + 6.99292e9i 0.948829 + 0.948829i 0.998753 0.0499241i \(-0.0158979\pi\)
−0.0499241 + 0.998753i \(0.515898\pi\)
\(294\) 0 0
\(295\) 4.34688e9 + 5.49990e9i 0.573970 + 0.726217i
\(296\) 4.10937e9 0.535314
\(297\) 0 0
\(298\) 4.49966e9 + 4.49966e9i 0.570577 + 0.570577i
\(299\) 2.91749e9i 0.365026i
\(300\) 0 0
\(301\) −2.10680e10 −2.56659
\(302\) −2.20204e8 + 2.20204e8i −0.0264726 + 0.0264726i
\(303\) 0 0
\(304\) 2.37221e9i 0.277753i
\(305\) 9.90498e9 7.82845e9i 1.14460 0.904642i
\(306\) 0 0
\(307\) 2.31844e9 2.31844e9i 0.261001 0.261001i −0.564459 0.825461i \(-0.690915\pi\)
0.825461 + 0.564459i \(0.190915\pi\)
\(308\) −1.80456e9 1.80456e9i −0.200524 0.200524i
\(309\) 0 0
\(310\) 2.00782e8 1.71467e9i 0.0217410 0.185667i
\(311\) 1.45111e10 1.55117 0.775584 0.631245i \(-0.217456\pi\)
0.775584 + 0.631245i \(0.217456\pi\)
\(312\) 0 0
\(313\) 2.03082e9 + 2.03082e9i 0.211590 + 0.211590i 0.804943 0.593353i \(-0.202196\pi\)
−0.593353 + 0.804943i \(0.702196\pi\)
\(314\) 5.16204e9i 0.531010i
\(315\) 0 0
\(316\) 3.93720e8 0.0394857
\(317\) −9.69018e8 + 9.69018e8i −0.0959611 + 0.0959611i −0.753458 0.657497i \(-0.771615\pi\)
0.657497 + 0.753458i \(0.271615\pi\)
\(318\) 0 0
\(319\) 2.24168e8i 0.0216477i
\(320\) 8.12739e8 + 1.02832e9i 0.0775088 + 0.0980683i
\(321\) 0 0
\(322\) 2.18942e9 2.18942e9i 0.203660 0.203660i
\(323\) −7.73808e9 7.73808e9i −0.710924 0.710924i
\(324\) 0 0
\(325\) 1.31556e10 8.10688e9i 1.17918 0.726641i
\(326\) 3.78686e9 0.335281
\(327\) 0 0
\(328\) −4.27338e9 4.27338e9i −0.369212 0.369212i
\(329\) 1.19099e10i 1.01654i
\(330\) 0 0
\(331\) −7.63072e9 −0.635702 −0.317851 0.948141i \(-0.602961\pi\)
−0.317851 + 0.948141i \(0.602961\pi\)
\(332\) −3.09148e9 + 3.09148e9i −0.254457 + 0.254457i
\(333\) 0 0
\(334\) 8.72698e9i 0.701258i
\(335\) −1.34517e9 + 1.14877e10i −0.106807 + 0.912126i
\(336\) 0 0
\(337\) −2.47412e9 + 2.47412e9i −0.191824 + 0.191824i −0.796484 0.604660i \(-0.793309\pi\)
0.604660 + 0.796484i \(0.293309\pi\)
\(338\) 5.99374e9 + 5.99374e9i 0.459231 + 0.459231i
\(339\) 0 0
\(340\) 6.00549e9 + 7.03222e8i 0.449400 + 0.0526232i
\(341\) −1.31174e9 −0.0970132
\(342\) 0 0
\(343\) 5.88110e9 + 5.88110e9i 0.424895 + 0.424895i
\(344\) 8.22161e9i 0.587115i
\(345\) 0 0
\(346\) 1.02665e10 0.716337
\(347\) 2.63557e9 2.63557e9i 0.181785 0.181785i −0.610348 0.792133i \(-0.708971\pi\)
0.792133 + 0.610348i \(0.208971\pi\)
\(348\) 0 0
\(349\) 2.46965e10i 1.66469i −0.554257 0.832346i \(-0.686998\pi\)
0.554257 0.832346i \(-0.313002\pi\)
\(350\) 1.59564e10 + 3.78883e9i 1.06332 + 0.252484i
\(351\) 0 0
\(352\) 7.04214e8 7.04214e8i 0.0458705 0.0458705i
\(353\) 1.25084e10 + 1.25084e10i 0.805566 + 0.805566i 0.983959 0.178393i \(-0.0570898\pi\)
−0.178393 + 0.983959i \(0.557090\pi\)
\(354\) 0 0
\(355\) −1.27999e10 + 1.01165e10i −0.805923 + 0.636966i
\(356\) 7.38071e8 0.0459513
\(357\) 0 0
\(358\) 7.52864e9 + 7.52864e9i 0.458337 + 0.458337i
\(359\) 2.30279e10i 1.38636i 0.720763 + 0.693181i \(0.243792\pi\)
−0.720763 + 0.693181i \(0.756208\pi\)
\(360\) 0 0
\(361\) −3.97999e9 −0.234344
\(362\) −3.27635e9 + 3.27635e9i −0.190790 + 0.190790i
\(363\) 0 0
\(364\) 1.87906e10i 1.07037i
\(365\) −1.63225e10 1.91131e9i −0.919634 0.107686i
\(366\) 0 0
\(367\) −9.47400e9 + 9.47400e9i −0.522239 + 0.522239i −0.918247 0.396008i \(-0.870395\pi\)
0.396008 + 0.918247i \(0.370395\pi\)
\(368\) 8.54405e8 + 8.54405e8i 0.0465878 + 0.0465878i
\(369\) 0 0
\(370\) 1.24419e10 + 1.57421e10i 0.663864 + 0.839956i
\(371\) −1.95612e10 −1.03252
\(372\) 0 0
\(373\) 6.05089e9 + 6.05089e9i 0.312597 + 0.312597i 0.845915 0.533318i \(-0.179055\pi\)
−0.533318 + 0.845915i \(0.679055\pi\)
\(374\) 4.59426e9i 0.234817i
\(375\) 0 0
\(376\) 4.64773e9 0.232536
\(377\) 1.16712e9 1.16712e9i 0.0577763 0.0577763i
\(378\) 0 0
\(379\) 4.27189e9i 0.207044i 0.994627 + 0.103522i \(0.0330113\pi\)
−0.994627 + 0.103522i \(0.966989\pi\)
\(380\) 9.08743e9 7.18230e9i 0.435819 0.344452i
\(381\) 0 0
\(382\) −4.44843e9 + 4.44843e9i −0.208907 + 0.208907i
