Properties

Label 90.4.c.b.19.1
Level $90$
Weight $4$
Character 90.19
Analytic conductor $5.310$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [90,4,Mod(19,90)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(90, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("90.19");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 90 = 2 \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 90.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.31017190052\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 10)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 19.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 90.19
Dual form 90.4.c.b.19.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000i q^{2} -4.00000 q^{4} +(5.00000 + 10.0000i) q^{5} +26.0000i q^{7} +8.00000i q^{8} +O(q^{10})\) \(q-2.00000i q^{2} -4.00000 q^{4} +(5.00000 + 10.0000i) q^{5} +26.0000i q^{7} +8.00000i q^{8} +(20.0000 - 10.0000i) q^{10} +28.0000 q^{11} -12.0000i q^{13} +52.0000 q^{14} +16.0000 q^{16} +64.0000i q^{17} +60.0000 q^{19} +(-20.0000 - 40.0000i) q^{20} -56.0000i q^{22} -58.0000i q^{23} +(-75.0000 + 100.000i) q^{25} -24.0000 q^{26} -104.000i q^{28} +90.0000 q^{29} -128.000 q^{31} -32.0000i q^{32} +128.000 q^{34} +(-260.000 + 130.000i) q^{35} +236.000i q^{37} -120.000i q^{38} +(-80.0000 + 40.0000i) q^{40} -242.000 q^{41} -362.000i q^{43} -112.000 q^{44} -116.000 q^{46} -226.000i q^{47} -333.000 q^{49} +(200.000 + 150.000i) q^{50} +48.0000i q^{52} -108.000i q^{53} +(140.000 + 280.000i) q^{55} -208.000 q^{56} -180.000i q^{58} -20.0000 q^{59} +542.000 q^{61} +256.000i q^{62} -64.0000 q^{64} +(120.000 - 60.0000i) q^{65} -434.000i q^{67} -256.000i q^{68} +(260.000 + 520.000i) q^{70} +1128.00 q^{71} -632.000i q^{73} +472.000 q^{74} -240.000 q^{76} +728.000i q^{77} +720.000 q^{79} +(80.0000 + 160.000i) q^{80} +484.000i q^{82} -478.000i q^{83} +(-640.000 + 320.000i) q^{85} -724.000 q^{86} +224.000i q^{88} -490.000 q^{89} +312.000 q^{91} +232.000i q^{92} -452.000 q^{94} +(300.000 + 600.000i) q^{95} +1456.00i q^{97} +666.000i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 8 q^{4} + 10 q^{5}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 8 q^{4} + 10 q^{5} + 40 q^{10} + 56 q^{11} + 104 q^{14} + 32 q^{16} + 120 q^{19} - 40 q^{20} - 150 q^{25} - 48 q^{26} + 180 q^{29} - 256 q^{31} + 256 q^{34} - 520 q^{35} - 160 q^{40} - 484 q^{41} - 224 q^{44} - 232 q^{46} - 666 q^{49} + 400 q^{50} + 280 q^{55} - 416 q^{56} - 40 q^{59} + 1084 q^{61} - 128 q^{64} + 240 q^{65} + 520 q^{70} + 2256 q^{71} + 944 q^{74} - 480 q^{76} + 1440 q^{79} + 160 q^{80} - 1280 q^{85} - 1448 q^{86} - 980 q^{89} + 624 q^{91} - 904 q^{94} + 600 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/90\mathbb{Z}\right)^\times\).

\(n\) \(11\) \(37\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000i 0.707107i
\(3\) 0 0
\(4\) −4.00000 −0.500000
\(5\) 5.00000 + 10.0000i 0.447214 + 0.894427i
\(6\) 0 0
\(7\) 26.0000i 1.40387i 0.712242 + 0.701934i \(0.247680\pi\)
−0.712242 + 0.701934i \(0.752320\pi\)
\(8\) 8.00000i 0.353553i
\(9\) 0 0
\(10\) 20.0000 10.0000i 0.632456 0.316228i
\(11\) 28.0000 0.767483 0.383742 0.923440i \(-0.374635\pi\)
0.383742 + 0.923440i \(0.374635\pi\)
\(12\) 0 0
\(13\) 12.0000i 0.256015i −0.991773 0.128008i \(-0.959142\pi\)
0.991773 0.128008i \(-0.0408582\pi\)
\(14\) 52.0000 0.992685
\(15\) 0 0
\(16\) 16.0000 0.250000
\(17\) 64.0000i 0.913075i 0.889704 + 0.456538i \(0.150911\pi\)
−0.889704 + 0.456538i \(0.849089\pi\)
\(18\) 0 0
\(19\) 60.0000 0.724471 0.362235 0.932087i \(-0.382014\pi\)
0.362235 + 0.932087i \(0.382014\pi\)
\(20\) −20.0000 40.0000i −0.223607 0.447214i
\(21\) 0 0
\(22\) 56.0000i 0.542693i
\(23\) 58.0000i 0.525819i −0.964821 0.262909i \(-0.915318\pi\)
0.964821 0.262909i \(-0.0846821\pi\)
\(24\) 0 0
\(25\) −75.0000 + 100.000i −0.600000 + 0.800000i
\(26\) −24.0000 −0.181030
\(27\) 0 0
\(28\) 104.000i 0.701934i
\(29\) 90.0000 0.576296 0.288148 0.957586i \(-0.406961\pi\)
0.288148 + 0.957586i \(0.406961\pi\)
\(30\) 0 0
