Defining parameters
Level: | \( N \) | \(=\) | \( 90 = 2 \cdot 3^{2} \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 6 \) |
Character orbit: | \([\chi]\) | \(=\) | 90.i (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 45 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(108\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{6}(90, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 188 | 60 | 128 |
Cusp forms | 172 | 60 | 112 |
Eisenstein series | 16 | 0 | 16 |
Trace form
Decomposition of \(S_{6}^{\mathrm{new}}(90, [\chi])\) into newform subspaces
Label | Dim. | \(A\) | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
\(a_2\) | \(a_3\) | \(a_5\) | \(a_7\) | ||||||
90.6.i.a | \(60\) | \(14.435\) | None | \(0\) | \(0\) | \(58\) | \(0\) |
Decomposition of \(S_{6}^{\mathrm{old}}(90, [\chi])\) into lower level spaces
\( S_{6}^{\mathrm{old}}(90, [\chi]) \cong \) \(S_{6}^{\mathrm{new}}(45, [\chi])\)\(^{\oplus 2}\)