\(383\) 2.68406e10 + 2.68406e10i 1.24738 + 1.24738i 0.956874 + 0.290502i \(0.0938224\pi\)
0.290502 + 0.956874i \(0.406178\pi\)
\(384\) 0 0
\(385\) 1.44925e9 1.23765e10i 0.0659628 0.563320i
\(386\) 2.76441e9 0.124524
\(387\) 0 0
\(388\) −3.67221e9 3.67221e9i −0.162032 0.162032i
\(389\) 9.16592e8i 0.0400293i −0.999800 0.0200146i \(-0.993629\pi\)
0.999800 0.0200146i \(-0.00637128\pi\)
\(390\) 0 0
\(391\) 5.57410e9 0.238489
\(392\) −8.19821e9 + 8.19821e9i −0.347196 + 0.347196i
\(393\) 0 0
\(394\) 2.22441e10i 0.923060i
\(395\) 1.19206e9 + 1.50826e9i 0.0489678 + 0.0619567i
\(396\) 0 0
\(397\) 5.24090e9 5.24090e9i 0.210981 0.210981i −0.593703 0.804684i \(-0.702335\pi\)
0.804684 + 0.593703i \(0.202335\pi\)
\(398\) 1.44018e9 + 1.44018e9i 0.0573964 + 0.0573964i
\(399\) 0 0
\(400\) −1.47856e9 + 6.22687e9i −0.0577563 + 0.243237i
\(401\) −1.76862e10 −0.684000 −0.342000 0.939700i \(-0.611104\pi\)
−0.342000 + 0.939700i \(0.611104\pi\)
\(402\) 0 0
\(403\) 6.82950e9 + 6.82950e9i 0.258922 + 0.258922i
\(404\) 1.01793e10i 0.382115i
\(405\) 0 0
\(406\) 1.75172e9 0.0644705
\(407\) 1.07805e10 1.07805e10i 0.392882 0.392882i
\(408\) 0 0
\(409\) 2.18253e9i 0.0779950i 0.999239 + 0.0389975i \(0.0124164\pi\)
−0.999239 + 0.0389975i \(0.987584\pi\)
\(410\) 3.43197e9 2.93089e10i 0.121453 1.03720i
\(411\) 0 0
\(412\) 6.35471e9 6.35471e9i 0.220550 0.220550i
\(413\) −2.94321e10 2.94321e10i −1.01163 1.01163i
\(414\) 0 0
\(415\) −2.12029e10 2.48278e9i −0.714829 0.0837040i
\(416\) −7.33289e9 −0.244851
\(417\) 0 0
\(418\) −6.22325e9 6.22325e9i −0.203851 0.203851i
\(419\) 3.02443e10i 0.981268i −0.871366 0.490634i \(-0.836765\pi\)
0.871366 0.490634i \(-0.163235\pi\)
\(420\) 0 0
\(421\) 1.77840e10 0.566109 0.283055 0.959104i \(-0.408652\pi\)
0.283055 + 0.959104i \(0.408652\pi\)
\(422\) −3.34121e9 + 3.34121e9i −0.105355 + 0.105355i
\(423\) 0 0
\(424\) 7.63359e9i 0.236192i
\(425\) 1.54889e10 + 2.51349e10i 0.474749 + 0.770410i
\(426\) 0 0
\(427\) −5.30055e10 + 5.30055e10i −1.59444 + 1.59444i
\(428\) 7.84044e9 + 7.84044e9i 0.233650 + 0.233650i
\(429\) 0 0
\(430\) 3.14953e10 2.48925e10i 0.921237 0.728105i
\(431\) 2.12717e10 0.616443 0.308221 0.951315i \(-0.400266\pi\)
0.308221 + 0.951315i \(0.400266\pi\)
\(432\) 0 0
\(433\) −2.24808e10 2.24808e10i −0.639529 0.639529i 0.310910 0.950439i \(-0.399366\pi\)
−0.950439 + 0.310910i \(0.899366\pi\)
\(434\) 1.02504e10i 0.288922i
\(435\) 0 0
\(436\) −1.19495e10 −0.330678
\(437\) 7.55051e9 7.55051e9i 0.207038 0.207038i
\(438\) 0 0
\(439\) 1.46904e10i 0.395526i 0.980250 + 0.197763i \(0.0633676\pi\)
−0.980250 + 0.197763i \(0.936632\pi\)
\(440\) 4.82984e9 + 5.65557e8i 0.128861 + 0.0150892i
\(441\) 0 0
\(442\) −2.39197e10 + 2.39197e10i −0.626710 + 0.626710i
\(443\) −1.79953e10 1.79953e10i −0.467245 0.467245i 0.433776 0.901021i \(-0.357181\pi\)
−0.901021 + 0.433776i \(0.857181\pi\)
\(444\) 0 0
\(445\) 2.23465e9 + 2.82740e9i 0.0569861 + 0.0721019i
\(446\) 1.90403e10 0.481210
\(447\) 0 0
\(448\) −5.50295e9 5.50295e9i −0.136610 0.136610i
\(449\) 2.81226e10i 0.691943i −0.938245 0.345972i \(-0.887549\pi\)
0.938245 0.345972i \(-0.112451\pi\)
\(450\) 0 0
\(451\) −2.24216e10 −0.541951
\(452\) −1.50075e10 + 1.50075e10i −0.359546 + 0.359546i
\(453\) 0 0
\(454\) 4.31599e10i 1.01591i
\(455\) −7.19829e10 + 5.68921e10i −1.67951 + 1.32741i
\(456\) 0 0
\(457\) 5.32217e10 5.32217e10i 1.22018 1.22018i 0.252614 0.967567i \(-0.418710\pi\)
0.967567 0.252614i \(-0.0812901\pi\)
\(458\) −3.92258e10 3.92258e10i −0.891475 0.891475i
\(459\) 0 0
\(460\) −6.86176e8 + 5.85992e9i −0.0153251 + 0.130876i
\(461\) −2.80695e9 −0.0621485 −0.0310743 0.999517i \(-0.509893\pi\)
−0.0310743 + 0.999517i \(0.509893\pi\)
\(462\) 0 0
\(463\) −1.84228e10 1.84228e10i −0.400896 0.400896i 0.477653 0.878549i \(-0.341488\pi\)
−0.878549 + 0.477653i \(0.841488\pi\)
\(464\) 6.83596e8i 0.0147478i
\(465\) 0 0
\(466\) 4.16299e10 0.882798
\(467\) 1.19286e10 1.19286e10i 0.250796 0.250796i −0.570501 0.821297i \(-0.693251\pi\)
0.821297 + 0.570501i \(0.193251\pi\)
\(468\) 0 0
\(469\) 6.86739e10i 1.41939i