\(31\) −128.000 −0.741596 −0.370798 0.928714i \(-0.620916\pi\)
−0.370798 + 0.928714i \(0.620916\pi\)
\(32\) 32.0000i 0.176777i
\(33\) 0 0
\(34\) 128.000 0.645642
\(35\) −260.000 + 130.000i −1.25566 + 0.627829i
\(36\) 0 0
\(37\) 236.000i 1.04860i 0.851534 + 0.524299i \(0.175673\pi\)
−0.851534 + 0.524299i \(0.824327\pi\)
\(38\) 120.000i 0.512278i
\(39\) 0 0
\(40\) −80.0000 + 40.0000i −0.316228 + 0.158114i
\(41\) −242.000 −0.921806 −0.460903 0.887450i \(-0.652474\pi\)
−0.460903 + 0.887450i \(0.652474\pi\)
\(42\) 0 0
\(43\) 362.000i 1.28383i −0.766778 0.641913i \(-0.778141\pi\)
0.766778 0.641913i \(-0.221859\pi\)
\(44\) −112.000 −0.383742
\(45\) 0 0
\(46\) −116.000 −0.371810
\(47\) 226.000i 0.701393i −0.936489 0.350697i \(-0.885945\pi\)
0.936489 0.350697i \(-0.114055\pi\)
\(48\) 0 0
\(49\) −333.000 −0.970845
\(50\) 200.000 + 150.000i 0.565685 + 0.424264i
\(51\) 0 0
\(52\) 48.0000i 0.128008i
\(53\) 108.000i 0.279905i −0.990158 0.139952i \(-0.955305\pi\)
0.990158 0.139952i \(-0.0446949\pi\)
\(54\) 0 0
\(55\) 140.000 + 280.000i 0.343229 + 0.686458i
\(56\) −208.000 −0.496342
\(57\) 0 0
\(58\) 180.000i 0.407503i
\(59\) −20.0000 −0.0441318 −0.0220659 0.999757i \(-0.507024\pi\)
−0.0220659 + 0.999757i \(0.507024\pi\)
\(60\) 0 0
\(61\) 542.000 1.13764 0.568820 0.822462i \(-0.307400\pi\)
0.568820 + 0.822462i \(0.307400\pi\)
\(62\) 256.000i 0.524388i
\(63\) 0 0
\(64\) −64.0000 −0.125000
\(65\) 120.000 60.0000i 0.228987 0.114494i
\(66\) 0 0
\(67\) 434.000i 0.791366i −0.918387 0.395683i \(-0.870508\pi\)
0.918387 0.395683i \(-0.129492\pi\)
\(68\) 256.000i 0.456538i
\(69\) 0 0
\(70\) 260.000 + 520.000i 0.443942 + 0.887884i
\(71\) 1128.00 1.88548 0.942739 0.333531i \(-0.108240\pi\)
0.942739 + 0.333531i \(0.108240\pi\)
\(72\) 0 0
\(73\) 632.000i 1.01329i −0.862155 0.506644i \(-0.830886\pi\)
0.862155 0.506644i \(-0.169114\pi\)
\(74\) 472.000 0.741471
\(75\) 0 0
\(76\) −240.000 −0.362235
\(77\) 728.000i 1.07745i
\(78\) 0 0
\(79\) 720.000 1.02540 0.512698 0.858569i \(-0.328646\pi\)
0.512698 + 0.858569i \(0.328646\pi\)
\(80\) 80.0000 + 160.000i 0.111803 + 0.223607i
\(81\) 0 0
\(82\) 484.000i 0.651815i
\(83\) 478.000i 0.632136i −0.948736 0.316068i \(-0.897637\pi\)
0.948736 0.316068i \(-0.102363\pi\)
\(84\) 0 0
\(85\) −640.000 + 320.000i −0.816679 + 0.408340i
\(86\) −724.000 −0.907801
\(87\) 0 0
\(88\) 224.000i 0.271346i
\(89\) −490.000 −0.583594 −0.291797 0.956480i \(-0.594253\pi\)
−0.291797 + 0.956480i \(0.594253\pi\)
\(90\) 0 0
\(91\) 312.000 0.359412
\(92\) 232.000i 0.262909i
\(93\) 0 0
\(94\) −452.000 −0.495960
\(95\) 300.000 + 600.000i 0.323993 + 0.647986i
\(96\) 0 0
\(97\) 1456.00i 1.52407i 0.647538 + 0.762033i \(0.275799\pi\)
−0.647538 + 0.762033i \(0.724201\pi\)
\(98\) 666.000i 0.686491i
\(99\) 0 0
\(100\) 300.000 400.000i 0.300000 0.400000i
\(101\) 578.000 0.569437 0.284719 0.958611i \(-0.408100\pi\)
0.284719 + 0.958611i \(0.408100\pi\)
\(102\) 0 0
\(103\) 1462.00i 1.39859i −0.714831 0.699297i \(-0.753497\pi\)
0.714831 0.699297i \(-0.246503\pi\)
\(104\) 96.0000 0.0905151
\(105\) 0 0
\(106\) −216.000 −0.197922
\(107\) 966.000i 0.872773i −0.899759 0.436387i \(-0.856258\pi\)
0.899759 0.436387i \(-0.143742\pi\)
\(108\) 0 0
\(109\) −370.000 −0.325134 −0.162567 0.986698i \(-0.551977\pi\)
−0.162567 + 0.986698i \(0.551977\pi\)
\(110\) 560.000 280.000i 0.485399 0.242700i
\(111\) 0 0
\(112\) 416.000i 0.350967i
\(113\) 528.000i 0.439558i −0.975550 0.219779i \(-0.929466\pi\)
0.975550 0.219779i \(-0.0705336\pi\)
\(114\) 0 0
\(115\) 580.000 290.000i 0.470307 0.235153i
\(116\) −360.000 −0.288148
\(117\) 0 0
\(118\) 40.0000i 0.0312059i
\(119\) −1664.00 −1.28184
\(120\) 0 0
\(121\) −547.000 −0.410969
\(122\) 1084.00i 0.804432i
\(123\) 0 0
\(124\) 512.000 0.370798
\(125\) −1375.00 250.000i −0.983870 0.178885i
\(126\) 0 0
\(127\) 1534.00i 1.07181i −0.844277 0.535907i \(-0.819970\pi\)
0.844277 0.535907i \(-0.180030\pi\)
\(128\) 128.000i 0.0883883i
\(129\) 0 0
\(130\) −120.000 240.000i −0.0809592 0.161918i
\(131\) −12.0000 −0.00800340 −0.00400170 0.999992i \(-0.501274\pi\)
−0.00400170 + 0.999992i \(0.501274\pi\)
\(132\) 0 0
\(133\) 1560.00i 1.01706i
\(134\) −868.000 −0.559580
\(135\) 0 0
\(136\) −512.000 −0.322821
\(137\) 1224.00i 0.763309i 0.924305 + 0.381655i \(0.124646\pi\)
−0.924305 + 0.381655i \(0.875354\pi\)
\(138\) 0 0
\(139\) −3100.00 −1.89164 −0.945822 0.324685i \(-0.894742\pi\)
−0.945822 + 0.324685i \(0.894742\pi\)
\(140\) 1040.00 520.000i 0.627829 0.313914i
\(141\) 0 0
\(142\) 2256.00i 1.33323i
\(143\) 336.000i 0.196488i
\(144\) 0 0
\(145\) 450.000 + 900.000i 0.257727 + 0.515455i
\(146\) −1264.00 −0.716503
\(147\) 0 0
\(148\) 944.000i 0.524299i
\(149\) 250.000 0.137455 0.0687275 0.997635i \(-0.478106\pi\)
0.0687275 + 0.997635i \(0.478106\pi\)
\(150\) 0 0
\(151\) 2152.00 1.15978 0.579892 0.814694i \(-0.303095\pi\)
0.579892 + 0.814694i \(0.303095\pi\)
\(152\) 480.000i 0.256139i
\(153\) 0 0
\(154\) 1456.00 0.761869
\(155\) −640.000 1280.00i −0.331652 0.663304i
\(156\) 0 0
\(157\) 524.000i 0.266368i −0.991091 0.133184i \(-0.957480\pi\)
0.991091 0.133184i \(-0.0425201\pi\)
\(158\) 1440.00i 0.725065i
\(159\) 0 0
\(160\) 320.000 160.000i 0.158114 0.0790569i
\(161\) 1508.00 0.738180
\(162\) 0 0
\(163\) 3518.00i 1.69050i 0.534373 + 0.845249i \(0.320548\pi\)
−0.534373 + 0.845249i \(0.679452\pi\)
\(164\) 968.000 0.460903
\(165\) 0 0
\(166\) −956.000 −0.446988
\(167\) 534.000i 0.247438i 0.992317 + 0.123719i \(0.0394822\pi\)
−0.992317 + 0.123719i \(0.960518\pi\)
\(168\) 0 0
\(169\) 2053.00 0.934456
\(170\) 640.000 + 1280.00i 0.288740 + 0.577480i
\(171\) 0 0
\(172\) 1448.00i 0.641913i
\(173\) 4252.00i 1.86863i 0.356444 + 0.934317i \(0.383989\pi\)
−0.356444 + 0.934317i \(0.616011\pi\)
\(174\) 0 0
\(175\) −2600.00 1950.00i −1.12309 0.842321i
\(176\) 448.000 0.191871
\(177\) 0 0
\(178\) 980.000i 0.412664i
\(179\) 2500.00 1.04390 0.521952 0.852975i \(-0.325204\pi\)
0.521952 + 0.852975i \(0.325204\pi\)
\(180\) 0 0
\(181\) −2578.00 −1.05868 −0.529340 0.848410i \(-0.677561\pi\)
−0.529340 + 0.848410i \(0.677561\pi\)
\(182\) 624.000i 0.254143i
\(183\) 0 0
\(184\) 464.000 0.185905
\(185\) −2360.00 + 1180.00i −0.937895 + 0.468948i
\(186\) 0 0
\(187\) 1792.00i 0.700770i
\(188\) 904.000i 0.350697i
\(189\) 0 0
\(190\) 1200.00 600.000i 0.458196 0.229098i
\(191\) 768.000 0.290945 0.145473 0.989362i \(-0.453530\pi\)
0.145473 + 0.989362i \(0.453530\pi\)
\(192\) 0 0
\(193\) 2608.00i 0.972684i 0.873769 + 0.486342i \(0.161669\pi\)
−0.873769 + 0.486342i \(0.838331\pi\)
\(194\) 2912.00 1.07768
\(195\) 0 0
\(196\) 1332.00 0.485423
\(197\) 5116.00i 1.85025i −0.379659 0.925127i \(-0.623959\pi\)
0.379659 0.925127i \(-0.376041\pi\)
\(198\) 0 0
\(199\) 3480.00 1.23965 0.619826 0.784739i \(-0.287203\pi\)
0.619826 + 0.784739i \(0.287203\pi\)
\(200\) −800.000 600.000i −0.282843 0.212132i
\(201\) 0 0
\(202\) 1156.00i 0.402653i
\(203\) 2340.00i 0.809043i
\(204\) 0 0
\(205\) −1210.00 2420.00i −0.412244 0.824488i
\(206\) −2924.00 −0.988955
\(207\) 0 0
\(208\) 192.000i 0.0640039i
\(209\) 1680.00 0.556019
\(210\) 0 0
\(211\) 3132.00 1.02188 0.510938 0.859618i \(-0.329298\pi\)
0.510938 + 0.859618i \(0.329298\pi\)
\(212\) 432.000i 0.139952i
\(213\) 0 0
\(214\) −1932.00 −0.617144
\(215\) 3620.00 1810.00i 1.14829 0.574144i
\(216\) 0 0
\(217\) 3328.00i 1.04110i
\(218\) 740.000i 0.229904i
\(219\) 0 0
\(220\) −560.000 1120.00i −0.171615 0.343229i
\(221\) 768.000 0.233761
\(222\) 0 0
\(223\) 62.0000i 0.0186181i −0.999957 0.00930903i \(-0.997037\pi\)
0.999957 0.00930903i \(-0.00296320\pi\)
\(224\) 832.000 0.248171
\(225\) 0 0
\(226\) −1056.00 −0.310814
\(227\) 5314.00i 1.55376i 0.629651 + 0.776878i \(0.283198\pi\)
−0.629651 + 0.776878i \(0.716802\pi\)
\(228\) 0 0
\(229\) 190.000 0.0548277 0.0274139 0.999624i \(-0.491273\pi\)
0.0274139 + 0.999624i \(0.491273\pi\)
\(230\) −580.000 1160.00i −0.166279 0.332557i
\(231\) 0 0
\(232\) 720.000i 0.203751i
\(233\) 2408.00i 0.677053i −0.940957 0.338526i \(-0.890072\pi\)
0.940957 0.338526i \(-0.109928\pi\)
\(234\) 0 0
\(235\) 2260.00 1130.00i 0.627345 0.313673i