\(470\) 1.40719e10 + 1.78045e10i 0.288377 + 0.364870i
\(471\) 0 0
\(472\) 1.14857e10 1.14857e10i 0.231413 0.231413i
\(473\) −2.15686e10 2.15686e10i −0.430900 0.430900i
\(474\) 0 0
\(475\) 5.50278e10 + 1.30663e10i 1.08095 + 0.256672i
\(476\) −3.59010e10 −0.699324
\(477\) 0 0
\(478\) −3.66374e10 3.66374e10i −0.701800 0.701800i
\(479\) 8.08280e10i 1.53539i −0.640813 0.767697i \(-0.721403\pi\)
0.640813 0.767697i \(-0.278597\pi\)
\(480\) 0 0
\(481\) −1.12256e11 −2.09715
\(482\) 4.66001e10 4.66001e10i 0.863373 0.863373i
\(483\) 0 0
\(484\) 2.37431e10i 0.432669i
\(485\) 2.94916e9 2.51857e10i 0.0533006 0.455185i
\(486\) 0 0
\(487\) 7.93140e10 7.93140e10i 1.41005 1.41005i 0.650797 0.759252i \(-0.274435\pi\)
0.759252 0.650797i \(-0.225565\pi\)
\(488\) −2.06850e10 2.06850e10i −0.364733 0.364733i
\(489\) 0 0
\(490\) −5.62272e10 6.58402e9i −0.975355 0.114211i
\(491\) −6.00911e10 −1.03391 −0.516957 0.856011i \(-0.672935\pi\)
−0.516957 + 0.856011i \(0.672935\pi\)
\(492\) 0 0
\(493\) 2.22988e9 + 2.22988e9i 0.0377479 + 0.0377479i
\(494\) 6.48019e10i 1.08813i
\(495\) 0 0
\(496\) −4.00013e9 −0.0660917
\(497\) 6.84974e10 6.84974e10i 1.12266 1.12266i
\(498\) 0 0
\(499\) 1.08749e11i 1.75397i 0.480516 + 0.876986i \(0.340449\pi\)
−0.480516 + 0.876986i \(0.659551\pi\)
\(500\) −2.83304e10 + 1.31889e10i −0.453287 + 0.211023i
\(501\) 0 0
\(502\) 3.21476e10 3.21476e10i 0.506214 0.506214i
\(503\) 4.36650e10 + 4.36650e10i 0.682122 + 0.682122i 0.960478 0.278356i \(-0.0897896\pi\)
−0.278356 + 0.960478i \(0.589790\pi\)
\(504\) 0 0
\(505\) −3.89949e10 + 3.08198e10i −0.599573 + 0.473876i
\(506\) 4.48289e9 0.0683843
\(507\) 0 0
\(508\) −1.49097e9 1.49097e9i −0.0223880 0.0223880i
\(509\) 6.95461e10i 1.03610i 0.855350 + 0.518050i \(0.173342\pi\)
−0.855350 + 0.518050i \(0.826658\pi\)
\(510\) 0 0
\(511\) 9.75763e10 1.43107
\(512\) 2.14748e9 2.14748e9i 0.0312500 0.0312500i
\(513\) 0 0
\(514\) 2.84472e10i 0.407556i
\(515\) 4.35836e10 + 5.10349e9i 0.619576 + 0.0725502i
\(516\) 0 0
\(517\) 1.21929e10 1.21929e10i 0.170665 0.170665i
\(518\) −8.42424e10 8.42424e10i −1.17007 1.17007i
\(519\) 0 0
\(520\) −2.22017e10 2.80908e10i −0.303650 0.384194i
\(521\) −1.18226e10 −0.160459 −0.0802294 0.996776i \(-0.525565\pi\)
−0.0802294 + 0.996776i \(0.525565\pi\)
\(522\) 0 0
\(523\) 5.44052e10 + 5.44052e10i 0.727166 + 0.727166i 0.970054 0.242888i \(-0.0780948\pi\)
−0.242888 + 0.970054i \(0.578095\pi\)
\(524\) 4.90928e10i 0.651167i
\(525\) 0 0
\(526\) −3.00109e10 −0.392046
\(527\) −1.30483e10 + 1.30483e10i −0.169166 + 0.169166i
\(528\) 0 0
\(529\) 7.28720e10i 0.930546i
\(530\) 2.92427e10 2.31121e10i 0.370607 0.292912i
\(531\) 0 0
\(532\) −4.86304e10 + 4.86304e10i −0.607102 + 0.607102i
\(533\) 1.16736e11 + 1.16736e11i 1.44643 + 1.44643i
\(534\) 0 0
\(535\) −6.29669e9 + 5.37735e10i −0.0768595 + 0.656377i
\(536\) 2.67995e10 0.324689
\(537\) 0 0
\(538\) −4.73223e10 4.73223e10i −0.564854 0.564854i
\(539\) 4.30144e10i 0.509634i
\(540\) 0 0
\(541\) 1.29671e11 1.51375 0.756873 0.653562i \(-0.226726\pi\)
0.756873 + 0.653562i \(0.226726\pi\)
\(542\) −1.28345e10 + 1.28345e10i −0.148725 + 0.148725i
\(543\) 0 0
\(544\) 1.40101e10i 0.159972i
\(545\) −3.61794e10 4.57761e10i −0.410087 0.518864i
\(546\) 0 0
\(547\) 2.70067e10 2.70067e10i 0.301664 0.301664i −0.540001 0.841664i \(-0.681576\pi\)
0.841664 + 0.540001i \(0.181576\pi\)
\(548\) −1.87887e9 1.87887e9i −0.0208340 0.0208340i
\(549\) 0 0
\(550\) 1.24567e10 + 2.02144e10i 0.136130 + 0.220908i
\(551\) 6.04105e9 0.0655399
\(552\) 0 0
\(553\) −8.07130e9 8.07130e9i −0.0863064 0.0863064i
\(554\) 2.67625e10i 0.284111i
\(555\) 0 0
\(556\) −5.12402e10 −0.536181
\(557\) −1.51528e9 + 1.51528e9i −0.0157425 + 0.0157425i −0.714934 0.699192i \(-0.753543\pi\)
0.699192 + 0.714934i \(0.253543\pi\)
\(558\) 0 0
\(559\) 2.24591e11i 2.30009i
\(560\) 4.41944e9 3.77419e10i 0.0449382 0.383770i
\(561\) 0 0
\(562\) −7.43477e10 + 7.43477e10i −0.745285 + 0.745285i
\(563\) 1.16988e11 + 1.16988e11i 1.16441 + 1.16441i 0.983500 + 0.180911i \(0.0579045\pi\)
0.180911 + 0.983500i \(0.442095\pi\)
\(564\) 0 0
\(565\) −1.02929e11 1.20526e10i −1.01005 0.118273i
\(566\) 7.37698e10 0.718808
\(567\) 0 0
\(568\) 2.67306e10 + 2.67306e10i 0.256812 + 0.256812i
\(569\) 6.87794e10i 0.656159i 0.944650 + 0.328080i \(0.106401\pi\)
−0.944650 + 0.328080i \(0.893599\pi\)
\(570\) 0 0
\(571\) −1.03730e10 −0.0975795 −0.0487897 0.998809i \(-0.515536\pi\)
−0.0487897 + 0.998809i \(0.515536\pi\)
\(572\) −1.92371e10 + 1.92371e10i −0.179703 + 0.179703i
\(573\) 0 0
\(574\) 1.75209e11i 1.61402i
\(575\) −2.45257e10 + 1.51134e10i −0.224362 + 0.138258i
\(576\) 0 0
\(577\) 5.84784e10 5.84784e10i 0.527584 0.527584i −0.392267 0.919851i \(-0.628309\pi\)
0.919851 + 0.392267i \(0.128309\pi\)
\(578\) 1.01055e10 + 1.01055e10i 0.0905410 + 0.0905410i
\(579\) 0 0
\(580\) −2.61872e9 + 2.06972e9i −0.0231407 + 0.0182894i
\(581\) 1.26751e11 1.11237
\(582\) 0 0
\(583\) −2.00260e10 2.00260e10i −0.173348 0.173348i
\(584\) 3.80784e10i 0.327361i
\(585\) 0 0
\(586\) 1.11887e11 0.948829
\(587\) −2.36584e10 + 2.36584e10i −0.199266 + 0.199266i −0.799685 0.600420i \(-0.795000\pi\)
0.600420 + 0.799685i \(0.295000\pi\)
\(588\) 0 0
\(589\) 3.53497e10i 0.293714i
\(590\) 7.87742e10 + 9.22419e9i 0.650094 + 0.0761237i
\(591\) 0 0
\(592\) 3.28749e10 3.28749e10i 0.267657 0.267657i
\(593\) −1.22246e11 1.22246e11i −0.988589 0.988589i 0.0113464 0.999936i \(-0.496388\pi\)
−0.999936 + 0.0113464i \(0.996388\pi\)
\(594\) 0 0
\(595\) −1.08697e11 1.37529e11i −0.867261 1.09730i
\(596\) 7.19945e10 0.570577
\(597\) 0 0
\(598\) −2.33399e10 2.33399e10i −0.182513 0.182513i
\(599\) 9.59446e10i 0.745269i 0.927978 + 0.372635i \(0.121546\pi\)
−0.927978 + 0.372635i \(0.878454\pi\)
\(600\) 0 0
\(601\) 1.94971e11 1.49442 0.747210 0.664588i \(-0.231393\pi\)
0.747210 + 0.664588i \(0.231393\pi\)
\(602\) −1.68544e11 + 1.68544e11i −1.28329 + 1.28329i
\(603\) 0 0
\(604\) 3.52326e9i 0.0264726i
\(605\) −9.09547e10 + 7.18866e10i −0.678897 + 0.536570i
\(606\) 0 0
\(607\) −1.26277e11 + 1.26277e11i −0.930188 + 0.930188i −0.997717 0.0675290i \(-0.978488\pi\)
0.0675290 + 0.997717i \(0.478488\pi\)
\(608\) −1.89776e10 1.89776e10i −0.138876 0.138876i
\(609\) 0 0
\(610\) 1.66122e10 1.41867e11i 0.119980 1.02462i
\(611\) −1.26963e11 −0.910984
\(612\) 0 0
\(613\) 1.84169e11 + 1.84169e11i 1.30429 + 1.30429i 0.925468 + 0.378826i \(0.123672\pi\)
0.378826 + 0.925468i \(0.376328\pi\)
\(614\) 3.70951e10i 0.261001i
\(615\) 0 0
\(616\) −2.88729e10 −0.200524
\(617\) 1.20679e11 1.20679e11i 0.832707 0.832707i −0.155180 0.987886i \(-0.549596\pi\)
0.987886 + 0.155180i \(0.0495956\pi\)
\(618\) 0 0
\(619\) 1.43750e11i 0.979143i −0.871963 0.489572i \(-0.837153\pi\)
0.871963 0.489572i \(-0.162847\pi\)
\(620\) −1.21111e10 1.53237e10i −0.0819630 0.103704i
\(621\) 0 0
\(622\) 1.16089e11 1.16089e11i 0.775584 0.775584i
\(623\) −1.51305e10 1.51305e10i −0.100439 0.100439i
\(624\) 0 0
\(625\) −1.36300e11 6.85961e10i −0.893255 0.449551i
\(626\) 3.24932e10 0.211590
\(627\) 0 0
\(628\) 4.12963e10 + 4.12963e10i 0.265505 + 0.265505i
\(629\) 2.14475e11i 1.37017i
\(630\) 0 0
\(631\) −1.08715e11 −0.685760 −0.342880 0.939379i \(-0.611402\pi\)
−0.342880 + 0.939379i \(0.611402\pi\)
\(632\) 3.14976e9 3.14976e9i 0.0197428 0.0197428i
\(633\) 0 0
\(634\) 1.55043e10i 0.0959611i
\(635\) 1.19741e9 1.02258e10i 0.00736456 0.0628930i
\(636\) 0 0
\(637\) 2.23952e11 2.23952e11i 1.36018 1.36018i
\(638\) 1.79335e9 + 1.79335e9i 0.0108239 + 0.0108239i
\(639\) 0 0
\(640\) 1.47285e10 + 1.72465e9i 0.0877885 + 0.0102797i
\(641\) 3.25454e11 1.92778 0.963890 0.266299i \(-0.0858010\pi\)
0.963890 + 0.266299i \(0.0858010\pi\)
\(642\) 0 0
\(643\) 4.11926e10 + 4.11926e10i 0.240977 + 0.240977i 0.817254 0.576278i \(-0.195495\pi\)
−0.576278 + 0.817254i \(0.695495\pi\)
\(644\) 3.50307e10i 0.203660i
\(645\) 0 0
\(646\) −1.23809e11 −0.710924
\(647\) 8.13749e10 8.13749e10i 0.464380 0.464380i −0.435708 0.900088i \(-0.643502\pi\)
0.900088 + 0.435708i \(0.143502\pi\)
\(648\) 0 0
\(649\) 6.02630e10i 0.339682i