\(236\) 80.0000 0.0220659
\(237\) 0 0
\(238\) 3328.00i 0.906396i
\(239\) −5680.00 −1.53727 −0.768637 0.639685i \(-0.779065\pi\)
−0.768637 + 0.639685i \(0.779065\pi\)
\(240\) 0 0
\(241\) −278.000 −0.0743052 −0.0371526 0.999310i \(-0.511829\pi\)
−0.0371526 + 0.999310i \(0.511829\pi\)
\(242\) 1094.00i 0.290599i
\(243\) 0 0
\(244\) −2168.00 −0.568820
\(245\) −1665.00 3330.00i −0.434175 0.868351i
\(246\) 0 0
\(247\) 720.000i 0.185476i
\(248\) 1024.00i 0.262194i
\(249\) 0 0
\(250\) −500.000 + 2750.00i −0.126491 + 0.695701i
\(251\) −3252.00 −0.817787 −0.408893 0.912582i \(-0.634085\pi\)
−0.408893 + 0.912582i \(0.634085\pi\)
\(252\) 0 0
\(253\) 1624.00i 0.403557i
\(254\) −3068.00 −0.757888
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) 1536.00i 0.372813i −0.982473 0.186407i \(-0.940316\pi\)
0.982473 0.186407i \(-0.0596842\pi\)
\(258\) 0 0
\(259\) −6136.00 −1.47209
\(260\) −480.000 + 240.000i −0.114494 + 0.0572468i
\(261\) 0 0
\(262\) 24.0000i 0.00565926i
\(263\) 4858.00i 1.13900i −0.821991 0.569500i \(-0.807137\pi\)
0.821991 0.569500i \(-0.192863\pi\)
\(264\) 0 0
\(265\) 1080.00 540.000i 0.250354 0.125177i
\(266\) 3120.00 0.719171
\(267\) 0 0
\(268\) 1736.00i 0.395683i
\(269\) 2610.00 0.591578 0.295789 0.955253i \(-0.404417\pi\)
0.295789 + 0.955253i \(0.404417\pi\)
\(270\) 0 0
\(271\) −5168.00 −1.15843 −0.579213 0.815176i \(-0.696640\pi\)
−0.579213 + 0.815176i \(0.696640\pi\)
\(272\) 1024.00i 0.228269i
\(273\) 0 0
\(274\) 2448.00 0.539741
\(275\) −2100.00 + 2800.00i −0.460490 + 0.613987i
\(276\) 0 0
\(277\) 1924.00i 0.417336i −0.977987 0.208668i \(-0.933087\pi\)
0.977987 0.208668i \(-0.0669127\pi\)
\(278\) 6200.00i 1.33759i
\(279\) 0 0
\(280\) −1040.00 2080.00i −0.221971 0.443942i
\(281\) −3042.00 −0.645803 −0.322901 0.946433i \(-0.604658\pi\)
−0.322901 + 0.946433i \(0.604658\pi\)
\(282\) 0 0
\(283\) 1718.00i 0.360864i 0.983587 + 0.180432i \(0.0577496\pi\)
−0.983587 + 0.180432i \(0.942250\pi\)
\(284\) −4512.00 −0.942739
\(285\) 0 0
\(286\) −672.000 −0.138938
\(287\) 6292.00i 1.29409i
\(288\) 0 0
\(289\) 817.000 0.166294
\(290\) 1800.00 900.000i 0.364482 0.182241i
\(291\) 0 0
\(292\) 2528.00i 0.506644i
\(293\) 2292.00i 0.456997i 0.973544 + 0.228498i \(0.0733816\pi\)
−0.973544 + 0.228498i \(0.926618\pi\)
\(294\) 0 0
\(295\) −100.000 200.000i −0.0197364 0.0394727i
\(296\) −1888.00 −0.370736
\(297\) 0 0
\(298\) 500.000i 0.0971954i
\(299\) −696.000 −0.134618
\(300\) 0 0
\(301\) 9412.00 1.80232
\(302\) 4304.00i 0.820091i
\(303\) 0 0
\(304\) 960.000 0.181118
\(305\) 2710.00 + 5420.00i 0.508768 + 1.01754i
\(306\) 0 0
\(307\) 5406.00i 1.00501i 0.864576 + 0.502503i \(0.167587\pi\)
−0.864576 + 0.502503i \(0.832413\pi\)
\(308\) 2912.00i 0.538723i
\(309\) 0 0
\(310\) −2560.00 + 1280.00i −0.469027 + 0.234513i
\(311\) 5688.00 1.03710 0.518548 0.855048i \(-0.326473\pi\)
0.518548 + 0.855048i \(0.326473\pi\)
\(312\) 0 0
\(313\) 7352.00i 1.32767i −0.747881 0.663833i \(-0.768928\pi\)
0.747881 0.663833i \(-0.231072\pi\)
\(314\) −1048.00 −0.188351
\(315\) 0 0
\(316\) −2880.00 −0.512698
\(317\) 3484.00i 0.617290i 0.951177 + 0.308645i \(0.0998755\pi\)
−0.951177 + 0.308645i \(0.900124\pi\)
\(318\) 0 0
\(319\) 2520.00 0.442298
\(320\) −320.000 640.000i −0.0559017 0.111803i
\(321\) 0 0
\(322\) 3016.00i 0.521972i
\(323\) 3840.00i 0.661496i
\(324\) 0 0
\(325\) 1200.00 + 900.000i 0.204812 + 0.153609i
\(326\) 7036.00 1.19536
\(327\) 0 0
\(328\) 1936.00i 0.325908i
\(329\) 5876.00 0.984664
\(330\) 0 0
\(331\) −7868.00 −1.30654 −0.653269 0.757125i \(-0.726603\pi\)
−0.653269 + 0.757125i \(0.726603\pi\)
\(332\) 1912.00i 0.316068i
\(333\) 0 0
\(334\) 1068.00 0.174965
\(335\) 4340.00 2170.00i 0.707819 0.353910i
\(336\) 0 0
\(337\) 656.000i 0.106037i 0.998594 + 0.0530187i \(0.0168843\pi\)
−0.998594 + 0.0530187i \(0.983116\pi\)
\(338\) 4106.00i 0.660760i
\(339\) 0 0
\(340\) 2560.00 1280.00i 0.408340 0.204170i
\(341\) −3584.00 −0.569163
\(342\) 0 0
\(343\) 260.000i 0.0409291i
\(344\) 2896.00 0.453901
\(345\) 0 0
\(346\) 8504.00 1.32132
\(347\) 5754.00i 0.890176i 0.895487 + 0.445088i \(0.146828\pi\)
−0.895487 + 0.445088i \(0.853172\pi\)
\(348\) 0 0
\(349\) 3110.00 0.477004 0.238502 0.971142i \(-0.423344\pi\)
0.238502 + 0.971142i \(0.423344\pi\)
\(350\) −3900.00 + 5200.00i −0.595611 + 0.794148i
\(351\) 0 0
\(352\) 896.000i 0.135673i
\(353\) 7808.00i 1.17727i −0.808397 0.588637i \(-0.799665\pi\)
0.808397 0.588637i \(-0.200335\pi\)
\(354\) 0 0
\(355\) 5640.00 + 11280.0i 0.843212 + 1.68642i
\(356\) 1960.00 0.291797
\(357\) 0 0
\(358\) 5000.00i 0.738151i
\(359\) −9240.00 −1.35841 −0.679204 0.733949i \(-0.737675\pi\)
−0.679204 + 0.733949i \(0.737675\pi\)
\(360\) 0 0
\(361\) −3259.00 −0.475142
\(362\) 5156.00i 0.748600i
\(363\) 0 0
\(364\) −1248.00 −0.179706
\(365\) 6320.00 3160.00i 0.906312 0.453156i
\(366\) 0 0
\(367\) 3214.00i 0.457137i −0.973528 0.228569i \(-0.926595\pi\)
0.973528 0.228569i \(-0.0734046\pi\)
\(368\) 928.000i 0.131455i
\(369\) 0 0
\(370\) 2360.00 + 4720.00i 0.331596 + 0.663192i
\(371\) 2808.00 0.392949
\(372\) 0 0
\(373\) 348.000i 0.0483077i 0.999708 + 0.0241538i \(0.00768915\pi\)
−0.999708 + 0.0241538i \(0.992311\pi\)
\(374\) 3584.00 0.495519
\(375\) 0 0
\(376\) 1808.00 0.247980
\(377\) 1080.00i 0.147541i
\(378\) 0 0
\(379\) −4940.00 −0.669527 −0.334764 0.942302i \(-0.608656\pi\)
−0.334764 + 0.942302i \(0.608656\pi\)
\(380\) −1200.00 2400.00i −0.161997 0.323993i
\(381\) 0 0
\(382\) 1536.00i 0.205729i
\(383\) 6142.00i 0.819430i 0.912214 + 0.409715i \(0.134372\pi\)
−0.912214 + 0.409715i \(0.865628\pi\)
\(384\) 0 0
\(385\) −7280.00 + 3640.00i −0.963697 + 0.481848i
\(386\) 5216.00 0.687791
\(387\) 0 0
\(388\) 5824.00i 0.762033i
\(389\) 3050.00 0.397535 0.198768 0.980047i \(-0.436306\pi\)
0.198768 + 0.980047i \(0.436306\pi\)
\(390\) 0 0
\(391\) 3712.00 0.480112
\(392\) 2664.00i 0.343246i
\(393\) 0 0
\(394\) −10232.0 −1.30833
\(395\) 3600.00 + 7200.00i 0.458571 + 0.917143i
\(396\) 0 0
\(397\) 5396.00i 0.682160i 0.940034 + 0.341080i \(0.110793\pi\)
−0.940034 + 0.341080i \(0.889207\pi\)
\(398\) 6960.00i 0.876566i
\(399\) 0 0
\(400\) −1200.00 + 1600.00i −0.150000 + 0.200000i
\(401\) −14482.0 −1.80348 −0.901741 0.432276i \(-0.857711\pi\)
−0.901741 + 0.432276i \(0.857711\pi\)
\(402\) 0 0
\(403\) 1536.00i 0.189860i
\(404\) −2312.00 −0.284719
\(405\) 0 0
\(406\) 4680.00 0.572080
\(407\) 6608.00i 0.804782i
\(408\) 0 0
\(409\) 1090.00 0.131778 0.0658888 0.997827i \(-0.479012\pi\)
0.0658888 + 0.997827i \(0.479012\pi\)
\(410\) −4840.00 + 2420.00i −0.583001 + 0.291501i
\(411\) 0 0
\(412\) 5848.00i 0.699297i
\(413\) 520.000i 0.0619553i
\(414\) 0 0
\(415\) 4780.00 2390.00i 0.565400 0.282700i
\(416\) −384.000 −0.0452576
\(417\) 0 0
\(418\) 3360.00i 0.393165i
\(419\) −7180.00 −0.837150 −0.418575 0.908182i \(-0.637470\pi\)
−0.418575 + 0.908182i \(0.637470\pi\)
\(420\) 0 0
\(421\) −8138.00 −0.942095 −0.471047 0.882108i \(-0.656124\pi\)
−0.471047 + 0.882108i \(0.656124\pi\)
\(422\) 6264.00i 0.722575i
\(423\) 0 0
\(424\) 864.000 0.0989612
\(425\) −6400.00 4800.00i −0.730460 0.547845i
\(426\) 0 0
\(427\) 14092.0i 1.59710i
\(428\) 3864.00i 0.436387i
\(429\) 0 0
\(430\) −3620.00 7240.00i −0.405981 0.811962i
\(431\) 208.000 0.0232460 0.0116230 0.999932i \(-0.496300\pi\)
0.0116230 + 0.999932i \(0.496300\pi\)
\(432\) 0 0
\(433\) 12992.0i 1.44193i −0.692971 0.720965i \(-0.743699\pi\)
0.692971 0.720965i \(-0.256301\pi\)
\(434\) −6656.00 −0.736171
\(435\) 0 0
\(436\) 1480.00 0.162567
\(437\) 3480.00i 0.380940i
\(438\) 0 0
\(439\) −1080.00 −0.117416 −0.0587080 0.998275i \(-0.518698\pi\)
−0.0587080 + 0.998275i \(0.518698\pi\)
\(440\) −2240.00 + 1120.00i −0.242700 + 0.121350i
\(441\) 0 0
\(442\) 1536.00i 0.165294i
\(443\) 9078.00i 0.973609i −0.873511 0.486805i \(-0.838162\pi\)
0.873511 0.486805i \(-0.161838\pi\)
\(444\) 0 0
\(445\) −2450.00 4900.00i −0.260991 0.521983i
\(446\) −124.000 −0.0131650
\(447\) 0 0
\(448\) 1664.00i 0.175484i
\(449\) 14310.0 1.50408 0.752039 0.659119i \(-0.229071\pi\)
0.752039 + 0.659119i \(0.229071\pi\)
\(450\) 0 0