\(650\) 4.03901e10 1.70100e11i 0.226267 0.952908i
\(651\) 0 0
\(652\) 3.02949e10 3.02949e10i 0.167640 0.167640i
\(653\) −1.29147e11 1.29147e11i −0.710285 0.710285i 0.256310 0.966595i \(-0.417493\pi\)
−0.966595 + 0.256310i \(0.917493\pi\)
\(654\) 0 0
\(655\) −1.88064e11 + 1.48638e11i −1.02174 + 0.807539i
\(656\) −6.83741e10 −0.369212
\(657\) 0 0
\(658\) −9.52788e10 9.52788e10i −0.508268 0.508268i
\(659\) 2.74018e10i 0.145291i 0.997358 + 0.0726453i \(0.0231441\pi\)
−0.997358 + 0.0726453i \(0.976856\pi\)
\(660\) 0 0
\(661\) −1.19547e11 −0.626228 −0.313114 0.949716i \(-0.601372\pi\)
−0.313114 + 0.949716i \(0.601372\pi\)
\(662\) −6.10457e10 + 6.10457e10i −0.317851 + 0.317851i
\(663\) 0 0
\(664\) 4.94637e10i 0.254457i
\(665\) −3.33531e11 3.90553e10i −1.70549 0.199707i
\(666\) 0 0
\(667\) −2.17582e9 + 2.17582e9i −0.0109931 + 0.0109931i
\(668\) −6.98158e10 6.98158e10i −0.350629 0.350629i
\(669\) 0 0
\(670\) 8.11404e10 + 1.02663e11i 0.402660 + 0.509466i
\(671\) −1.08530e11 −0.535377
\(672\) 0 0
\(673\) −2.17592e11 2.17592e11i −1.06068 1.06068i −0.998036 0.0626416i \(-0.980047\pi\)
−0.0626416 0.998036i \(-0.519953\pi\)
\(674\) 3.95860e10i 0.191824i
\(675\) 0 0
\(676\) 9.58998e10 0.459231
\(677\) −1.34337e11 + 1.34337e11i −0.639503 + 0.639503i −0.950433 0.310930i \(-0.899360\pi\)
0.310930 + 0.950433i \(0.399360\pi\)
\(678\) 0 0
\(679\) 1.50561e11i 0.708327i
\(680\) 5.36697e10 4.24182e10i 0.251012 0.198388i
\(681\) 0 0
\(682\) −1.04939e10 + 1.04939e10i −0.0485066 + 0.0485066i
\(683\) 2.62510e11 + 2.62510e11i 1.20632 + 1.20632i 0.972210 + 0.234110i \(0.0752177\pi\)
0.234110 + 0.972210i \(0.424782\pi\)
\(684\) 0 0
\(685\) 1.50893e9 1.28862e10i 0.00685339 0.0585277i
\(686\) 9.40976e10 0.424895
\(687\) 0 0
\(688\) −6.57728e10 6.57728e10i −0.293557 0.293557i
\(689\) 2.08528e11i 0.925310i
\(690\) 0 0
\(691\) 3.13746e11 1.37615 0.688075 0.725639i \(-0.258456\pi\)
0.688075 + 0.725639i \(0.258456\pi\)
\(692\) 8.21319e10 8.21319e10i 0.358169 0.358169i
\(693\) 0 0
\(694\) 4.21692e10i 0.181785i
\(695\) −1.55139e11 1.96290e11i −0.664940 0.841318i
\(696\) 0 0
\(697\) −2.23035e11 + 2.23035e11i −0.945021 + 0.945021i
\(698\) −1.97572e11 1.97572e11i −0.832346 0.832346i
\(699\) 0 0
\(700\) 1.57962e11 9.73406e10i 0.657901 0.405417i
\(701\) −2.56197e11 −1.06097 −0.530483 0.847696i \(-0.677989\pi\)
−0.530483 + 0.847696i \(0.677989\pi\)
\(702\) 0 0
\(703\) −2.90521e11 2.90521e11i −1.18948 1.18948i
\(704\) 1.12674e10i 0.0458705i
\(705\) 0 0
\(706\) 2.00134e11 0.805566
\(707\) 2.08677e11 2.08677e11i 0.835213 0.835213i
\(708\) 0 0
\(709\) 1.51234e10i 0.0598499i 0.999552 + 0.0299250i \(0.00952683\pi\)
−0.999552 + 0.0299250i \(0.990473\pi\)
\(710\) −2.14675e10 + 1.83331e11i −0.0844787 + 0.721445i
\(711\) 0 0
\(712\) 5.90457e9 5.90457e9i 0.0229757 0.0229757i
\(713\) −1.27320e10 1.27320e10i −0.0492651 0.0492651i
\(714\) 0 0
\(715\) −1.31937e11 1.54494e10i −0.504828 0.0591136i
\(716\) 1.20458e11 0.458337
\(717\) 0 0
\(718\) 1.84223e11 + 1.84223e11i 0.693181 + 0.693181i
\(719\) 4.20879e11i 1.57486i −0.616404 0.787430i \(-0.711411\pi\)
0.616404 0.787430i \(-0.288589\pi\)
\(720\) 0 0
\(721\) −2.60544e11 −0.964140
\(722\) −3.18399e10 + 3.18399e10i −0.117172 + 0.117172i
\(723\) 0 0
\(724\) 5.24215e10i 0.190790i
\(725\) −1.58573e10 3.76530e9i −0.0573954 0.0136285i
\(726\) 0 0
\(727\) 2.08188e11 2.08188e11i 0.745277 0.745277i −0.228312 0.973588i \(-0.573320\pi\)
0.973588 + 0.228312i \(0.0733205\pi\)
\(728\) 1.50325e11 + 1.50325e11i 0.535186 + 0.535186i
\(729\) 0 0
\(730\) −1.45870e11 + 1.15289e11i −0.513660 + 0.405974i
\(731\) −4.29099e11 −1.50275
\(732\) 0 0
\(733\) −2.48791e11 2.48791e11i −0.861826 0.861826i 0.129725 0.991550i \(-0.458591\pi\)
−0.991550 + 0.129725i \(0.958591\pi\)
\(734\) 1.51584e11i 0.522239i
\(735\) 0 0
\(736\) 1.36705e10 0.0465878
\(737\) 7.03058e10 7.03058e10i 0.238298 0.238298i
\(738\) 0 0
\(739\) 1.15406e11i 0.386946i −0.981106 0.193473i \(-0.938025\pi\)
0.981106 0.193473i \(-0.0619752\pi\)
\(740\) 2.25472e11 + 2.64020e10i 0.751910 + 0.0880461i