\(451\) −6776.00 −0.707471
\(452\) 2112.00i 0.219779i
\(453\) 0 0
\(454\) 10628.0 1.09867
\(455\) 1560.00 + 3120.00i 0.160734 + 0.321468i
\(456\) 0 0
\(457\) 2344.00i 0.239929i −0.992778 0.119965i \(-0.961722\pi\)
0.992778 0.119965i \(-0.0382781\pi\)
\(458\) 380.000i 0.0387691i
\(459\) 0 0
\(460\) −2320.00 + 1160.00i −0.235153 + 0.117577i
\(461\) −11382.0 −1.14992 −0.574959 0.818182i \(-0.694982\pi\)
−0.574959 + 0.818182i \(0.694982\pi\)
\(462\) 0 0
\(463\) 16062.0i 1.61223i −0.591756 0.806117i \(-0.701565\pi\)
0.591756 0.806117i \(-0.298435\pi\)
\(464\) 1440.00 0.144074
\(465\) 0 0
\(466\) −4816.00 −0.478749
\(467\) 17166.0i 1.70096i −0.526008 0.850479i \(-0.676312\pi\)
0.526008 0.850479i \(-0.323688\pi\)
\(468\) 0 0
\(469\) 11284.0 1.11097
\(470\) −2260.00 4520.00i −0.221800 0.443600i
\(471\) 0 0
\(472\) 160.000i 0.0156030i
\(473\) 10136.0i 0.985315i
\(474\) 0 0
\(475\) −4500.00 + 6000.00i −0.434682 + 0.579577i
\(476\) 6656.00 0.640919
\(477\) 0 0
\(478\) 11360.0i 1.08702i
\(479\) 7520.00 0.717323 0.358661 0.933468i \(-0.383233\pi\)
0.358661 + 0.933468i \(0.383233\pi\)
\(480\) 0 0
\(481\) 2832.00 0.268458
\(482\) 556.000i 0.0525417i
\(483\) 0 0
\(484\) 2188.00 0.205485
\(485\) −14560.0 + 7280.00i −1.36317 + 0.681583i
\(486\) 0 0
\(487\) 11814.0i 1.09927i −0.835406 0.549634i \(-0.814767\pi\)
0.835406 0.549634i \(-0.185233\pi\)
\(488\) 4336.00i 0.402216i
\(489\) 0 0
\(490\) −6660.00 + 3330.00i −0.614017 + 0.307008i
\(491\) −14052.0 −1.29156 −0.645782 0.763522i \(-0.723468\pi\)
−0.645782 + 0.763522i \(0.723468\pi\)
\(492\) 0 0
\(493\) 5760.00i 0.526202i
\(494\) −1440.00 −0.131151
\(495\) 0 0
\(496\) −2048.00 −0.185399
\(497\) 29328.0i 2.64696i
\(498\) 0 0
\(499\) −7620.00 −0.683603 −0.341802 0.939772i \(-0.611037\pi\)
−0.341802 + 0.939772i \(0.611037\pi\)
\(500\) 5500.00 + 1000.00i 0.491935 + 0.0894427i
\(501\) 0 0
\(502\) 6504.00i 0.578262i
\(503\) 1818.00i 0.161154i −0.996748 0.0805772i \(-0.974324\pi\)
0.996748 0.0805772i \(-0.0256763\pi\)
\(504\) 0 0
\(505\) 2890.00 + 5780.00i 0.254660 + 0.509320i
\(506\) −3248.00 −0.285358
\(507\) 0 0
\(508\) 6136.00i 0.535907i
\(509\) 17850.0 1.55440 0.777198 0.629256i \(-0.216640\pi\)
0.777198 + 0.629256i \(0.216640\pi\)
\(510\) 0 0
\(511\) 16432.0 1.42252
\(512\) 512.000i 0.0441942i
\(513\) 0 0
\(514\) −3072.00 −0.263619
\(515\) 14620.0 7310.00i 1.25094 0.625470i
\(516\) 0 0
\(517\) 6328.00i 0.538308i
\(518\) 12272.0i 1.04093i
\(519\) 0 0
\(520\) 480.000 + 960.000i 0.0404796 + 0.0809592i
\(521\) 19238.0 1.61772 0.808860 0.588001i \(-0.200085\pi\)
0.808860 + 0.588001i \(0.200085\pi\)
\(522\) 0 0
\(523\) 6278.00i 0.524891i 0.964947 + 0.262445i \(0.0845289\pi\)
−0.964947 + 0.262445i \(0.915471\pi\)
\(524\) 48.0000 0.00400170
\(525\) 0 0
\(526\) −9716.00 −0.805395
\(527\) 8192.00i 0.677133i
\(528\) 0 0
\(529\) 8803.00 0.723514
\(530\) −1080.00 2160.00i −0.0885136 0.177027i
\(531\) 0 0
\(532\) 6240.00i 0.508531i
\(533\) 2904.00i 0.235997i
\(534\) 0 0
\(535\) 9660.00 4830.00i 0.780632 0.390316i
\(536\) 3472.00 0.279790
\(537\) 0 0
\(538\) 5220.00i 0.418309i
\(539\) −9324.00 −0.745108
\(540\) 0 0
\(541\) −9818.00 −0.780238 −0.390119 0.920764i \(-0.627566\pi\)
−0.390119 + 0.920764i \(0.627566\pi\)
\(542\) 10336.0i 0.819131i
\(543\) 0 0
\(544\) 2048.00 0.161410
\(545\) −1850.00 3700.00i −0.145404 0.290808i
\(546\) 0 0
\(547\) 12514.0i 0.978172i −0.872236 0.489086i \(-0.837330\pi\)
0.872236 0.489086i \(-0.162670\pi\)
\(548\) 4896.00i 0.381655i
\(549\) 0 0
\(550\) 5600.00 + 4200.00i 0.434154 + 0.325616i
\(551\) 5400.00 0.417509
\(552\) 0 0
\(553\) 18720.0i 1.43952i
\(554\) −3848.00 −0.295101
\(555\) 0 0
\(556\) 12400.0 0.945822
\(557\) 10596.0i 0.806045i −0.915190 0.403022i \(-0.867960\pi\)
0.915190 0.403022i \(-0.132040\pi\)
\(558\) 0 0
\(559\) −4344.00 −0.328679
\(560\) −4160.00 + 2080.00i −0.313914 + 0.156957i
\(561\) 0 0
\(562\) 6084.00i 0.456651i
\(563\) 14002.0i 1.04816i 0.851669 + 0.524080i \(0.175591\pi\)
−0.851669 + 0.524080i \(0.824409\pi\)
\(564\) 0 0