\(741\) 0 0
\(742\) −1.56489e11 + 1.56489e11i −0.516261 + 0.516261i
\(743\) −1.60556e11 1.60556e11i −0.526833 0.526833i 0.392794 0.919627i \(-0.371509\pi\)
−0.919627 + 0.392794i \(0.871509\pi\)
\(744\) 0 0
\(745\) 2.17977e11 + 2.75796e11i 0.707596 + 0.895289i
\(746\) 9.68143e10 0.312597
\(747\) 0 0
\(748\) −3.67541e10 3.67541e10i −0.117408 0.117408i
\(749\) 3.21459e11i 1.02141i
\(750\) 0 0
\(751\) −5.98277e10 −0.188080 −0.0940400 0.995568i \(-0.529978\pi\)
−0.0940400 + 0.995568i \(0.529978\pi\)
\(752\) 3.71818e10 3.71818e10i 0.116268 0.116268i
\(753\) 0 0
\(754\) 1.86739e10i 0.0577763i
\(755\) −1.34969e10 + 1.06673e10i −0.0415379 + 0.0328297i
\(756\) 0 0
\(757\) −2.88999e11 + 2.88999e11i −0.880060 + 0.880060i −0.993540 0.113480i \(-0.963800\pi\)
0.113480 + 0.993540i \(0.463800\pi\)
\(758\) 3.41752e10 + 3.41752e10i 0.103522 + 0.103522i
\(759\) 0 0
\(760\) 1.52410e10 1.30158e11i 0.0456836 0.390136i
\(761\) 1.15311e11 0.343819 0.171910 0.985113i \(-0.445006\pi\)
0.171910 + 0.985113i \(0.445006\pi\)
\(762\) 0 0
\(763\) 2.44966e11 + 2.44966e11i 0.722783 + 0.722783i
\(764\) 7.11748e10i 0.208907i
\(765\) 0 0
\(766\) 4.29450e11 1.24738
\(767\) −3.13755e11 + 3.13755e11i −0.906587 + 0.906587i
\(768\) 0 0
\(769\) 1.71633e11i 0.490791i 0.969423 + 0.245395i \(0.0789178\pi\)
−0.969423 + 0.245395i \(0.921082\pi\)
\(770\) −8.74181e10 1.10606e11i −0.248679 0.314641i
\(771\) 0 0
\(772\) 2.21153e10 2.21153e10i 0.0622621 0.0622621i
\(773\) 3.60143e11 + 3.60143e11i 1.00869 + 1.00869i 0.999962 + 0.00872501i \(0.00277729\pi\)
0.00872501 + 0.999962i \(0.497223\pi\)
\(774\) 0 0
\(775\) 2.20330e10 9.27905e10i 0.0610754 0.257215i
\(776\) −5.87553e10 −0.162032
\(777\) 0 0
\(778\) −7.33273e9 7.33273e9i −0.0200146 0.0200146i
\(779\) 6.04232e11i 1.64079i
\(780\) 0 0
\(781\) 1.40250e11 0.376963
\(782\) 4.45928e10 4.45928e10i 0.119244 0.119244i
\(783\) 0 0
\(784\) 1.31171e11i 0.347196i
\(785\) −3.31653e10 + 2.83230e11i −0.0873383 + 0.745866i
\(786\) 0 0
\(787\) 3.81822e11 3.81822e11i 0.995318 0.995318i −0.00467136 0.999989i \(-0.501487\pi\)
0.999989 + 0.00467136i \(0.00148694\pi\)
\(788\) −1.77953e11 1.77953e11i −0.461530 0.461530i
\(789\) 0 0
\(790\) 2.16026e10 + 2.52959e9i 0.0554622 + 0.00649444i
\(791\) 6.15310e11 1.57177
\(792\) 0 0
\(793\) 5.65054e11 + 5.65054e11i 1.42888 + 1.42888i
\(794\) 8.38543e10i 0.210981i
\(795\) 0 0
\(796\) 2.30429e10 0.0573964
\(797\) −4.32433e11 + 4.32433e11i −1.07173 + 1.07173i −0.0745090 + 0.997220i \(0.523739\pi\)
−0.997220 + 0.0745090i \(0.976261\pi\)
\(798\) 0 0
\(799\) 2.42573e11i 0.595189i
\(800\) 3.79864e10 + 6.16434e10i 0.0927403 + 0.150497i
\(801\) 0 0
\(802\) −1.41489e11 + 1.41489e11i −0.342000 + 0.342000i
\(803\) 9.98949e10 + 9.98949e10i 0.240260 + 0.240260i
\(804\) 0 0
\(805\) 1.34195e11 1.06062e11i 0.319561 0.252567i
\(806\) 1.09272e11 0.258922
\(807\) 0 0
\(808\) 8.14346e10 + 8.14346e10i 0.191057 + 0.191057i
\(809\) 4.04427e11i 0.944160i −0.881556 0.472080i \(-0.843503\pi\)
0.881556 0.472080i \(-0.156497\pi\)
\(810\) 0 0
\(811\) −6.23463e11 −1.44121 −0.720605 0.693346i \(-0.756136\pi\)
−0.720605 + 0.693346i \(0.756136\pi\)
\(812\) 1.40138e10 1.40138e10i 0.0322353 0.0322353i
\(813\) 0 0
\(814\) 1.72488e11i 0.392882i
\(815\) 2.07777e11 + 2.43299e10i 0.470941 + 0.0551456i
\(816\) 0 0
\(817\) −5.81245e11 + 5.81245e11i −1.30458 + 1.30458i
\(818\) 1.74602e10 + 1.74602e10i 0.0389975 + 0.0389975i
\(819\) 0 0
\(820\) −2.07015e11 2.61927e11i −0.457875 0.579328i
\(821\) −3.67266e11 −0.808366 −0.404183 0.914678i \(-0.632444\pi\)
−0.404183 + 0.914678i \(0.632444\pi\)
\(822\) 0 0
\(823\) 1.17460e11 + 1.17460e11i 0.256030 + 0.256030i 0.823437 0.567407i \(-0.192053\pi\)
−0.567407 + 0.823437i \(0.692053\pi\)
\(824\) 1.01675e11i 0.220550i
\(825\) 0 0
\(826\) −4.70914e11 −1.01163
\(827\) 5.29740e11 5.29740e11i 1.13251 1.13251i 0.142748 0.989759i \(-0.454406\pi\)
0.989759 0.142748i \(-0.0455939\pi\)
\(828\) 0 0
\(829\) 2.39704e11i 0.507525i −0.967267 0.253762i \(-0.918332\pi\)