\(565\) 5280.00 2640.00i 0.393153 0.196576i
\(566\) 3436.00 0.255169
\(567\) 0 0
\(568\) 9024.00i 0.666617i
\(569\) −7330.00 −0.540052 −0.270026 0.962853i \(-0.587032\pi\)
−0.270026 + 0.962853i \(0.587032\pi\)
\(570\) 0 0
\(571\) 5812.00 0.425963 0.212981 0.977056i \(-0.431683\pi\)
0.212981 + 0.977056i \(0.431683\pi\)
\(572\) 1344.00i 0.0982438i
\(573\) 0 0
\(574\) −12584.0 −0.915063
\(575\) 5800.00 + 4350.00i 0.420655 + 0.315491i
\(576\) 0 0
\(577\) 16736.0i 1.20750i 0.797173 + 0.603751i \(0.206328\pi\)
−0.797173 + 0.603751i \(0.793672\pi\)
\(578\) 1634.00i 0.117587i
\(579\) 0 0
\(580\) −1800.00 3600.00i −0.128864 0.257727i
\(581\) 12428.0 0.887436
\(582\) 0 0
\(583\) 3024.00i 0.214822i
\(584\) 5056.00 0.358251
\(585\) 0 0
\(586\) 4584.00 0.323146
\(587\) 7434.00i 0.522716i 0.965242 + 0.261358i \(0.0841702\pi\)
−0.965242 + 0.261358i \(0.915830\pi\)
\(588\) 0 0
\(589\) −7680.00 −0.537265
\(590\) −400.000 + 200.000i −0.0279114 + 0.0139557i
\(591\) 0 0
\(592\) 3776.00i 0.262150i
\(593\) 25872.0i 1.79163i 0.444429 + 0.895814i \(0.353407\pi\)
−0.444429 + 0.895814i \(0.646593\pi\)
\(594\) 0 0
\(595\) −8320.00 16640.0i −0.573255 1.14651i
\(596\) −1000.00 −0.0687275
\(597\) 0 0
\(598\) 1392.00i 0.0951892i
\(599\) −3720.00 −0.253748 −0.126874 0.991919i \(-0.540494\pi\)
−0.126874 + 0.991919i \(0.540494\pi\)
\(600\) 0 0
\(601\) −12958.0 −0.879481 −0.439740 0.898125i \(-0.644930\pi\)
−0.439740 + 0.898125i \(0.644930\pi\)
\(602\) 18824.0i 1.27443i
\(603\) 0 0
\(604\) −8608.00 −0.579892
\(605\) −2735.00 5470.00i −0.183791 0.367582i
\(606\) 0 0
\(607\) 7214.00i 0.482384i −0.970477 0.241192i \(-0.922462\pi\)
0.970477 0.241192i \(-0.0775384\pi\)
\(608\) 1920.00i 0.128070i
\(609\) 0 0
\(610\) 10840.0 5420.00i 0.719506 0.359753i
\(611\) −2712.00 −0.179568
\(612\) 0 0
\(613\) 4828.00i 0.318109i 0.987270 + 0.159055i \(0.0508446\pi\)
−0.987270 + 0.159055i \(0.949155\pi\)
\(614\) 10812.0 0.710646
\(615\) 0 0
\(616\) −5824.00 −0.380934
\(617\) 27656.0i 1.80452i −0.431193 0.902260i \(-0.641907\pi\)
0.431193 0.902260i \(-0.358093\pi\)
\(618\) 0 0
\(619\) 21220.0 1.37787 0.688937 0.724821i \(-0.258078\pi\)
0.688937 + 0.724821i \(0.258078\pi\)
\(620\) 2560.00 + 5120.00i 0.165826 + 0.331652i
\(621\) 0 0
\(622\) 11376.0i 0.733338i
\(623\) 12740.0i 0.819289i
\(624\) 0 0
\(625\) −4375.00 15000.0i −0.280000 0.960000i
\(626\) −14704.0 −0.938802
\(627\) 0 0
\(628\) 2096.00i 0.133184i
\(629\) −15104.0 −0.957450
\(630\) 0 0
\(631\) 17672.0 1.11491 0.557457 0.830206i \(-0.311777\pi\)
0.557457 + 0.830206i \(0.311777\pi\)
\(632\) 5760.00i 0.362532i
\(633\) 0 0
\(634\) 6968.00 0.436490
\(635\) 15340.0 7670.00i 0.958660 0.479330i
\(636\) 0 0
\(637\) 3996.00i 0.248551i
\(638\) 5040.00i 0.312752i
\(639\) 0 0
\(640\) −1280.00 + 640.000i −0.0790569 + 0.0395285i
\(641\) −7322.00 −0.451173 −0.225586 0.974223i \(-0.572430\pi\)
−0.225586 + 0.974223i \(0.572430\pi\)
\(642\) 0 0
\(643\) 8238.00i 0.505249i 0.967564 + 0.252624i \(0.0812937\pi\)
−0.967564 + 0.252624i \(0.918706\pi\)
\(644\) −6032.00 −0.369090
\(645\) 0 0
\(646\) 7680.00 0.467749
\(647\) 6426.00i 0.390467i −0.980757 0.195233i \(-0.937454\pi\)
0.980757 0.195233i \(-0.0625465\pi\)
\(648\) 0 0
\(649\) −560.000 −0.0338705
\(650\) 1800.00 2400.00i 0.108618 0.144824i
\(651\) 0 0
\(652\) 14072.0i 0.845249i
\(653\) 5908.00i 0.354055i −0.984206 0.177027i \(-0.943352\pi\)
0.984206 0.177027i \(-0.0566482\pi\)
\(654\) 0 0
\(655\) −60.0000 120.000i −0.00357923 0.00715845i
\(656\) −3872.00 −0.230452
\(657\) 0 0
\(658\) 11752.0i 0.696262i
\(659\) −26780.0 −1.58301 −0.791503 0.611166i \(-0.790701\pi\)
−0.791503 + 0.611166i \(0.790701\pi\)
\(660\) 0 0
\(661\) −24538.0 −1.44390 −0.721950 0.691945i \(-0.756754\pi\)
−0.721950 + 0.691945i \(0.756754\pi\)
\(662\) 15736.0i 0.923863i
\(663\) 0 0
\(664\) 3824.00 0.223494
\(665\) −15600.0 + 7800.00i −0.909687 + 0.454844i
\(666\) 0 0
\(667\) 5220.00i 0.303027i
\(668\) 2136.00i 0.123719i
\(669\) 0 0
\(670\) −4340.00 8680.00i −0.250252 0.500504i
\(671\) 15176.0 0.873119
\(672\) 0 0