0.967267 0.253762i \(-0.0816681\pi\)
\(830\) −1.89485e11 + 1.49761e11i −0.399267 + 0.315563i
\(831\) 0 0
\(832\) −5.86631e10 + 5.86631e10i −0.122425 + 0.122425i
\(833\) 4.27878e11 + 4.27878e11i 0.888669 + 0.888669i
\(834\) 0 0
\(835\) 5.60694e10 4.78831e11i 0.115340 0.984999i
\(836\) −9.95720e10 −0.203851
\(837\) 0 0
\(838\) −2.41954e11 2.41954e11i −0.490634 0.490634i
\(839\) 5.22857e11i 1.05520i −0.849493 0.527601i \(-0.823092\pi\)
0.849493 0.527601i \(-0.176908\pi\)
\(840\) 0 0
\(841\) 4.98506e11 0.996520
\(842\) 1.42272e11 1.42272e11i 0.283055 0.283055i
\(843\) 0 0
\(844\) 5.34594e10i 0.105355i
\(845\) 2.90355e11 + 3.67372e11i 0.569511 + 0.720576i
\(846\) 0 0
\(847\) 4.86735e11 4.86735e11i 0.945712 0.945712i
\(848\) −6.10687e10 6.10687e10i −0.118096 0.118096i
\(849\) 0 0
\(850\) 3.24990e11 + 7.71686e10i 0.622579 + 0.147831i
\(851\) 2.09276e11 0.399025
\(852\) 0 0
\(853\) −2.94110e11 2.94110e11i −0.555537 0.555537i 0.372496 0.928034i \(-0.378502\pi\)
−0.928034 + 0.372496i \(0.878502\pi\)
\(854\) 8.48087e11i 1.59444i
\(855\) 0 0
\(856\) 1.25447e11 0.233650
\(857\) 1.69558e11 1.69558e11i 0.314336 0.314336i −0.532251 0.846587i \(-0.678654\pi\)
0.846587 + 0.532251i \(0.178654\pi\)
\(858\) 0 0
\(859\) 3.81187e11i 0.700109i 0.936729 + 0.350055i \(0.113837\pi\)
−0.936729 + 0.350055i \(0.886163\pi\)
\(860\) 5.28224e10 4.51102e11i 0.0965661 0.824671i
\(861\) 0 0
\(862\) 1.70174e11 1.70174e11i 0.308221 0.308221i
\(863\) −8.42734e10 8.42734e10i −0.151931 0.151931i 0.627049 0.778980i \(-0.284263\pi\)
−0.778980 + 0.627049i \(0.784263\pi\)
\(864\) 0 0
\(865\) 5.63300e11 + 6.59605e10i 1.00618 + 0.117820i
\(866\) −3.59693e11 −0.639529
\(867\) 0 0
\(868\) 8.20029e10 + 8.20029e10i 0.144461 + 0.144461i
\(869\) 1.65262e10i 0.0289797i
\(870\) 0 0
\(871\) −7.32085e11 −1.27200
\(872\) −9.55962e10 + 9.55962e10i −0.165339 + 0.165339i
\(873\) 0 0
\(874\) 1.20808e11i 0.207038i
\(875\) 8.51151e11 + 3.10402e11i 1.45203 + 0.529533i
\(876\) 0 0
\(877\) 3.72176e10 3.72176e10i 0.0629144 0.0629144i −0.674950 0.737864i \(-0.735835\pi\)
0.737864 + 0.674950i \(0.235835\pi\)
\(878\) 1.17523e11 + 1.17523e11i 0.197763 + 0.197763i
\(879\) 0 0
\(880\) 4.31631e10 3.41142e10i 0.0719751 0.0568859i
\(881\) 4.91908e10 0.0816545 0.0408273 0.999166i \(-0.487001\pi\)
0.0408273 + 0.999166i \(0.487001\pi\)
\(882\) 0 0
\(883\) 4.82360e11 + 4.82360e11i 0.793467 + 0.793467i 0.982056 0.188589i \(-0.0603914\pi\)
−0.188589 + 0.982056i \(0.560391\pi\)
\(884\) 3.82715e11i 0.626710i
\(885\) 0 0
\(886\) −2.87925e11 −0.467245
\(887\) −7.58872e11 + 7.58872e11i −1.22595 + 1.22595i −0.260472 + 0.965481i \(0.583878\pi\)
−0.965481 + 0.260472i \(0.916122\pi\)
\(888\) 0 0
\(889\) 6.11301e10i 0.0978697i
\(890\) 4.04964e10 + 4.74198e9i 0.0645440 + 0.00755788i
\(891\) 0 0
\(892\) 1.52322e11 1.52322e11i 0.240605 0.240605i
\(893\) −3.28582e11 3.28582e11i −0.516699 0.516699i
\(894\) 0 0
\(895\) 3.64710e11 + 4.61451e11i 0.568402 + 0.719173i
\(896\) −8.80472e10 −0.136610
\(897\) 0 0
\(898\) −2.24981e11 2.24981e11i −0.345972 0.345972i
\(899\) 1.01867e10i 0.0155953i
\(900\) 0 0
\(901\) −3.98410e11 −0.604548
\(902\) −1.79373e11 + 1.79373e11i −0.270975 + 0.270975i
\(903\) 0 0
\(904\) 2.40120e11i 0.359546i
\(905\) −2.00816e11 + 1.58716e11i −0.299367 + 0.236606i
\(906\) 0 0
\(907\) −8.25250e11 + 8.25250e11i −1.21943 + 1.21943i −0.251597 + 0.967832i \(0.580956\pi\)
−0.967832 + 0.251597i \(0.919044\pi\)
\(908\) 3.45279e11 + 3.45279e11i 0.507957 + 0.507957i
\(909\) 0 0
\(910\) −1.20726e11 + 1.03100e12i −0.176050 + 1.50346i
\(911\) −5.86650e11 −0.851737 −0.425869 0.904785i \(-0.640031\pi\)
−0.425869 + 0.904785i \(0.640031\pi\)
\(912\) 0 0
\(913\) 1.29763e11 + 1.29763e11i 0.186753 + 0.186753i
\(914\) 8.51548e11i 1.22018i
\(915\) 0 0
\(916\) −6.27612e11 −0.891475
\(917\) 1.00641e12 1.00641e12i 1.42330 1.42330i
\(918\) 0 0
\(919\) 1.27566e12i 1.78843i −0.447640 0.894214i \(-0.647735\pi\)
0.447640 0.894214i \(-0.352265\pi\)
\(920\) 4.13899e10 + 5.23688e10i 0.0577755 + 0.0731006i
\(921\) 0 0
\(922\) −2.24556e10 + 2.24556e10i −0.0310743 + 0.0310743i
\(923\) −7.30203e11 7.30203e11i −1.00609 1.00609i
\(924\) 0 0
\(925\) 5.81519e11 + 9.43674e11i 0.794322 + 1.28901i
\(926\) −2.94765e11 −0.400896
\(927\) 0 0
\(928\) 5.46877e9 + 5.46877e9i 0.00737391 + 0.00737391i
\(929\) 1.11916e12i 1.50255i 0.659991 + 0.751274i \(0.270560\pi\)
−0.659991 + 0.751274i \(0.729440\pi\)
\(930\) 0 0
\(931\) 1.15918e12 1.54295
\(932\) 3.33039e11 3.33039e11i 0.441399 0.441399i
\(933\) 0 0
\(934\) 1.90857e11i 0.250796i
\(935\) 2.95174e10 2.52077e11i 0.0386217 0.329828i
\(936\) 0 0
\(937\) 3.48571e11 3.48571e11i 0.452202 0.452202i −0.443883 0.896085i \(-0.646399\pi\)
0.896085 + 0.443883i \(0.146399\pi\)
\(938\) −5.49391e11 5.49391e11i −0.709693 0.709693i
\(939\) 0 0
\(940\) 2.55011e11 + 2.98609e10i 0.326623 + 0.0382465i
\(941\) −3.10729e11 −0.396299 −0.198150 0.980172i \(-0.563493\pi\)
−0.198150 + 0.980172i \(0.563493\pi\)
\(942\) 0 0
\(943\) −2.17628e11 2.17628e11i −0.275213 0.275213i
\(944\) 1.83771e11i 0.231413i
\(945\) 0 0
\(946\) −3.45097e11 −0.430900
\(947\) 4.81109e11 4.81109e11i 0.598197 0.598197i −0.341636 0.939832i \(-0.610981\pi\)
0.939832 + 0.341636i \(0.110981\pi\)
\(948\) 0 0
\(949\) 1.04019e12i 1.28247i
\(950\) 5.44753e11 3.35692e11i 0.668813 0.412142i
\(951\) 0 0
\(952\) −2.87208e11 + 2.87208e11i −0.349662 + 0.349662i
\(953\) −2.19961e11 2.19961e11i −0.266670 0.266670i 0.561087 0.827757i \(-0.310383\pi\)
−0.827757 + 0.561087i \(0.810383\pi\)
\(954\) 0 0
\(955\) −2.72656e11 + 2.15495e11i −0.327794 + 0.259074i
\(956\) −5.86199e11 −0.701800
\(957\) 0 0
\(958\) −6.46624e11 6.46624e11i −0.767697 0.767697i
\(959\) 7.70338e10i 0.0910767i
\(960\) 0 0
\(961\) −7.93283e11 −0.930110
\(962\) −8.98049e11 + 8.98049e11i −1.04858 + 1.04858i
\(963\) 0 0
\(964\) 7.45601e11i 0.863373i
\(965\) 1.51677e11 + 1.77609e10i 0.174909 + 0.0204812i
\(966\) 0 0
\(967\) 6.94014e11 6.94014e11i 0.793711 0.793711i −0.188384 0.982095i \(-0.560325\pi\)
0.982095 + 0.188384i \(0.0603251\pi\)
\(968\) 1.89945e11 + 1.89945e11i 0.216334 + 0.216334i
\(969\) 0 0
\(970\) −1.77893e11 2.25079e11i −0.200942 0.254243i
\(971\) −1.29419e12 −1.45587 −0.727935 0.685646i \(-0.759520\pi\)
−0.727935 + 0.685646i \(0.759520\pi\)
\(972\) 0 0
\(973\) 1.05043e12 + 1.05043e12i 1.17197 + 1.17197i
\(974\) 1.26902e12i 1.41005i
\(975\) 0 0
\(976\) −3.30960e11 −0.364733
\(977\) −2.00533e11 + 2.00533e11i −0.220093 + 0.220093i −0.808538 0.588444i \(-0.799741\pi\)
0.588444 + 0.808538i \(0.299741\pi\)
\(978\) 0 0
\(979\) 3.09801e10i 0.0337250i
\(980\) −5.02490e11 + 3.97146e11i −0.544783 + 0.430572i
\(981\) 0 0
\(982\) −4.80729e11 + 4.80729e11i −0.516957 + 0.516957i
\(983\) −4.14637e11 4.14637e11i −0.444072 0.444072i 0.449306 0.893378i \(-0.351671\pi\)
−0.893378 + 0.449306i \(0.851671\pi\)
\(984\) 0 0
\(985\) 1.42915e11 1.22049e12i 0.151821 1.29655i
\(986\) 3.56780e10 0.0377479
\(987\) 0 0
\(988\) 5.18415e11 + 5.18415e11i 0.544064 + 0.544064i
\(989\) 4.18698e11i 0.437638i
\(990\) 0 0
\(991\) −6.51779e11 −0.675780 −0.337890 0.941186i \(-0.609713\pi\)
−0.337890 + 0.941186i \(0.609713\pi\)
\(992\) −3.20010e10 + 3.20010e10i −0.0330459 + 0.0330459i
\(993\) 0 0
\(994\) 1.09596e12i 1.12266i
\(995\) 6.97667e10 + 8.82725e10i 0.0711796 + 0.0900603i
\(996\) 0 0
\(997\) −6.71342e11 + 6.71342e11i −0.679459 + 0.679459i −0.959878 0.280419i \(-0.909527\pi\)
0.280419 + 0.959878i \(0.409527\pi\)
\(998\) 8.69991e11 + 8.69991e11i 0.876986 + 0.876986i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 90.9.g.b.73.2 4
3.2 odd 2 10.9.c.a.3.2 4
5.2 odd 4 inner 90.9.g.b.37.2 4
12.11 even 2 80.9.p.b.33.1 4
15.2 even 4 10.9.c.a.7.2 yes 4
15.8 even 4 50.9.c.e.7.1 4
15.14 odd 2 50.9.c.e.43.1 4
60.47 odd 4 80.9.p.b.17.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
10.9.c.a.3.2 4 3.2 odd 2
10.9.c.a.7.2 yes 4 15.2 even 4
50.9.c.e.7.1 4 15.8 even 4
50.9.c.e.43.1 4 15.14 odd 2
80.9.p.b.17.1 4 60.47 odd 4
80.9.p.b.33.1 4 12.11 even 2
90.9.g.b.37.2 4 5.2 odd 4 inner
90.9.g.b.73.2 4 1.1 even 1 trivial