\(673\) 28848.0i 1.65232i 0.563439 + 0.826158i \(0.309478\pi\)
−0.563439 + 0.826158i \(0.690522\pi\)
\(674\) 1312.00 0.0749798
\(675\) 0 0
\(676\) −8212.00 −0.467228
\(677\) 26884.0i 1.52620i 0.646282 + 0.763099i \(0.276323\pi\)
−0.646282 + 0.763099i \(0.723677\pi\)
\(678\) 0 0
\(679\) −37856.0 −2.13959
\(680\) −2560.00 5120.00i −0.144370 0.288740i
\(681\) 0 0
\(682\) 7168.00i 0.402459i
\(683\) 14282.0i 0.800125i 0.916488 + 0.400063i \(0.131012\pi\)
−0.916488 + 0.400063i \(0.868988\pi\)
\(684\) 0 0
\(685\) −12240.0 + 6120.00i −0.682725 + 0.341362i
\(686\) 520.000 0.0289412
\(687\) 0 0
\(688\) 5792.00i 0.320956i
\(689\) −1296.00 −0.0716599
\(690\) 0 0
\(691\) −3428.00 −0.188723 −0.0943613 0.995538i \(-0.530081\pi\)
−0.0943613 + 0.995538i \(0.530081\pi\)
\(692\) 17008.0i 0.934317i
\(693\) 0 0
\(694\) 11508.0 0.629449
\(695\) −15500.0 31000.0i −0.845969 1.69194i
\(696\) 0 0
\(697\) 15488.0i 0.841678i
\(698\) 6220.00i 0.337293i
\(699\) 0 0
\(700\) 10400.0 + 7800.00i 0.561547 + 0.421160i
\(701\) −26942.0 −1.45162 −0.725810 0.687895i \(-0.758535\pi\)
−0.725810 + 0.687895i \(0.758535\pi\)
\(702\) 0 0
\(703\) 14160.0i 0.759679i
\(704\) −1792.00 −0.0959354
\(705\) 0 0
\(706\) −15616.0 −0.832459
\(707\) 15028.0i 0.799415i
\(708\) 0 0
\(709\) 1950.00 0.103292 0.0516458 0.998665i \(-0.483553\pi\)
0.0516458 + 0.998665i \(0.483553\pi\)
\(710\) 22560.0 11280.0i 1.19248 0.596241i
\(711\) 0 0
\(712\) 3920.00i 0.206332i
\(713\) 7424.00i 0.389945i
\(714\) 0 0
\(715\) 3360.00 1680.00i 0.175744 0.0878719i
\(716\) −10000.0 −0.521952
\(717\) 0 0
\(718\) 18480.0i 0.960540i
\(719\) 12080.0 0.626576 0.313288 0.949658i \(-0.398570\pi\)
0.313288 + 0.949658i \(0.398570\pi\)
\(720\) 0 0
\(721\) 38012.0 1.96344
\(722\) 6518.00i 0.335976i
\(723\) 0 0
\(724\) 10312.0 0.529340
\(725\) −6750.00 + 9000.00i −0.345778 + 0.461037i
\(726\) 0 0
\(727\) 17226.0i 0.878785i 0.898295 + 0.439393i \(0.144806\pi\)
−0.898295 + 0.439393i \(0.855194\pi\)
\(728\) 2496.00i 0.127071i
\(729\) 0 0
\(730\) −6320.00 12640.0i −0.320430 0.640859i
\(731\) 23168.0 1.17223
\(732\) 0 0
\(733\) 788.000i 0.0397073i 0.999803 + 0.0198536i \(0.00632003\pi\)
−0.999803 + 0.0198536i \(0.993680\pi\)
\(734\) −6428.00 −0.323245
\(735\) 0 0
\(736\) −1856.00 −0.0929525
\(737\) 12152.0i 0.607360i
\(738\) 0 0
\(739\) 2060.00 0.102542 0.0512709 0.998685i \(-0.483673\pi\)
0.0512709 + 0.998685i \(0.483673\pi\)
\(740\) 9440.00 4720.00i 0.468948 0.234474i
\(741\) 0 0
\(742\) 5616.00i 0.277857i
\(743\) 3258.00i 0.160867i −0.996760 0.0804337i \(-0.974369\pi\)
0.996760 0.0804337i \(-0.0256305\pi\)
\(744\) 0 0
\(745\) 1250.00 + 2500.00i 0.0614718 + 0.122944i
\(746\) 696.000 0.0341587
\(747\) 0 0
\(748\) 7168.00i 0.350385i
\(749\) 25116.0 1.22526
\(750\) 0 0
\(751\) −4528.00 −0.220012 −0.110006 0.993931i \(-0.535087\pi\)
−0.110006 + 0.993931i \(0.535087\pi\)
\(752\) 3616.00i 0.175348i
\(753\) 0 0
\(754\) −2160.00 −0.104327
\(755\) 10760.0 + 21520.0i 0.518671 + 1.03734i
\(756\) 0 0
\(757\) 18236.0i 0.875560i 0.899082 + 0.437780i \(0.144235\pi\)
−0.899082 + 0.437780i \(0.855765\pi\)
\(758\) 9880.00i 0.473427i
\(759\) 0 0
\(760\) −4800.00 + 2400.00i −0.229098 + 0.114549i
\(761\) 18678.0 0.889720 0.444860 0.895600i \(-0.353253\pi\)
0.444860 + 0.895600i \(0.353253\pi\)
\(762\) 0 0
\(763\) 9620.00i 0.456445i
\(764\) −3072.00 −0.145473
\(765\) 0 0
\(766\) 12284.0 0.579424
\(767\) 240.000i 0.0112984i
\(768\) 0 0
\(769\) −27390.0 −1.28441 −0.642203 0.766534i \(-0.721980\pi\)
−0.642203 + 0.766534i \(0.721980\pi\)
\(770\) 7280.00 + 14560.0i 0.340718 + 0.681436i
\(771\) 0 0
\(772\) 10432.0i 0.486342i
\(773\) 9252.00i 0.430493i 0.976560 + 0.215247i \(0.0690555\pi\)
−0.976560 + 0.215247i \(0.930944\pi\)
\(774\) 0 0
\(775\) 9600.00 12800.0i 0.444958 0.593277i
\(776\) −11648.0 −0.538839
\(777\) 0 0
\(778\) 6100.00i 0.281100i
\(779\) −14520.0 −0.667822
\(780\) 0 0
\(781\) 31584.0 1.44707
\(782\) 7424.00i 0.339491i
\(783\) 0 0
\(784\) −5328.00 −0.242711
\(785\) 5240.00 2620.00i 0.238247 0.119123i
\(786\) 0 0
\(787\)